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Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the United States. Human epidemiological
studies provide challenges for understanding mechanisms that regulate initiation and progression of CVD due to variation in
lifestyle, diet, and other environmental factors. Studies describing metabolic and physiologic aspects of CVD, and those
investigating genetic and epigenetic mechanisms influencing CVD initiation and progression, have been conducted in multiple
Old World nonhuman primate (NHP) species. Major advantages of NHPs as models for understanding CVD are their genetic,
metabolic, and physiologic similarities with humans, and the ability to control diet, environment, and breeding. These NHP
species are also genetically and phenotypically heterogeneous, providing opportunities to study gene by environment
interactions that are not feasible in inbred animal models. Each Old World NHP species included in this review brings unique
strengths as models to better understand human CVD. All develop CVD without genetic manipulation providing multiple
models to discover genetic variants that influence CVD risk. In addition, as each of these NHP species age, their age-related
comorbidities such as dyslipidemia and diabetes are accelerated proportionally 3 to 4 times faster than in humans.

In this review, we discuss current CVD-related research in NHPs focusing on selected aspects of CVD for which nonprimate
model organism studies have left gaps in our understanding of human disease. We include studies on current knowledge of
genetics, epigenetics, calorie restriction, maternal calorie restriction and offspring health, maternal obesity and offspring
health, nonalcoholic steatohepatitis and steatosis, Chagas disease, microbiome, stem cells, and prevention of CVD.

Key words: caloric restriction; Chagas disease; epigenetics; genetics; maternal nutrition; non-alcoholic fatty liver disease;
stem cells
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Introduction
Cardiovascular disease (CVD) is the leading cause of morbidity
and mortality in the United States (Mozaffarian et al. 2016).
Human epidemiological studies provide significant challenges for
understanding mechanisms underlying initiation and progression
of CVD due to extensive variation in lifestyle and other environ-
mental factors. Nonhuman primates (NHPs) have been studied for
decades as a model to understand the pathogenesis and progres-
sion of CVD. Studies describing metabolic and physiologic aspects
of CVD, and studies investigating genetic and epigenetic mecha-
nisms influencing CVD initiation and progression, have been con-
ducted in baboons (Papio hamadryas), rhesus macaques (Macaca
mulatta), cynomologous macaques (Macaca fascicularis), snowmon-
keys (Macaca fuscata), and vervet monkeys (Chlorocebus aethiops sa-
baeus) (Figure 1). Major advantages of studying CVD in NHPs are
their genetic, metabolic, and physiologic similarities with hu-
mans, and equally important is the ability to control diet, environ-
ment, and breeding. In addition, these NHP species are genetically
and phenotypically heterogeneous, providing opportunities to
study gene by environment interactions that cannot be feasibly
studied in inbred animal models.

Each of the Old World NHP species listed above brings un-
ique strengths as models of human CVD. All develop CVD with-
out genetic manipulation, providing multiple models to
discover genetic variants that influence CVD risk. As these spe-
cies age, their age-related comorbidities such as dyslipidemia
and diabetes are accelerated proportionally 3 to 4 times faster
than in humans (Cox et al. 2013). In addition, due to their large

body size it is feasible to conduct longitudinal studies, collect-
ing biopsy tissue samples in healthy and diseased animals at
multiple time points. While it is feasible to collect various
biopsy samples in an NHP model, advanced imaging technolo-
gies are increasingly being applied. Among the advantages of
the NHP model already noted, the overall anatomical similarity
and general larger body size allow for the direct application of
imaging techniques and equipment already being used with
humans. As an example, molecular resonance imaging (MRI)
has been utilized in several studies focused on cardiometabolic
function and health across a range of NHP species (Kochunov
et al. 2017; Kuo et al. 2017).

Among NHP species, lipid metabolism in baboons more
strongly correlates with humans than does lipid metabolism of
rhesus macaques, cynomolgus macaques, or vervet monkeys
(Eggen 1974). Initial observations of lesions in baboons were
first published by McGill et al. in 1960 (McGill et al. 1960) and
subsequent studies have characterized atherosclerosis in ba-
boons (McGill et al. 1981). Baboon plasma cholesterol and tri-
glyceride (TG) concentrations respond to dietary cholesterol,
fat, and carbohydrates similar to those of humans (Higgins
et al. 2010; Kushwaha and McGill 1998; Kushwaha et al. 1994).
Chronic feeding of a high-fat diet leads to fatty streaks and ath-
erosclerotic plaque (McGill et al. 1981). In addition, a diet high
in simple carbohydrates and fat causes baboons to develop
increased body fat and TG concentrations, altered adipokine
concentrations, and altered glucose metabolism, consistent
with observations in humans (Higgins et al. 2010). Even on a

Figure 1 Old World monkeys (Cercopithecidae) included in studies to understand mechanisms and pathology of cardiovascular disease: (A) Olive baboon, (B) Cynomolgus

macaque, (C) Japanese macaque, (D) Rhesus macaque, and (E) Vervet monkey. References for figures: A. Olive baboon: Photograph by Charles J Sharp. https://en.wikipedia.

org/wiki/Baboon#/media/File:Baboons_on_rock.jpg B. Cynomolgus macaque: Photograph by Sakurai Midori. https://en.wikipedia.org/wiki/Crab-eating_macaque#/media/File:

Ngarai_Sianok_sumatran_monkey.jpg C. Japanese macaque: Photograph by Kenpei. https://en.wikipedia.org/wiki/Japanese_macaque#/media/File:Macaca_fuscata_fuscata1.

jpg D. Rhesus macaque: Photograph by Einar Fredriksen. https://en.wikipedia.org/wiki/Rhesus_macaque#/media/File:Macaca_mulatta_in_Guiyang.jpg E. Vervet monkey:

Photograph by Derek Keats. https://en.wikipedia.org/wiki/Vervet_monkey#/media/File:Vervet_monkey_Krugersdorp_game_reserve_(5657678441).jpg
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normal chow diet, some animals develop insulin resistance,
dyslipidemia, atherosclerosis, and CVD, recapitulating meta-
bolic complications seen in humans (Higgins et al. 2014;
Kamath et al. 2011; Kulkarni et al. 2014).

Rhesus macaques, cynomologous macaques, vervet mon-
keys, and snow monkeys also develop atherosclerosis when fed
a high-fat diet long term (Eggen 1974; Rudel et al. 1990), and
their smaller size compared with baboons makes housing and
husbandry more amenable for some research facilities.

NHPs also bring challenges to studies of CVD. Compared with
mice and rats, NHPs have longer lifespans and longer health
spans; and due to their larger body sizes, they are more expensive
to maintain, and require greater amounts of experimental re-
agents for testing of therapies and drugs. In addition, NHP gen-
omes are less well annotated than mouse and rat genomes,
which poses challenges for identifying and validating genetic var-
iants that influence CVD initiation and progression. Some of these
challenges can be overcome by using comparative genomic analy-
sis and annotation tools, such as those available through the
UCSC Genome Browser (Rosenbloom et al. 2015), and will be over-
come in the near future as annotation of NHP genomes improves.

In this article, we review current CVD-related research in
NHPs focusing on selected aspects of CVD for which nonprimate
model organism studies have left gaps in our understanding of
human disease. This review includes genetics, epigenetics, calo-
rie restriction, maternal calorie restriction and offspring health,
maternal obesity and offspring health, nonalcoholic steatohepa-
titis (NASH) and steatosis, Chagas disease, microbiome, stem
cells, and prevention. This review does not include some other
clinically important topics to which CVD research with NHPs has
made vital contributions, including vascular aging, hypertension,
diastolic function, social status, and stress, among others.

Genetics
Influence of Genetic Variation on CVD Risk

Studies to identify genetic loci and genetic variation that are corre-
lated with CVD risk have been conducted with the pedigreed
baboon colony at the Southwest National Primate Research
Center (SNPRC). Initial studies identified correlations of variation
in apolipoprotein(a) isoform frequencies with lipoprotein(a) serum
concentrations (Williams-Blangero and Rainwater 1991); and
serum concentrations of lipoprotein(a) correlate with risk of CVD
(Kronenberg et al. 1996). The SNPRC baboon colony has also been
used to map genetic loci related to hypertension (Kammerer et al.
2003), loci related to low density lipoprotein (LDL) size phenotypes
(Rainwater et al. 2003), and loci regulating plasma levels of gamma
glutamyl transferase and albumin—quantitative traits that corre-
late with CVD (Bose et al. 2009). Baboons from the SNPRC colony
were also used to identify functional genetic variants that regulate
high density lipoprotein cholesterol (HDL-C) plasma concentra-
tions (Cox et al. 2007) and to identify novel candidate genes that
regulate LDL-C plasma concentrations (Karere et al. 2013).

Studies at the Oregon National Primate Research Center
have shown that plasma HDL-C concentrations are also herita-
ble in rhesus macaques (Vinson et al. 2013), providing another
NHP model for research on the genetics of this CVD-related
quantitative trait. Addition of whole genome sequence data for
the SNPRC pedigreed baboon colony, as well as a pedigreed
snow monkey colony (Oregon National Primate Research
Center) and pedigreed rhesus macaque colonies at the other
NPRCs, will accelerate the identification of functional genetic
variants that influence CVD initiation and progression.

Gene by Diet Interactions and CVD Risk

The expression of an organism’s genes occurs within an environ-
mental context in which almost all gene expression is affected
by gene by environment interactions. Perhaps the most profound
and pervasive form of gene by environment interaction is that of
gene by diet. As food becomes available on a continuous basis,
the nutrient composition of an organism’s diet can have a
chronic and significant impact on various physiological and met-
abolic processes, all of which are mediated to varying degrees by
the genetic makeup of the organism. While the nutritional envi-
ronment represents a potent factor impacting gene action, the
clear detection of such effects is difficult in free-living popula-
tions of humans due to the pronounced diversity in individual
diets. However, NHP models such as the baboon, with their
strong similarity in dietary adaption with humans (both being
highly omnivorous) as well as the large extent of genetic conser-
vation and the ability to control diet and breeding, presents a un-
ique opportunity to investigate gene by diet interactions under
tightly controlled experimental conditions. Investigators at the
SNPRC have extensive experience utilizing a colony of pedigreed
baboons to understand the interaction of saturated fat and cho-
lesterol with genes involved in lipid metabolism and the corre-
sponding impact on risk for CVD. Since the early 1980s, more
than 3000 pedigreed baboons have been challenged with a high-
cholesterol, high-fat (HCHF) diet (containing 41% of the energy as
fat by the addition of lard) and 6.37mg cholesterol/g (Wang et al.
2004) for varying periods of time to assess the impact of this diet
exposure on a wide range of phenotypes associated with lipid
metabolism and cardiovascular health. The results documented
many significant gene by diet interactions, including diet-specific
effects of two major loci on apo-A1 levels in response to a high-
fat diet (Blangero et al. 1990), and a pattern of shared genetic ef-
fects (i.e., pleiotropy) among three subfractions of HDL (HDL1-C,
HDL2-C, and HDL3-C) varied depending on dietary exposure
(Mahaney et al. 1999). The colony has also been used to assess
the interactions of vitamin E supplementation on risk factors for
CVD (PMID: 17823422) and the impact of a chronic (2-year) HCHF
diet on blood lipids and lipoproteins, lipoprotein-related en-
zymes, biomarkers of inflammation and oxidative stress, blood
pressure, arterial compliance (stiffness), and extent of athero-
sclerotic lesions (Mahaney et al. 2017). The results of that and
many previous studies clearly established that experimental die-
tary manipulations of NHPs have biological impacts that closely
resemble those of humans whose diets have high levels of cho-
lesterol and fat and that there is considerable individual varia-
tion in response to these dietary components.

MicroRNA by Diet Interactions

MicroRNAs (miRNAs) are endogenous, small non-protein coding
RNAs (approximately 22 nts) that posttranscriptionally regulate
gene expression by degradation of mRNAs or translational
silencing (Ambros 2004). MiRNAs exist in virtually all organisms
and are highly conserved evolutionarily (Ambros 2001), suggest-
ing an essential role in biological processes. Expression of these
small RNAs is highly tissue and cell specific. Circulating extracel-
lular miRNAs are present in body fluids, including urine, saliva,
breast milk, and plasma, where they are protected against ribo-
nucleases by forming complexes with proteins, lipids, exosomes,
and/or microvesicles. Thus, miRNAs are useful biomarkers for
some diseases (Hunter et al. 2008; Valadi et al. 2007). MiRNAs
also play roles in cell-cell communication, where they are loaded
in carriers such as HDL-C particles and extracellular vesicles and
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transported to and taken up by distant tissues to regulate gene
expression (Nolte-‘t Hoen et al. 2015; Vickers et al. 2011). MiRNAs
have been implicated in a plethora of biological pathways,
including cholesterol metabolism, and contribute to the progres-
sion of a number of diseases (Rayner et al. 2011; Sun et al. 2014).
Because many genes can be regulated by a single miRNA and
different miRNAs can target one gene, miRNAs fine-tune gene
expression and coordinate genetic networks underlying com-
mon complex human diseases, such as CVD.

De novo cholesterol synthesis is tightly regulated to maintain
homeostasis, and diet-derived LDL-C that perturbs cholesterol
homeostasis is a major risk factor for CVD. Investigation into the
role of miRNAs on LDL-C variation in half-sib baboons discordant
for serum LDL-C concentrations (n = 6, low LDL-C; n = 6, high
LDL-C), challenged with HCHF diet for 7 weeks, revealed 226 dif-
ferentially expressed miRNAs (66 upregulated and 160 downregu-
lated) (Karere et al. 2012). Overlaying these miRNAs onto genetic
networks to identify molecular mechanisms that may regulate
variation in LDL-C revealed seven candidate miRNAs (Karere
et al. 2013). These findings demonstrated that liver miRNAs are
responsive to diet, that miRNA response to a HCHF diet challenge
differs among baboons with different LDL-C serum concentra-
tions, and that miRNAs may regulate LDL-C variation.

Serum HDL-C concentrations are inversely associated with
CVD, and HDL-C particles are essential for sequestering choles-
terol from organs and macrophages. MiR-33 and miR-27b have
been implicated in cholesterol synthesis and fatty acid oxidation
(Rayner et al. 2011; Vickers et al. 2013). Ouimet et al. (Ouimet
et al. 2016) identified oxysterol-binding protein-like 6 (OSBPL6) as
a target of miR-33 and miR-27b. OSBPL6 is localized on a region
of chromosome 2 linked to premature CVD (Nsengimana et al.
2007) and linked to variation in HDL-C plasma concentrations in
women (North et al. 2003). In addition, OSBPL6 is an LXR-
responsive gene that is upregulated in response to feeding ver-
vet monkeys a high-fat, high-simple carbohydrate diet. In mice,
knockdown of OSBPL6 was associated with reduced cholesterol
esterification, and overexpression was associated with increased
cholesterol trafficking and efflux in macrophages and hepato-
cytes. A study of 200 healthy individuals showed a positive cor-
relation between OSBPL6 hepatic expression and plasma HDL-C
concentrations. These findings suggest that miR-33 and miR-27b
regulate variation in HDL-C metabolism (Ouimet et al. 2016).

Calorie Restriction and CVD
The majority of studies investigating the impact of caloric
restriction (CR) on CVD risk has been performed using mice
and rats, and more recently naked mole rats. Numerous studies
have shown that CR has beneficial effects on health and lon-
gevity including reduction of CVD risk factors in these short-
lived species (reviewed in Stenvinkel et al. 2016). In NHPs, only
three studies have prospectively investigated the effects of pro-
longed CR on metabolism, physiology, and CVD incidence:
studies of rhesus macaques at the Wisconsin National Primate
Research Center (WNPRC) (Colman et al. 2009, 2014) and the
National Institute of Aging (NIA) at the National Institutes of
Health (Lane et al. 1992, 1999; Mattison et al. 2012; Verdery
et al. 1997), and a study of cynomolgus macaques at the Wake
Forest School of Medicine (Cefalu et al. 1999).

In the rhesus macaque study at the WNPRC, young adult
male rhesus macaques of Indian origin were fed a low-fat, low-
cholesterol diet ad libitum from weaning until the study began.
During the first 6 weeks of the study, animals were housed sin-
gly with food consumption monitored. During the subsequent 3

months, the amount of food for CR animals was reduced by
10% per month compared with ad libitum consumption. For the
NIA study, male rhesus macaques of Indian and Chinese origin,
in three age groups (6–12 months, 3–5 years, and 18–25 years),
were included. Six years after the start of the study, female rhe-
sus macaques in three age groups (1–3 years, 6–14 years, and
16–21 years) were added to the study (Colman et al. 2009, 2014).
As with the WNPRC study, after an initial assessment of ad libi-
tum food consumption amounts, amounts of food available for
the CR animals were reduced by 10% per month compared with
ad libitum consumption (Lane et al. 1992, 1999; Mattison et al.
2012; Verdery et al. 1997).

In both of these studies, monkeys showed a decrease in
body weight and body fat, especially abdominal visceral fat. CR
correlated with improved insulin sensitivity and glucose toler-
ance, and increased insulin-stimulated glucose uptake when
measured using the clamp technique compared with age-
matched ad libitum-fed controls. In the NIA study, CR monkeys
did not have a beneficial effect on extent of atherosclerotic le-
sions (Mattison et al. 2012). In the WNPRC study, CR monkeys
showed improvement of plasma triglyceride levels, lipoprotein
levels, blood pressure, and extent of atherosclerotic lesions
compared with controls (Colman et al. 2014).

In the Wake Forest School of Medicine study, young adult
male cynomolgus macaques were initially fed a moderately
atherogenic diet. Then over a 3-month period, 30% CR was
gradually implemented. After 4 years, the CR cynomolgus ma-
caques showed a decrease in body fat and an increase in insu-
lin sensitivity compared with controls. Similar to the NIA CR
rhesus macaque study, the CR cynomolgus macaques did not
show improved lipid profiles or extent of atherosclerotic lesions
compared with controls (Cefalu et al. 1999).

In these three experimental paradigms using Indian-origin
rhesus, Chinese-origin rhesus, and cynomolgus macaques, CR
consistently positively impacted insulin sensitivity. Although dia-
betes and CVD are tightly linked, CR did not consistently show a
similar positive impact on lipoprotein and triglyceride profiles or
extent of atherosclerotic lesions (reviewed in (Kemnitz 2011)). It is
possible that genetic variation plays a role in these differences,
supporting the need for further studies to understand genetic
mechanisms central to cardiovascular health.

Maternal Nutrition and Offspring CVD
Maternal CR During Pregnancy and Offspring CVD Risk

It is well established that suboptimal maternal nutrition during
pregnancy alters fetal development (Langley-Evans 2015), with
greater risk of adult-onset diseases including CVD (Barker et al.
1989; Hanson and Gluckman 2015). Human epidemiological and
experimental animal studies have shown that programming af-
fects the risk of developing diseases during adulthood and corre-
lates with maternal diet and availability of nutrients during
development (McMullen and Mostyn 2009; Ozanne et al. 2004).
Effects of the in utero environment on health span are termed
“developmental programming.” Maternal under-nutrition during
pregnancy, which has been studied more extensively than other
programming challenges, typically results in fetal intrauterine
growth restriction (IUGR). IUGR is an important obstetric compli-
cation that affects 4% to 8% of babies in developed countries and
6% to 30% in developing countries, resulting in long-term health
complications in the offspring during adulthood.

One of the first human epidemiological studies to address
programming by IUGR was the Nurses’ Health Study at Harvard
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Medical School. This study of more than 120 000 women
showed that low birth weight was associated with increased
incidence of CVD (Rich-Edwards et al. 1997). These findings
raised questions about the influence of programming on the
genome, influencing gene by environment interactions in IUGR
offspring; for example, does programming modify the epigen-
ome and offspring resiliency (Rich-Edwards et al. 1997; Sun
et al. 2013; Tarrade et al. 2015)?

A baboon model of IUGR has been developed to study tissue,
cellular, and molecular changes in the developing fetus (Cox et al.
2013; Li et al. 2009) and the impact on offspring health (Choi et al.
2011). Fetal studies showed that maternal CR (MCR, 30% reduction
of controls fed ad libitum) influences the fetal kidney transcrip-
tome and renal tubule structure (Cox et al. 2006), with mTOR sig-
naling central to this response (Nijland et al. 2007). In addition,
MCR impacts the fetal liver transcriptome and energy storage (Li
et al. 2009), and fetal liver changes correlate with epigenetic
changes in the energy management enzyme PEPCK1 (Nijland
et al. 2010). Similar findings have not been reported in nonpri-
mate models of IUGR, suggesting fundamental molecular and cel-
lular differences between primate and nonprimate response to a
suboptimal in utero environment. Furthermore, IUGR juvenile off-
spring in this model show signs of hypertension, insulin resis-
tance, and metabolic syndrome (Choi et al. 2011).

In addition to IUGR being associated with increased inci-
dence of dyslipidemia and hypertension, cardiac dysfunction
has been detected in IUGR fetuses and neonates (Fouzas et al.
2014). However, the mechanisms by which IUGR programs fetal
heart and postnatal cardiac function are poorly understood.
Some measures of cardiac function are inversely correlated
with birth weight (Jones et al. 2008; Ward et al. 2004), and
human IUGR offspring as adults have higher systolic blood
pressure and smaller aortic dimension, suggesting impairment
of future left ventricular performance (Bjarnegård et al. 2013). A
better understanding of the underlying pathogenesis will allow
development of imaging biomarkers for diagnosis and offer
more timely treatment options.

A recent study by Kuo et al. (2016) investigated the effects of
IUGR on young adult baboons (age 5.7 ± 1.3 years). They used
cardiac magnetic resonance imaging, an established noninva-
sive method to quantify cardiac changes indicative of subclini-
cal heart disease in humans and found systolic dysfunction,
diastolic derangement, and morphological remodeling of the
left ventricle in these young adult baboons. Results from this
study showed that the effects of cardiac function on IUGR per-
sist postnatally and that baboons exhibit cardiac abnormalities
similar to humans. The investigators found differences in car-
diac dysfunction by comparison with nonprimate models, indic-
ating either variation in IUGR protocols or differences between
primate and nonprimate cardiac physiology (Kuo et al. 2016).
Use of this imaging modality where animals can be monitored
longitudinally may provide foundation data for discovery of bio-
markers early in the disease process. In addition, because this
modality is established for human cardiac functional assess-
ment, findings in baboons can be directly translated to humans.

Maternal Obesity During Pregnancy and Offspring CVD
Risk

The incidence of obesity and overweight has reached epidemic
proportions in the developed world, with approximately 64% of
women of childbearing age in the United States being over-
weight (BMI ≥ 25 kg/m2 and <30 kg/m2) or obese (BMI ≥ 30 kg/
m2) (Wilson and Messaoudi 2015). It is well established that an

obesogenic nutritional environment and a sedentary lifestyle
contribute to the risk of developing obesity. A growing body of
evidence links early-life nutritional adversity to the develop-
ment of long-term metabolic disorders (Li et al. 2011).
Therefore, early-life exposure of offspring to environmental sti-
muli, including altered nutrition during critical periods of
development, can program alterations in organogenesis, tissue
development, and metabolism, predisposing offspring to obe-
sity, metabolic disease, and CVD in later life (Dong et al. 2013;
Reynolds et al. 2013; Segovia et al. 2014). Supporting the pro-
gramming hypothesis is the increasing prevalence of maternal
obesity and excess maternal weight gain associated with
increased risk of obesity in offspring (Nathanielsz et al. 2007)
and metabolic-related diseases such as diabetes and CVD
(Alfaradhi and Ozanne 2011).

Animal studies suggest that inappropriate energy metabolism
during pregnancy has an adverse effect on fetal development and
is an important factor in metabolic programming (Rees et al.
2008). Maternal obesity-induced developmental programming
has been validated in mice, rats, sheep, and NHPs (Maloyan et al.
2013; McCurdy et al. 2009). McCurdy et al. (McCurdy et al. 2009)
showed lipid accumulation in the livers of Japanese macaque fe-
tuses that were approaching birth. In addition, a baboon model of
maternal obesity revealed fetal hepatic lipid accumulation
(Puppula et al. unpublished data) as well as dysregulation of fetal
cardiac miRNA expression and early signs of fibrosis in the fetal
heart (Maloyan et al. 2013). Because the liver is a central meta-
bolic regulator, the observed accumulation of lipid in NHP fetal li-
vers may be an upstream event that influences CVD and
metabolic disease risk in offspring of obese pregnancies. Also of
interest is the observed disruption of the methionine cycle in ob-
ese pregnant baboons, suggesting an epigenetic mechanism by
which obesity during pregnancy may impact fetal development
(Nathanielsz et al. 2015).

NASH and Steotosis
Nonalcoholic fatty liver disease (NAFLD), the most common
cause of chronic liver disease in the United States, progresses
to NASH, which can progress to end-stage liver disease. NAFLD
describes a spectrum of liver pathologies ranging from simple
steatosis (>5% TG accumulation in hepatocytes) to NASH,
including lobular and portal vein inflammation, hepatocellular
ballooning, and fibrosis. NAFLD has been shown to confer
increased CVD-related deaths due to the high prevalence of
dyslipidemia in these individuals (Cohen et al. 2011). In addi-
tion, resolution of NASH is associated with improved lipopro-
tein profiles and triglycerides, suggesting that NASH directly
impacts CVD progression (Corey et al. 2015). Over 50% of obese
adults in the United States develop NAFLD. Of these, about
one-half will progress to NASH, and 20% to 30% will develop
additional liver health complications such as cirrhosis or hepa-
tocellular carcinomas within 10 years. With the increasing
prevalence of obesity and diabetes, there has been a steep rise
in the incidence of nonalcoholic NAFLD in the developed world
(Cohen et al. 2011).

The primary challenge in developing a suitable animal
model for NAFLD and NASH has been the need for animals to
develop all characteristic hepatic abnormalities together with
the metabolic systemic complications such as dyslipidemia,
insulin resistance, obesity, and characteristic cytokine profiles.
In rodent models, it has been challenging to recreate all
NAFLD-related health complications effectively and reproduc-
ibly. Genetic models such as the Zucker rat or the Ob/Ob mouse
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develop obesity, dyslipidemia, and insulin resistance (Phillips
et al. 1996; Tilg and Diehl 2000) but fail to develop the entire
complement of liver pathologies, even on a challenge diet.
Challenging these mice with lipopolysaccharides accelerates
the development of steatosis and hepatic injury. Similarly, ro-
dents fed a methionine- and choline-deficient diet develop
steatosis and some aspects of the hepatic inflammation seen in
human NAFLD, but fail to develop insulin resistance and obe-
sity (Dela Peña et al. 2005). Rodent studies also have suggested
that fructose and high-carbohydrate diets potently promote the
development of NAFLD. However, rodents have higher lipogen-
esis rates compared to humans, and the primary sites of lipo-
genesis, the inflammatory responses, and toll-like receptor
expression patterns, all hallmarks of human NAFLD, are differ-
ent. Also, despite the effects of challenge diets, rodents do not
readily develop fibrosis (Bergen and Mersmann 2005; Ketloy
et al. 2008; Sanches et al. 2015; Seok et al. 2013).

Other mammalian species have been proposed as NAFLD
models, such as Ossabaw (Bell et al. 2010) or Lee-Sung (Li et al.
2016) mini-pigs and laboratory opossums (Chan et al. 2012), but
to date, they have not been widely used for NAFLD-related
studies, and no long-term data are available to validate the
entire complement of characteristic molecular and histological
abnormalities seen in human patients.

Recent studies suggest that NHPs may develop NAFLD-like
abnormalities. A small percentage of captive marmosets, a small
New World monkey species, developed NAFLD-like pathologies,
potentially triggered by exposure to excess dietary iron. The ani-
mals developed hepatomegaly, hepatic inflammation, and obe-
sity, but no overt signs of liver fibrosis or insulin resistance
(Kramer et al. 2015). In contrast, recent long-term studies suggest
that vervet monkeys developed liver fibrosis, in addition to other
hallmarks of NAFLD, obesity, and insulin resistance, after seven
years on a high-fructose diet (Cydylo et al. 2017). These findings
suggest that NHP species develop NAFLD-like symptoms similar
to humans. A NHP model would have benefits over current
rodent models due to extensive human-NHP genetic, physio-
logic, and nutritional behavior similarities.

Baboons also develop significant liver steatosis, initial signs
of hepatic inflammation, and insulin resistance on a HCHF diet.
A HCHF diet also causes baboons to develop increased body fat
and TG concentrations, altered adipokine concentrations, and
altered glucose metabolism, consistent with observations in
humans (Higgins et al. 2010). Steatosis can be observed within a
few weeks, much more rapidly than reported in other NHP spe-
cies. The rate of steatosis is variable among animals, suggesting
that genetic factors also influence the development of steatosis,
similar to humans. Therefore, it is likely that baboons develop
all characteristic features of NAFLD and NASH, including the
hepatic pathologies and the systemic complications when
exposed to a HCHF challenge diet for extended periods. Due to
baboon body size (which facilitates repeated collection of
biopsy samples without harm to the animal), its similarity to
humans genetically and physiologically, and its susceptibility
to diet-induced metabolic abnormalities, the baboon may be an
ideal animal model for research on NAFLD and NASH.

Chagas Disease
Overview of Chagas Disease

Chagas disease is caused by a protozoan parasite, Trypanosoma
cruzi, which is typically transmitted by blood-sucking triato-
mine bugs. In general (although perhaps with rare exceptions),

once a person is infected, he or she is always infected; the
immune system is quite effective in eliminating parasites from
the blood and maintaining blood parasitemia at low levels after
the acute phase, but it cannot eliminate parasites from the
heart or other tissues. After many years or several decades,
approximately 30% of infected people develop cardiac patholo-
gies. Many infected people die of sudden cardiac arrest or com-
plications of congestive heart failure. There is no vaccine or
prophylactic drug for Chagas disease, and therapeutic drugs
have been tested in clinical trials for half a century without
leading to validation of sufficient efficacy and safety to be
widely marketed for use in chronically infected adults.

Chagas Disease in NHPs

Like many other wild mammals, monkeys serve as a reservoir
for T. cruzi. Although T. cruzi in nature is confined to the
Americas, ranging from central and the southern half of the
United States to the deep south of South America, Old World
monkeys also can be experimentally infected with the parasite
(see Seah et al. 1974), and they exhibit disease progression and
outcomes similar to those of humans (see, for example,
Carvalho et al. 2003; Sathler-Avelar et al. 2016; Vitelli-Avelar
et al. 2017; Zabalgoitia et al. 2003a, 2003b, 2004). Old World
monkeys, which are phylogenetically and physiologically more
similar to humans than are New World monkeys, are the spe-
cies of choice for translational research on Chagas disease. The
species that are most frequently used are baboons, rhesus ma-
caques, and cynomolgus macaques. These and other NHP spe-
cies are prone to natural infection with T. cruzi when they are
maintained in outdoor or indoor-outdoor housing in areas
where T. cruzi infection is endemic in wild mammal reservoirs.

Fundamental Questions that can be Addressed with Old
World Monkeys in Translational Research on Chagas
Disease

There are at least four fundamental questions pertaining to
prevention and treatment of Chagas disease that can be best
answered by conducting research with Old World monkeys, in
concert with research in mice and human subjects.

1. Which candidate drugs, which dosages and durations of
treatment, and which combinations of those drugs are most
efficacious as therapies for Chagas disease?

2. Which candidate vaccines, and which dosages and vaccina-
tion regimens, are most efficacious for prophylaxis against
Chagas disease?

3. Which candidate vaccines, which dosages and vaccination
regimens, and in which combinations with candidate drugs
are most efficacious for treating patients?

4. Does reduction in blood parasitemia and/or cardiac parasite
load in response to therapy lead to a reduction in the rate of
disease progression; and does elimination of all parasites
form the body in response to therapy lead to prevention of
disease progression or reduction in the rate of disease
progression?

Each of these questions involves many variables that may
affect the answers; therefore, it is appropriate that the many
candidate drugs and vaccines undergo extensive testing in
mouse models to identify those that exhibit the greatest poten-
tial. However, clinical therapeutic drug trials have been con-
ducted with great optimism after stunningly successful results
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from experiments with mice, and none has produced in hu-
mans the favorable results that were anticipated (see for exam-
ple Pecoul et al. 2016). Apparently, the combined metabolic and
immunologic systems of mice do not sufficiently resemble
those of humans for the results from mice to be predictive of
results for humans.

Posaconazole is an example of a candidate drug that re-
sulted in sterile cure of mice infected with T. cruzi (reviewed by
Urbina 2009) and failed to eradicate parasites from infected hu-
mans (Molina et al. 2014). The same drug, administered to 12
chronically infected baboons in a dosing regimen that yielded
similar blood levels of the drug over the same duration of time
as is achieved in humans, failed to completely clear the para-
sites from any of the animals (J. L. VandeBerg, unpublished
data). The experiment was overpowered; if only three or four of
the baboons had been used in the experiment, the same con-
clusion would have been reached—not to proceed with a clini-
cal trial. This result indicates that NHP drug (or vaccine) trials
can be conducted economically by using a small number of ani-
mals per group.

Impediments to Therapeutic Clinical Trials for Chagas
Disease

The results of clinical trials on Chagas disease are particularly
difficult to interpret, because it is not possible to determine
with certainty if the parasites have been eliminated from heart
tissues. Even many untreated people (or monkeys) who are
known to be infected with T. cruzi do not have detectable levels
of parasites in the blood in spite of repeated serial PCR assays
in which the limit of detection is less than one parasite per mil-
liliter. Therefore, the inability to detect parasites in blood after
serial sampling and PCR posttreatment does not necessarily
reflect the absence of parasites in tissues. Only in animal mod-
els can the absence of parasites in tissues be determined; first,
by immunosuppression, which often leads to increased blood
parasitemia, and then by direct examination of tissues by PCR
after euthanasia. This strategy has been used extensively with
mice (for example, see Khare et al. 2015), and it also has been
used in an active study with NHPs (J. L. VandeBerg, R. L.
Tarleton, and I. Ribeiro, unpublished data).

Moreover, the course of the disease in humans is gradual
over many years, so it is not possible to ascertain in a follow-up
of only a few years if candidate therapies lead to a reduction in
disease progression or not. However, Old World monkeys can
provide reliable information in regard to disease progression in
an experiment of only a few years of duration, for two reasons.
First, while the average duration from the time of infection to
the development of clinically detectable symptoms might be
many years, the accumulation of lymphocytes in the heart and
consequent inflammation (myocarditis) occur continuously as
the immune system responds to the presence of parasites.
Therefore, in the NHPmodel, euthanasia and histological exami-
nation of the heart can determine if disease is progressing, long
before clinical abnormalities could be detected. Second, just as
Old World monkeys and their immune systems age about three
times faster than humans (i.e., three monkey years is approxi-
mately equivalent to one human year), so also Chagas disease
progresses about three times faster in Old World monkeys than
in humans (as do many other chronic diseases). Therefore, while
it might take six to nine years to detect significant clinical differ-
ences in posttreatment clinical outcomes of candidate therapies
between groups of humans, the same magnitude of group differ-
ences would probably be observed in two to three years in Old

World monkeys. These factors, along with the ability to deter-
mine at necropsy if each posttreatment monkey is or is not still
infected with T. cruzi by PCR assays of tissues, will enable the
fourth question posed above to be answered rigorously in a prac-
tical time frame.

Microbiome—Diet Responsiveness
The microbiota is a complex community of microorganisms
composed of bacteria, archaea, anaerobic fungi, protozoa, and
viruses that influences host health and disease. Recent studies
have shown that dysbiosis (or microbial imbalance) is associ-
ated with a wide range of diseases, including CVD (Aron-
Wisnewsky and Clément 2016; Griffin et al. 2015; Haghikia and
Landmesser 2015; Mell et al. 2015; Meyer and Bennett 2016;
Miller 2013; Tang and Hazen 2014; Tuohy et al. 2014). Previous
studies examining dietary patterns suggest a strong association
between gut dysbiosis and Western diet, which tends to be
high in fat and animal protein (e.g., red meat), high in sugar,
and low in plant-based fiber (Amato et al. 2015; Hold 2014;
Manzel et al. 2014; Miele et al. 2015). Therefore, it is not surpris-
ing that even though alteration of the microbiota has been
linked to a number of genetic and environmental factors (e.g.,
antibiotic use, stress, infection, geography, and race), most
research to date has focused on the association of diet and gut
dysbiosis (Aron-Wisnewsky and Clément 2016; Bhatnagar 2015;
Clayton et al. 2016; Del Chierico et al. 2014; do Rosario et al.
2016; Ferguson et al. 2016; Meyer and Bennett 2016; Miller 2013;
Sonnenburg and Bäckhed 2016; Vos 2014).

The gastrointestinal (GI) tract is inhabited by trillions of com-
mensal bacteria that directly impact host nutrition, as they are
essential mediators of metabolism and obesity in mammals (Ma
et al. 2014; Pacheco and Sperandio 2015). These bacteria encode
enzymatic pathways that enable metabolism and synthesis of
fatty acids and vitamins (Janiak 2016; Ma et al. 2014). For example,
they allow the host to extract calories from otherwise indigestible
complex carbohydrates and plant polysaccharides via enzymes
that are not encoded within the host genome (Janiak 2016; Ma
et al. 2014; Miele et al. 2015; Pacheco and Sperandio 2015), so
alteration of the type or amount of microbes in the gut influences
metabolic processes and host nutrition (Amato 2016; Flint et al.
2007; Turnbaugh et al. 2006). Metagenomic studies have shown
that the species composition of the gut microbiota is very
dynamic and that the majority of changes are a result of the
selective pressure that diet exerts on the microbial community
(Amato 2016; David et al. 2014; Turnbaugh et al. 2006). For exam-
ple, most microbes inhabiting the gut belong to the Bacteroidetes
(Gram-negative) and Firmicutes (Gram-positive) phyla (Pacheco
and Sperandio 2015). However, obese individuals consuming a
Western diet tend to have a decreased ratio of Bacteroidetes to
Firmicutes. When switched to a lean diet, obese individuals lose
weight and regain Bacteroidetes (Ma et al. 2014).

Most animal studies of the gut microbiota have been done
in a rodent model. However, NHPs are known to be important
model systems for understanding human health, so there is
growing interest in the NHP gut microbiota. In agreement with
previous findings in humans, recent studies have shown that
diet has a profound impact on the microbial composition of the
NHP gut microbiota. In a recent paper, Mareike Janiak (Janiak
2016) discusses the relationship between diet and gut adaption
that allows primates to maximize the energy obtained from
food and allows them to exploit food sources that were previ-
ously difficult to digest. For example, metagenomic analysis of
black howler monkeys (Alouatta pigra) revealed how diet
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influences gut microbiota composition to enable more efficient
extraction of energy and nutrients during periods of low fruit
intake by producing more short chain fatty acids (Amato et al.
2015). Similarly, Sun et al. (Sun et al. 2016) identified variation
between winter and spring gut microbiota in free-ranging
Tibetan macaques (Macaca thibetana) that allowed proper nutri-
tion in diverse climates. A few studies have used infant rhesus
macaques to compare the gut microbiota following formula-
feeding and breast-feeding (Ardeshir et al. 2014; Narayan et al.
2015; O’Sullivan et al. 2013). Findings from these studies indi-
cate that metabolic and gut microbiome development is differ-
ent in formula-fed infants from breast-fed infants and that the
choice of infant feeding may have future health consequences,
such as an increased susceptibility to CVD. Previous studies
have shown that maternal obesity contributes to an increased
risk of lifelong morbidity and mortality of the offspring (Boney
et al. 2005; Chu et al. 2016; Dong et al. 2013; Drake and Reynolds
2010; Harris et al. 2016; Ramsay et al. 2002; Reynolds et al.
2013), but the molecular mechanisms underlying these risks
are still unclear. Using a Japanese macaque model of maternal
obesity, Ma et al. (Ma et al. 2014) demonstrated that a high-fat,
caloric-dense maternal diet structures the offspring’s gut mi-
crobiota and that the resultant dysbiosis is only partially cor-
rected by a low-fat control diet after weaning.

Other studies involving captive or wild NHPs (Amaral et al.
2017; Bo et al. 2010; Degnan et al. 2012; Frey et al. 2006;
Kisidayová et al. 2009; Ley et al. 2008; McCord et al. 2014; Moeller
and Ochman 2013; Ochman et al. 2010; Szekely et al. 2010;
Uenishi et al. 2007; Yildirim et al. 2010) indicate that the NHP mi-
crobiota is species-specific and altered by environmental factors
(e.g., diet, geography, and social factors). They also reveal that
the abundance of Firmicutes and Bacteroidetes in the NHP mi-
crobiota is similar to that of healthy humans (Bo et al. 2010; Frey
et al. 2006; Kisidayová et al. 2009; Szekely et al. 2010; Uenishi
et al. 2007; Yildirim et al. 2010). Furthermore, studies show that
chimpanzees (Pan troglodytes), our closest living relative, have
similar gut microbiota (Degnan et al. 2012; Ellis et al. 2013;
Moeller et al. 2012; Ochman et al. 2010). Despite differences in
host diet, findings from these studies indicate that the gut
microbial communities within humans and chimpanzees over-
lap at broad taxonomic levels and assort into similar entero-
types based on the relative abundances of bacterial genera.

Although these findings make a compelling case for using
NHPs to study how diet affects the gut microbiota of humans
and influences CVD, a recent study by Amato et al. (Amato et al.
2015) suggests that such research should be done with caution.
In this study, the authors compared the gut microbiota of hu-
mans and vervet monkeys after consuming both a Western diet
(high in animal fat and protein and low in fiber) and a non-
Western diet (low in animal fat and protein and high in fiber).
Their findings indicate that host-gut microbe interactions differ
in humans and vervets. For example, they found that humans
had an increased relative abundance of Firmicutes and a reduced
relative abundance of Prevotella on a Western diet, while vervets
showed the opposite pattern. Furthermore, they identified an
increased relative abundance of genes associated with carbohy-
drate metabolism in the microbiome of humans consuming a
Western diet but not in vervets. In addition to the differences
identified in the gut microbiota, they also found that the physio-
logical responses to the Western diet differed between humans
and vervets. Humans gained weight on the Western diet, while
most of the vervets did not. Therefore, the authors state that
“NHP models of host-gut microbe relationships may be less ideal
than assumed for addressing questions regarding human diet

and physiology in the context of the gut microbiota” and specu-
late that the human gut microbiota may provide increased sus-
ceptibility to obesity and metabolic disorders, particularly when
hosts are consuming a high-protein, high-fat diet. Even though
this study suggests that the vervet gut microbiota may not pro-
vide an ideal model for understanding the effect of the human
gut microbiota on host metabolism and nutrition in the context
of a Western diet, the authors state that it may help identify
novel therapeutics to improve human resistance to obesity via
the gut microbiota if the vervet gut microbiota truly possesses
properties that make it resistant to obesity when subjected to a
Western diet (Amato et al. 2015). Furthermore, it should be noted
that this is only one study focusing on one NHP species. Given
the similarities between human and chimpanzee gut microbiota
and similarities between human and baboon omnivorous diets,
other NHP species may be appropriate models for studying the
effects of diet on the human gut microbiota and how these host-
microbe interactions influence CVD risk.

Stem Cells—Therapies and Interventions
Stem cell therapies are being developed to treat CVD by two fun-
damental mechanisms: the stimulation of angiogenesis to
develop improved vascularization of damaged heart or vascular
tissue, and the stimulation of myogenesis to repair damaged
cardiac muscle. Mouse models have pioneered preclinical
research, but the immunological and physiological differences
between mice and humans limit the capacity to translate many
results obtained from mice directly to human subjects.
Moreover, it is impossible to scale many of the results obtained
from mice to human applications. For example, some approxi-
mate measures are as follows (mouse/human): heart weight,
0.165 vs. 250 g (1500-fold difference); coronary artery diameter,
0.16 vs. 4.5mm (28-fold difference) (Oberhoffer et al. 1989;
Thüroff et al. 1984; Wiedemann 1962). For these and perhaps
other reasons, efficacious results obtained in research with mice
have not translated well to clinical trials, which have had disap-
pointing outcomes. Consequently, NHPs are becoming more
widely used for late stage preclinical stem cell research aimed at
developing cardiovascular therapies and interventions. The
most widely used NHPs for this purpose are rhesus and cyno-
molgus macaques and baboons, which, as Old World monkeys,
are phylogenetically and physiologically closer to humans than
New World monkeys and are larger than New World monkeys
used in laboratory research. Male baboons can weigh as much
as 30 to 40 kg, so this species among all NHPs used in research is
the most appropriate for investigations where scaling to human
size is an important factor. Pluripotent embryonic stem cell
(ESC) lines, as well as induced pluripotent stem cell (iPSC) lines,
have been developed from all three of these species, and these
species are all used in research aimed at developing stem cell
therapies and interventions. Old World NHPs also are invaluable
models for research on multipotent adult stem cells, which exist
throughout the body after development.

Potential Therapy Involving Bone Marrow Stem Cells
(BMSCs)

BMSCs are continuously released from bone marrow and serve
to repair damage to the vascular endothelium, and they are
released in large quantities in response to acute, severe damage
such as occurs during myocardial infarction. They also are
released in large numbers in response to some cytokines, partic-
ularly granulocyte colony-stimulating factor (G-CSF), which has
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been extensively used clinically to harvest BMSCs for autologous
transplantation to treat patients immediately after myocardial
infarction. However, treatment of patients with BMSCs released
in response to G-CSF has had inconsistent outcomes and modest
success, at best (Fisher et al. 2015; Gyöngyösi et al. 2016). Shi
et al. (Shi et al. 2004) hypothesized that BMSCs mobilized by G-
CSF may not have the same therapeutic capacity as those mobi-
lized naturally in response to acute, severe vascular damage.
They used a baboon model to compare the characteristics of
BMSCs isolated from the circulation of five baboons treated with
G-CSF to those of BMSCs isolated from the circulation of five ba-
boons from which a section of femoral artery had been removed.
They observed that the BMSC populations released in response
to the two experimental interventions had different characteris-
tics and that the cells released in response to femoral artery liga-
tion have higher capacity for vascular differentiation, suggesting
that alternative strategies for inducing the release of BMSCs for
clinical purposes might be more therapeutically effective than
administration of G-CSF. This result illustrates the value of NHP
models for developing applications of adult stem cell therapies
for cardiovascular therapies.

Potential Therapy for Repair of Vascular Endothelium

Damage to the arterial endothelium is a critical early event in
atherogenesis and peripheral vascular disease, and deteriora-
tion of the vascular endothelium occurs naturally throughout
life. It follows, then, that stem cell therapies might be used in
treating disorders in which the endothelium has been damaged
or is deteriorating (see Chong et al. 2016). Toward that end, Shi
et al. (Shi et al. 2012, 2013) induced baboon ESCs to differentiate
into CD34+, CD31−, and CD146− endothelial progenitor cells
(multi-potential hematopoietic stem cells), labelled them with
a fluorescent tag, and inoculated them into an arterial segment
that had been denuded of endothelial cells in an ex vivo sys-
tem. By 14 days postinoculation, the cells had attached and
integrated into the denuded surface and had undergone matu-
ration events that led to the expression of CD31 and CD146
(antigens expressed on mature endothelial cells). This experi-
ment provided proof-of-concept and paves the way for in vivo
experiments that will be conducted with baboons in which the
arterial endothelium has been damaged by a balloon catheter.
Although the inoculated stem cells will be broadly distributed
throughout the vasculature (unlike in the ex vivo model, which
involved only a segment of an artery), it is expected that the
stem cells will home to and preferentially attach to the injured
site, as occurs when BMSCs are released into the circulation
after vascular injury.

Construction of Bioengineered Arterial Segments

A much more ambitious potential use of pluripotent stem cells
is the construction of bioengineered arterial segments that
could be used to replace diseased sections of arteries. The con-
cept is to develop separate lineages of endothelial progenitor
cells and smooth muscle progenitor cells, which can be used to
seed the inside and the outside, respectively, of a segment of
tubular scaffold placed in a bioreactor in which natural condi-
tions on the inside and the outside of an artery wall are simu-
lated. The scaffold can be constructed of a biodegradable
material, with a lumen and wall thickness of the artery in-
tended to be replaced. As endothelial cells differentiate on the
interior surface and smooth muscle cells differentiate on the
exterior surface, the scaffold degrades at the rate for which it

was engineered, leaving a bioengineered arterial segment that
could be surgically implanted in a patient (or the scaffold could
be bioengineered to degrade after implantation and in vivo re-
modeling of the arterial segment). Progress toward this goal
has been made by Q. Shi and J. L. VandeBerg (unpublished data)
using baboon ESCs, although the segments produced in initial
in vitro experiments were not sufficiently robust for transition-
ing to in vivo experiments.

Regeneration of Heart Tissue After Myocardial
Infarction

Another potential use of stem cell therapy is the regeneration
of heart tissue after myocardial infarction to prevent or to treat
heart failure as a consequence of the death of myocardial cells.
Toward that goal, Shiba et al. (Shiba et al. 2016) induced cyno-
molgus macaque iPSCs with a transfected fluorescent marker
to develop into cardiomyocytes, and they injected the cells into
the hearts of four other monkeys after myocardial infarction
had been experimentally induced. The monkeys were immuno-
suppressed with a clinically relevant regimen to protect against
immunological rejection. Twelve weeks after transplantation,
when the monkeys were killed at the experimental endpoint,
the fluorescent cells had contributed to partial remusculariza-
tion of the scar area, and the regenerated tissue was well vas-
cularized. Moreover, contractile function of the hearts was
improved at the endpoint and was already improved by 4
weeks after transplantation, by comparison with control ani-
mals. Although transient ventricular tachycardia was signifi-
cantly increased in the treated animals, the results of this
experiment clearly establish the potential for the therapeutic
use of pluripotent stem cells for treating myocardial infarction
patients.

IPSCs Versus ESCs for Cardiovascular Therapies

On the surface, it might seem that iPSCs would be superior to
ESCs for developing therapies for CVD, because autologous cells
are likely to be less prone to histocompatibility problems (even
though there may be some histocompatibility differences
between iPSC-derived cells and natural host cells). However,
histocompatibility problems can be overcome relatively easily,
as they are for every type of organ transplant. The fundamental
problems in using iPSCs rather than ESCs are the financial and
temporal costs. Developing an iPSC line from every patient
would be financially costly given that each line must be charac-
terized in detail for many properties, including chromosomal
aberrations and oncogenic potential. Even more important is the
temporal cost when the intent is to treat an acute condition such
as myocardial infarction. However, ESCs fromwell-characterized
lines that have been rigorously established to be safe could be
used to develop standardized off-the-shelf reagents (e.g., cardio-
myocytes, endothelial progenitor cells, and arterial segments of
various lengths and diameters) that could be administered
immediately to patients who experience an acute cardiovascular
problem. While histo-incompatibility could be judiciously man-
aged by standard immunosuppression regimens alone, the pro-
blems of histo-incompatiblity could be further diminished by
creating the reagents from a panel of ESCs derived from different
embryos selected to have a broad representation of the more
common major histocompatibility complex haplotypes. Of
course, such a panel of well-characterized and safe pluripotent
stem cells representing many different histocompatibility com-
plex haplotypes could be created from iPSCs, but the concept of

ILAR Journal, 2017, Vol. 58, No. 2 | 243



treating each patient with autologous iPSC-derived cells appears
not to be a practical goal. Therefore, it is suggested that research-
ers focus on ESCs in NHP research aimed at developing CVD
therapies.

Detection and Prevention of CVD
Despite recent scientific advancements, treatment options,
including statins, angiotensin-converting enzyme inhibitors,
beta blockers, and other drugs, the prevalence of CVD con-
tinues to increase, underscoring the need for new therapeutic
strategies (van Rooij and Olson 2007). In this section we discuss
scientific advancements in discovery of therapies for prevent-
ing CVD and the fundamental role of NHP models.

HMG-CoA Reductase Inhibitor (Statins)

Statins are synthetic molecules that bind and decrease the
activity of HMG-CoA reductase, a rate-limiting enzyme in cho-
lesterol biosynthesis pathway. Statins are the most widely used
therapy for lowering plasma LDL-C (Ramkumar et al. 2016).
There is a strong body of evidence that indicates statin therapy
has significant mortality and morbidity benefits for both pri-
mary and secondary prevention from CVD. Moreover, studies
have demonstrated that statins are potent in regressing athero-
sclerosis and improving endothelium function by decreasing
LDL oxidation, reducing smooth muscle cells migration and
proliferation, activation of monocytes to macrophages, inhibi-
tion of cytokine production, and reduction in adhesion of
monocytes to arterial walls (Cerda et al. 2015; Koh 2000;
Treasure et al. 1995). Despite these intriguing findings, the
direct mechanistic assessment of statin potency beyond lipid
lowering presents considerable obstacles, because it is not fea-
sible to obtain target tissues from healthy humans. Previous
studies confirmed that statins improve endothelial function in
cynomolgus macaques similarly to humans (Sukhova et al.
2002; Williams et al. 1998). One difference between human and
cynomolgus macaques was the effect of statins on smooth
muscle cell content in plaques; smooth muscle cells are a
source of extracellular matrices and cytokine production. The
study in cynomolgus macaques revealed increased smooth
muscle cell content in plaques, while human studies suggested
that statin therapy decreased proliferation of smooth muscle
cell in plaques (Corpataux et al. 2005; Sukhova et al. 2002). This
apparent difference between humans and cynomolgus maca-
ques merits further investigation.

Despite the positive effect of statins on cardiovascular end-
points, there are concerns regarding the adverse effects of
statin therapy, including myalgia, rhabdomyolysis, liver toxic-
ity, and diabetes (Rha et al. 2016; Russo et al. 2014; Yokote et al.
2011). NHP models of atherosclerosis provide an opportunity to
comprehensively investigate the side effects of statins and the
underlying mechanisms.

PCSK9 Inhibitor (Evolocumab)

The proprotein convertase subtilisin/kexin type 9 (PCSK9)
inhibitor Evolocumab is a recently discovered monoclonal anti-
body therapy for lowering plasma LDL-C. Interest in PCSK9
emerged after it was found that individuals with a nucleotide
variant in PCSK9 had low plasma LDL-C (Horton et al. 2007).
PCSK9 asserts its function by binding to and degrading the LDL
receptor (LDLR), impacting the LDLR recycling process neces-
sary for cholesterol absorption in hepatocytes. Evolocumab

binds to the PCSK9 domain, preventing LDLR-PCSK9 interaction
and subsequent degradation of LDLR. Evolocumab reduces LDL-
C by nearly 50% and >60% when combined with statins. This
therapy costs approximately $1400 per patient per year, so it is
recommended only for individuals at high risk who cannot tol-
erant statins or statins are not effective in lowering LDL-C.

The potency of Evolocumab has been evaluated in NHPs, it
was shown to lower LDL-C in healthy and in diet-induced
hypercholesterolemic cynomolgus macaques (Liang et al. 2012).
In addition, Evolocumab therapy significantly lowered LDL-C in
monkeys treated with statins. Currently there is inadequate
information about PCSK9 therapy, including the long-term CVD
effects, the age range for treatment, and interaction with other
therapies. NHP models provide an opportunity to evaluate the
age range of treatment, drug interaction, toxicity, and effects
on atherosclerosis. Studies with NHPs may be helpful in sup-
porting the new paradigm of time-limited but very intensive
LDL-C lowering by PCSK9 inhibitor. Studies evaluating plaque
morphology after the discontinuation of aggressive lipid-
lowering therapy while maintained on background statin ther-
apy will be an important area for future investigation.

Other lipid-lowering therapies that have not been evaluated
in NHPs include apoB and microsomal triglyceride transfer pro-
tein and NPC1L1 inhibitor (Ezetimibe). These therapies are de-
signed to target genes involved in lipid metabolic pathways.

The Potential of Genome Editing to Validate
and Understand Mechanisms of Functional
Genetic Variants
Development of programmable nuclease-based genome-editing
technologies, among which CRISPR (clustered regularly inter-
spaced short palindromic repeats)/Cas9 is currently the most
prevalent, enables targeted and efficient modification of almost
any genome. This approach provides the means to genetically
manipulate cells and whole organisms to test the function of
genetic variants. Recent studies by Guo and Li (Guo and Li 2015)
demonstrate feasibility of gene knockout by CRISPR/Cas9 in
rhesus macaques, indicating that this system can be used to
test candidate functional variants in NHPs, overcoming one of
the major limitations of working with NHP models by compari-
son with mice. However, the quality of NHP genome annota-
tions currently limits the ability to design guide RNAs for
genetic manipulation. With improved quality of NHP genome
annotation, NHP genomic manipulation studies will likely prog-
ress rapidly, providing the means to assess mechanisms by
which functional genetic variants impact cell and organism
phenotype (Luo et al. 2016).

Conclusions
This is an exciting time in biomedical research with availability
of technologies to quantify molecular changes at the cellular
level, bioinformatics tools to provide biological frameworks to
understand the impact of molecular activities, the ability to
genetically manipulate cells to test functional variants and
functional networks, and the capacity to generate complex tis-
sues and organs from pluripotent stem cells. In addition, prog-
ress in the field of organ/tissue growth in the laboratory
provides the means to move from in vitro cell culture experi-
ments to more complex systems where cell-cell interactions
and communication can be studied. NHP research completes
the overarching research paradigm by allowing investigation of
these complex systems in a whole animal that closely
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resembles humans in metabolism, physiology, genetics, and
CVD risk factors. The NHP whole-animal model provides the
opportunity to develop a better understanding of biological
mechanisms involved in CVD by unraveling the complexities of
system-wide organization and communication.
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