
GigaScience, 7, 2018, 1–9

doi: 10.1093/gigascience/giy083
Advance Access Publication Date: 11 July 2018
Research

RESEARCH

Clustering trees: a visualization for evaluating
clusterings at multiple resolutions
Luke Zappia 1,2 and Alicia Oshlack 1,2,*

1Bioinformatics, Murdoch Children’s Research Institute, Flemington Road, Parkville, Victoria 3052, Australia
and 2School of Biosciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3052, Australia
∗Correspondence address. Alicia Oshlack, E-mail: alicia.oshlack@mcri.edu.au http://orcid.org/0000-0001-9788-5690 Address: Alicia Oshlack, Murdoch
Children’s Research Institute, Flemington Road, Parkville, Victoria 3052, Australia

Abstract

Clustering techniques are widely used in the analysis of large datasets to group together samples with similar properties.
For example, clustering is often used in the field of single-cell RNA-sequencing in order to identify different cell types
present in a tissue sample. There are many algorithms for performing clustering, and the results can vary substantially. In
particular, the number of groups present in a dataset is often unknown, and the number of clusters identified by an
algorithm can change based on the parameters used. To explore and examine the impact of varying clustering resolution,
we present clustering trees. This visualization shows the relationships between clusters at multiple resolutions, allowing
researchers to see how samples move as the number of clusters increases. In addition, meta-information can be overlaid on
the tree to inform the choice of resolution and guide in identification of clusters. We illustrate the features of clustering
trees using a series of simulations as well as two real examples, the classical iris dataset and a complex single-cell
RNA-sequencing dataset. Clustering trees can be produced using the clustree R package, available from CRAN and
developed on GitHub.

Keywords: clustering; visualization; scRNA-seq

Introduction

Clustering analysis is commonly used to group similar sam-
ples across a diverse range of applications. Typically, the goal
of clustering is to form groups of samples that are more similar
to each other than to samples in other groups. While fuzzy or
soft clustering approaches assign each sample to every cluster
with some probability, and hierarchical clustering forms a tree
of samples, most methods form hard clusters where each sam-
ple is assigned to a single group. This goal can be achieved in
a variety of ways, such as by considering the distances between
samples (e.g., k-means [1–3], PAM [4]), areas of density across the
dataset (e.g., DBSCAN [5]), or relationships to statistical distribu-
tions [6].

In many cases, the number of groups that should be present
in a dataset is not known in advance, and deciding the correct
number of clusters to use is a significant challenge. For some

algorithms, such as k-means clustering, the number of clus-
ters must be explicitly provided. Other methods have parame-
ters that, directly or indirectly, control the clustering resolution
and therefore the number of clusters produced. While there are
methods and statistics (such as the elbow method [7] and silhou-
ette plots [8]) designed to help analysts decide which clustering
resolution to use, they typically produce a single score that only
considers a single set of samples or clusters at a time.

An alternative approach would be to consider clusterings at
multiple resolutions and examine how samples change group-
ings as the number of clusters increases. This has led to a range
of cluster stability measures [9], many of which rely on clus-
tering of perturbed or subsampled datasets. For example, the
model explorer algorithm subsamples a dataset multiple times,
clusters each subsampled dataset at various resolutions, and
then calculates a similarity between clusterings at the same res-
olution to give a distribution of similarities that can inform the

Received: 7 March 2018; Revised: 21 May 2018; Accepted: 27 June 2018

C© The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0001-7744-8565
http://orcid.org/0000-0001-9788-5690
mailto:alicia.oshlack@mcri.edu.au
http://orcid.org/0000-0001-9788-5690
http://orcid.org/0000-0001-9788-5690
http://creativecommons.org/licenses/by/4.0/


2 Clustering trees: a visualization for evaluating clusterings

choice of resolution [10]. One cluster stability measure that is
not based on perturbations is that contained in the SC3 pack-
age for clustering single-cell RNA-sequencing (scRNA-seq) data
[11]. Starting with a set of cluster labels at different resolutions,
each cluster is scored, with clusters awarded increased stability
if they share the same samples as a cluster at another resolution
but penalized for being at a higher resolution.

A similar simple approach is taken by the clustering tree
visualization we present here, without calculating scores: (i) a
dataset is clustered using any hard clustering algorithm at mul-
tiple resolutions, producing sets of cluster nodes; (ii) the overlap
between clusters at adjacent resolutions is used to build edges;
and (iii) the resulting graph is presented as a tree. This tree can
be used to examine how clusters are related to each other—
which clusters are distinct and which are unstable. In the fol-
lowing sections, we describe how we construct such a tree and
present examples of trees built from a classic clustering dataset
and a complex scRNA-seq dataset. The figures shown here can
be produced in R using our publicly available clustree package.
Although clustering trees cannot directly provide a clustering
resolution to use, they can be a useful tool for exploring and vi-
sualizing the range of possible choices.

Building a Clustering Tree

To build a clustering tree, we start with a set of clusterings
and allocate samples to groups at several different resolutions.
These could be produced using any hard-clustering algorithm
that allows control of the number of clusters in some way. For
example, this could be a set of samples clustered using k-means
with k = 1, 2, 3 as shown in Fig. 1. We sort these clusterings
so that they are ordered by increasing resolution (k), then con-
sider pairs of adjacent clusterings. Each cluster ck, i (where i =
1, . . . , n and n is the number of clusters at resolution k) is com-
pared with each cluster ck+1, j (where j = 1, . . . , m and m is the
number of clusters at resolution k + 1). The overlap between the
two clusters is computed as the number of samples that are as-
signed to both ck, i and ck+1, j . Next, we build a graph where each
node is a cluster and each edge is an overlap between two clus-
ters. While we refer to this graph as a tree for simplicity, it can
more correctly be described as a polytree, a special case of a di-
rected acyclic graph where the underlying undirected graph is a
tree [12].

Many of the edges will be empty, e.g., in Fig. 1 no samples in
cluster A at k = 2 end up in cluster B at k = 3. In some datasets
there may also be edges that contain few samples. These edges
are not informative and result in a cluttered tree. An obvious so-
lution for removing uninformative, low-count edges is to filter
them using a threshold on the number of samples they repre-
sent. However, in this case, the count of samples is not the cor-
rect statistic to use because it favors edges at lower resolutions
and those connecting larger clusters. Instead, we define the in-
proportion metric as the ratio between the number of samples
on the edge and the number of samples in the cluster it goes
toward. This metric shows the importance of the edge to the
higher-resolution cluster independently of the cluster size. We
can then apply a threshold to the in-proportion in order to re-
move less-informative edges.

The final graph can then be visualized. In theory, any graph
layout algorithm could be used. However, for the clustree pack-
age, we have made use of the two algorithms specifically de-
signed for tree structures available in the igraph package [13].
These are the Reingold-Tilford tree layout, which places par-

ent nodes above their children [14], and the Sugiyama layout,
which places nodes of a directed acyclic graph in layers while
minimizing the number of crossing edges [15]. Both of these al-
gorithms can produce attractive layouts; as such, we have not
found the need to design a specific layout algorithm for clus-
tering trees. By default, the clustree package uses only a subset
of edges when constructing a layout, specifically the highest in-
proportion edges for each node. We have found that this often
leads to more interpretable visualizations; however, users can
choose to use all edges if desired.

Regardless of the layout used, the final visualization places
the cluster nodes in a series of layers where each layer is a differ-
ent clustering resolution and edges show the transition of sam-
ples through those resolutions. Edges are colored according to
the number of samples they represent, and the in-proportion
metric is used to control the edge transparency, highlighting
more important edges. By default, the node size is adjusted ac-
cording to the number of samples in the cluster, and their color
indicates the clustering resolution. The clustree package also
includes options for controlling the aesthetics of nodes based
on the attributes of samples in the clusters they represent, as
shown in the following examples.

While a clustering tree is conceptually similar to the tree pro-
duced through hierarchical clustering, there are some important
differences. The most obvious are that a hierarchical clustering
tree is the result of a particular clustering algorithm and shows
the relationships between individual samples, while the cluster-
ing trees described here are independent of clustering method
and show relationships between clusters. The branches of a hi-
erarchical tree show how the clustering algorithm has merged
samples. In contrast, edges in a clustering tree show how sam-
ples move between clusters as the resolution changes and nodes
may have multiple parents. While it is possible to overlay infor-
mation about samples on a hierarchical tree, this is not com-
monly done but is a key feature of the clustree package and how
clustering trees could be used in practice.

A Demonstration Using Simulations

To demonstrate what a clustering tree can look like in differ-
ent situations and how it behaves as a dataset is overclustered,
we present some illustrative examples using simple simulations
(see Methods). We present five scenarios: random uniform noise
(simulation A), a single cluster (simulation B), two clusters (sim-
ulation C), three clusters (simulation D), and four clusters (sim-
ulation E). Each cluster consists of 1,000 samples (points) gener-
ated from a 100-dimensional normal distribution, and each syn-
thetic dataset has been clustered using k-means clustering with
k = 1, . . . , 8. We then use the clustree package to produce clus-
tering trees for each dataset (Fig. 2).

Looking at the first two examples (uniform noise [Fig. 2A] and
a single cluster [Fig. 2B]), we can clearly see how a clustering tree
behaves when a clustering algorithm returns more clusters than
are truly present in a dataset. New clusters begin to form from
multiple existing clusters, and many samples switch between
branches of the tree, resulting in low in-proportion edges. Un-
stable clusters may also appear and then disappear as the reso-
lution increases, as seen in Fig. 2E. As we add more structure to
the datasets, the clustering trees begin to form clear branches
and low in-proportion edges tend to be confined to sections of
the tree. By looking at which clusters are stable and where low
in-proportion edges arise, we can infer which areas of the tree



Zappia and Oshlack 3

Figure 1: Illustration of the steps required to build a clustering tree. First, a dataset must be clustered at different resolutions. The overlap in samples between clusters
at adjacent resolutions is computed and used to calculate the in-proportion for each edge. Finally, the edges are filtered and the graph visualized as a tree.

are likely to be the result of true clusters and which are caused
by overclustering.

The second clustering tree for each dataset shows nodes col-
ored according to the SC3 stability index for each cluster. As we



4 Clustering trees: a visualization for evaluating clusterings

Figure 2: Five synthetic datasets used to demonstrate clustering trees. For each dataset, a scatter plot of the first two principal components, a default clustering tree,
and clustering tree with nodes colored by the SC3 stability index from purple (lowest) to yellow (highest) are shown. The five datasets contain: (A) random uniform
noise, (B) a single cluster, (C) two clusters, (D) three clusters, and (E) four clusters.

would expect, no cluster receives a high stability score in the
first two examples. However, while we clearly see two branches
in the clustering tree for the two-cluster example (simulation C),
this is not reflected in the SC3 scores. No cluster receives a high

stability score, most likely due to the large number of samples
moving between clusters as the resolution increases. As there
are more true clusters in the simulated datasets, the SC3 stabil-
ity scores become more predictive of the correct resolution to



Zappia and Oshlack 5

use. However, it is important to look at the stability scores of all
clusters at a particular resolution as taking the highest individ-
ual cluster stability score could lead to the incorrect resolution
being used, as can be seen in the four-cluster example (simula-
tion E). These examples show how clustering trees can be used
to display existing clustering metrics in a way that can help to
inform parameter choices.

A Simple Example

To further illustrate how a clustering tree is built, we will work
through an example using the classic iris dataset [16, 17]. This
dataset contains measurements of the sepal length, sepal width,
petal length, and petal width from 150 iris flowers, 50 from each
of three species: Iris setosa, Iris versicolor, and Iris virginica. The
iris dataset is commonly used as an example for both clustering
and classification problems with the I. setosa samples being sig-
nificantly different from, and linearly separable from, the other
samples. We have clustered this dataset using k-means cluster-
ing with k = 1, . . . , 5 and produced the clustering tree shown in
Fig. 3A.

We see that one branch of the tree is clearly distinct (presum-
ably representing I. setosa), remaining unchanged regardless of
the number of clusters. On the other side, we see that the clus-
ter at k = 2 cleanly splits into two clusters (presumably I. ver-
sicolor and I. virginica) at k = 3. However, as we move to k = 4
and k = 5, we see clusters being formed from multiple branches
with more low in-proportion edges. As we have seen in the sim-
ulated examples, this kind of pattern can indicate that the data
have become overclustered and we have begun to introduce ar-
tificial groupings.

We can check our assumption that the distinct branch rep-
resents the I. setosa samples and that the other two clusters at
k = 3 are I. versicolor and I. virginica by overlaying some known
information about the samples. In Fig. 3B we have colored the
nodes by the mean petal length of the samples they contain. We
can now see that clusters in the distinct branch have the short-
est petals, with cluster 1 at k = 3 having an intermediate length
and cluster 3 having the longest petals. This feature is known
to separate the samples into the expected species, with I. setosa
having the shortest petals on average, I. versicolor an intermedi-
ate length, and I. virginica the longest.

Although this is a very simple example, it highlights some
of the benefits of viewing a clustering tree. We get some indica-
tion of the correct clustering resolution by examining the edges,
and we can overlay known information to assess the quality of
the clustering. For example, if we observed that all clusters had
the same mean petal length, it would suggest that the cluster-
ing has not been successful as we know this is an important fea-
ture that separates the species. We could potentially learn more
by looking at which samples follow low-proportion edges or by
overlaying a series of features to try and understand what causes
particular clusters to split.

Clustering Trees for scRNA-seq Data

One field that has begun to make heavy use of clustering tech-
niques is the analysis of scRNA-seq data. scRNA-sequencing is a
recently developed technology that can measure how genes are
expressed in thousands to millions of individual cells [18]. This
technology has been rapidly adopted in fields such as develop-
mental biology and immunology where it is valuable to have in-
formation from single cells rather than measurements that are

averaged across the many different cells in a sample using older
RNA-seq technologies. A key use for scRNA-seq is to discover
and interrogate the different cell types present in a sample of a
complex tissue. In this situation, clustering is typically used to
group similar cells based on their gene expression profiles. Dif-
ferences in gene expression between groups can then be used to
infer the identity or function of those cells [19]. The number of
cell types (clusters) in an scRNA-seq dataset can vary depending
on factors such as the tissue being studied, its developmental or
environmental state, and the number of cells captured. Often,
the number of cell types is not known before the data are gener-
ated, and some samples can contain dozens of clusters. There-
fore, deciding which clustering resolution to use is an important
consideration in this application.

As an example of how clustering trees can be used in the
scRNA-seq context, we consider a commonly used peripheral
blood mononuclear cell (PBMC) dataset. This dataset was orig-
inally produced by 10x Genomics and contains 2,700 peripheral
blood mononuclear cells, representing a range of well-studied
immune cell types [20]. We analyzed this dataset using the Seu-
rat package [21], a commonly used toolkit for scRNA-seq anal-
ysis, following the instructions in their tutorial with the excep-
tion of varying the clustering resolution parameter from zero to 5
(see Methods). Seurat uses a graph-based clustering algorithm,
and the resolution parameter controls the partitioning of this
graph, with higher values resulting in more clusters. The clus-
tering trees produced from this analysis are shown in Fig. 4.

The clustering tree covering resolutions zero to 1 in steps of
0.1 (Fig. 4A) shows that four main branches form at a resolu-
tion of just 0.1. One of these branches, starting with cluster 3
at resolution 0.1, remains unchanged, while the branch starting
with cluster 2 splits only once at a resolution of 0.4. Most of the
branching occurs in the branch starting with cluster 1, which
consistently has subbranches split off to form new clusters as
the resolution increases. There are two regions of stability in
this tree—at resolution 0.4–0.5 and resolution 0.7–1.0 where the
branch starting at cluster 0 splits in two.

Fig. 4B shows a clustering tree with a greater range of res-
olutions, from zero to 5 in steps of 0.5. By looking across this
range, we can see what happens when the algorithm is forced to
produce more clusters than are likely to be truly present in this
dataset. As overclustering occurs, we begin to see more low in-
proportion edges and new clusters forming from multiple parent
clusters. This suggests that those areas of the tree are unstable
and that the new clusters being formed are unlikely to represent
true groups in the dataset.

Known marker genes are commonly used to identify the cell
types that specific clusters correspond to. Overlaying gene ex-
pression information onto a clustering tree provides an alterna-
tive view that can help to indicate when clusters containing pure
cell populations are formed. Figure 5 shows the PBMC cluster-
ing tree in Fig. 4A overlaid with the expression of some known
marker genes.

By adding this extra information, we can quickly identify
some of the cell types. CD19 (Fig. 5A) is a marker of B cells and is
clearly expressed in the most distinct branch of the tree. CD14
(Fig. 5B) is a marker of a type of monocyte, which becomes more
expressed as we follow one of the central branches, allowing
us to see which resolution identifies a pure population of these
cells. CD3D (Fig. 5C) is a general marker of T cells and is ex-
pressed in two separate branches, one that splits into low and
high expression of CCR7 (Fig. 5D), separating memory and naive
CD4 T cells. By adding expression of known genes to a cluster-
ing tree, we can see if more populations can be identified as the



6 Clustering trees: a visualization for evaluating clusterings

Figure 3: Clustering trees based on k-means clustering of the iris dataset. (A) Nodes are colored according to the value of k and sized according to the number of

samples they represent. Edges are colored according to the number of samples (from blue representing few to yellow representing many). The transparency is adjusted
according to the in-proportion, with stronger lines showing edges that are more important to the higher-resolution cluster. Cluster labels are randomly assigned by
the k-means algorithm. (B) The same tree with the node coloring changed to show the mean petal length of the samples in each cluster.

Figure 4: Two clustering trees of a dataset of 2,700 PBMCs. (A) Results from clustering using Seurat with resolution parameters from zero to 1. At a resolution of 0.1, we
see the formation of four main branches, one of which continues to split up to a resolution of 0.4, after which there are only minor changes. (B) Resolutions from zero

to 5. At the highest resolutions, we begin to see many low in-proportion edges, indicating cluster instability. Seurat labels clusters according to their size, with cluster
0 being the largest.

clustering resolution is increased and if clusters are consistent
with known biology. For most of the Seurat tutorial, a resolution
of 0.6 is used, but the authors note that by moving to a resolu-
tion of 0.8, a split can be achieved between memory and naive
CD4 T cells. This is a split that could be anticipated by looking at
the clustering tree with the addition of prior information.

Discussion

Clustering similar samples into groups is a useful technique in
many fields, but often analysts are faced with the tricky prob-
lem of deciding which clustering resolution to use. Traditional
approaches to this problem typically consider a single cluster

or sample at a time and may rely on prior knowledge of sam-
ple labels. Here, we present clustering trees, an alternative vi-
sualization that shows the relationships between clusterings at
multiple resolutions. While clustering trees cannot directly sug-
gest which clustering resolution to use, they can be a useful tool
for helping to make that decision, particularly when combined
with other metrics or domain knowledge.

Clustering trees display how clusters are divided as resolu-
tion increases, which clusters are clearly separate and distinct,
which are related to each other, and how samples change groups
as more clusters are produced. Although clustering trees can
appear similar to the trees produced from hierarchical cluster-
ing, there are several important differences. Hierarchical clus-



Zappia and Oshlack 7

Figure 5: Clustering trees of the PBMC dataset colored according to the expression of known markers. The node colors indicate the average of the log2 gene counts of
samples in each cluster. CD19 (A) identifies B cells, CD14 (B) shows a population of monocytes, CD3D (C) is a marker of T cells, and CCR7 (D) shows the split between
memory and naive CD4 T cells.

tering considers the relationships between individual samples
and does not provide an obvious way to form groups. In con-
trast, clustering trees are independent of any particular cluster-
ing method and show the relationships between clusters, rather
than samples, at different resolutions, any of which could be
used for further analysis.

To illustrate the uses of clustering trees, we presented a se-
ries of simulations and two examples of real analyses, one using
the classic iris dataset and a second based on a complex scRNA-
seq dataset. Both examples demonstrate how a clustering tree
can help inform the decision of which resolution to use and how
overlaying extra information can help to validate those clusters.
This is of particular use to scRNA-seq analysis as these datasets
are often large, noisy, and contain an unknown number of cell
types or clusters.

Even when determining the number of clusters is not a prob-
lem, clustering trees can be a valuable tool. They provide a com-
pact, information-dense visualization that can display summa-
rized information across a range of clusters. By modifying the
appearance of cluster nodes based on attributes of the sam-
ples they represent, clusterings can be evaluated and identities
of clusters established. Clustering trees potentially have appli-
cations in many fields and, in the future, could be adapted to
be more flexible, such as by accommodating fuzzy clusterings.
There may also be uses for more general clustering graphs to
combine results from multiple sets of parameters or clustering
methods.

Methods

clustree

The clustree software package (v0.2.0) is built for the R statistical
programming language (v3.5.0). It relies on the ggraph package
(v1.0.1) [22], which is built on the ggplot2 (v2.2.1) [23] and tidy-
graph (v1.1.0) [24] packages. Clustering trees are displayed using
the Reingold-Tilford tree layout or the Sugiyama layout; both are
available as part of the igraph package (v1.2.1).

Figure panels shown here were produced using the cowplot
package (v0.9.2) [25].

Simulations

Simulated datasets were constructed by generating points from
statistical distributions. The first simulation (simulation A) con-
sists of 1,000 points randomly generated from a 100-dimensional
space using a uniform distribution between zero and 10. Simu-
lation B consists of a single normally distributed cluster of 1,000
points in 100 dimensions. The center of this cluster was chosen
from a normal distribution with mean zero and standard devi-
ation 10. Points were then generated around this center from a
normal distribution with mean equal to the center point and a
standard deviation of 5. The remaining three simulations were
produced by adding additional clusters. In order to have a known
relationship between clusters, the center for the new clusters
was created by manipulating the centers of existing clusters.
For cluster 2, a random 100-dimensional vector was generated
from a normal distribution with mean zero and standard devi-
ation 2 and added to the center for cluster 1. Center 3 was the
average of center 1 and center 2 plus a random vector from a



8 Clustering trees: a visualization for evaluating clusterings

normal distribution with mean zero and standard deviation 5.
To ensure a similar relationship between clusters 3 and 4 as be-
tween clusters 1 and 2, center 4 was produced by adding half the
vector used to produce center 2 to center 3 plus another vector
from a normal distribution with mean zero and standard devi-
ation 2. Points for each cluster were generated in the same way
as for cluster 1. Simulation C consists of the points in clusters 1
and 2; simulation D consists of clusters 1, 2, and 3; and simula-
tion E consists of clusters 1, 2, 3, and 4. Each simulated dataset
was clustered using the “kmeans” function in the stats package
with values of k from 1 to 8, a maximum of 100 iterations, and
10 random starting positions. The clustering tree visualizations
were produced using the clustree package with the tree layout.
The simulated datasets and the code used to produce them are
available from the repository for this article [26].

Iris dataset

The iris dataset is available as part of R. We clustered this dataset
using the “kmeans” function in the stats package with values of k
from 1 to 5. Each value of k was clustered with a maximum of 100
iterations and with 10 random starting positions. The clustree
package was used to visualize the results using the Sugiyama
layout. The clustered iris dataset is available as part of the clus-
tree package.

PBMC dataset

The PBMC dataset was downloaded from the Seurat tutorial page
[27], and this tutorial was followed for most of the analysis using
Seurat version 2.3.1. Briefly, cells were filtered based on the num-
ber of genes they express and the percentage of counts assigned
to mitochondrial genes. The data were then log-normalized and
1,838 variable genes identified. Potential confounding variables
(number of unique molecular identifiers and percentage mito-
chondrial expression) were regressed from the dataset before
performing principal component analysis on the identified vari-
able genes. The first 10 principal components were then used to
build a graph that was partitioned into clusters using Louvain
modularity optimization [28] with resolution parameters in the
range zero to 5, in steps of 0.1 between zero and 1, and then in
steps of 0.5. Clustree was then used to visualize the results using
the tree layout.

Availability of source code and requirements

Project name: clustree.
Project home page: https://github.com/lazappi/clustree.
Operating systems(s): Linux, MacOS, Windows
Programming language: R (> = 3.4)
Other requirements: None
License: GPL-3
Any restrictions to use by non-academics: None
RRID:SCR 016293

Availability of supporting data

The clustree package is available from CRAN [29] and is being de-
veloped on GitHub [30]. The code and datasets used for the anal-
ysis presented here are also available from GitHub [26]. The clus-
tered iris dataset is included as part of clustree, and the PBMC
dataset can be downloaded from the Seurat tutorial page [27] or
the paper GitHub repository. Snapshots of the code are available
in the GigaScience repository, GigaDB [31].

Abbreviations

PBMC: peripheral blood mononuclear cell; scRNA-seq: single-
cell RNA-sequencing.

Competing interests

The authors declare that they have no competing interests.

Funding

L.Z. is supported by an Australian Government Research Train-
ing Program scholarship. A.O. is supported through a National
Health and Medical Research Council Career Development fel-
lowship (APP1126157). The Murdoch Children’s Research Insti-
tute is supported by the Victorian Government’s Operational In-
frastructure Support Program.

Author contributions

L.Z. designed the clustering tree algorithm, wrote the clustree
software package, and drafted the manuscript. A.O. supervised
the project and commented on the manuscript.

Acknowledgements

Thank you to Marek Cmero for providing comments on a draft of
the manuscript and the reviewers for their comments and sug-
gestions.

References

1. Forgy WE. Cluster analysis of multivariate data: effi-
ciency versus interpretability of classifications. Biometrics
1965;21:768–9.

2. Macqueen J. Some methods for classification and analysis
of multivariate observations. In 5th Berkeley Symposium on
Mathematical Statistics and Probability, 1967.

3. Lloyd S. Least squares quantization in PCM. IEEE Trans Inf
Theory 1982;28:129–37.

4. Kaufman L, Rousseeuw PJ. Partitioning Around Medoids (Pro-
gram PAM). Finding Groups in Data, New Jersey, USA. John
Wiley & Sons, Inc. 1990. pp. 68–125.

5. Ester M, Kriegel H-P, Sander J, et al. A density-based algo-
rithm for discovering clusters in large spatial databases with
noise. Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining. Portland, Oregon:
AAAI Press; 1996. pp. 226–31. Available from:

6. Fraley C, Raftery AE. Model-based clustering, discrimi-
nant analysis, and density estimation. J Am Stat Assoc
2002;97:611–31.

7. Thorndike RL. Who belongs in the family? Psychometrika
1953;18:267–76.

8. Rousseeuw PJ. Silhouettes: a graphical aid to the interpreta-
tion and validation of cluster analysis. J Comput Appl Math
1987;20:53–65.

9. Luxburg U von. Clustering stability: an overview. Founda-
tions and Trends in Machine Learning 2010;2:235–74.

10. Ben-Hur A, Elisseeff A, Guyon I. A stability based method for
discovering structure in clustered data. Pac Symp Biocomput
2002, 7;6–17.

11. Kiselev VY, Kirschner K, Schaub MT, et al. SC3: consen-
sus clustering of single-cell RNA-seq data. Nat Methods
2017;14:483–6.

https://github.com/lazappi/clustree
https://scicrunch.org/resolver/RRID:SCR_016293


Zappia and Oshlack 9

12. Rebane G, Pearl J. The Recovery of Causal Poly-Trees from
Statistical Data. 2013; Available from: http://arxiv.org/abs/13
04.2736, Accessed May 16, 2018.

13. Csardi G, Nepusz T. The igraph software package for com-
plex network research. Inter Journal Complex Systems
2006;1695:1–9.

14. Reingold EM, Tilford JS. Tidier drawings of trees. IEEE Trans
Software Eng 1981;SE-7:223–8.

15. Sugiyama K, Tagawa S, Toda M. Methods for visual under-
standing of hierarchical system structures. IEEE Trans Syst
Man Cybern 1981;11:109–25.

16. Anderson E. The irises of the Gaspe Peninsula. Bulletin of the
American Iris Society 1935;59:2–5.

17. Fisher RA. The use of multiple measurements in taxonomic
problems. Ann Eugen 1936;7:179–88.

18. Tang F, Barbacioru C, Wang Y, et al. mRNA-seq whole-
transcriptome analysis of a single cell. Nat Methods
2009;6:377–82.

19. Stegle O, Teichmann SA, Marioni JC. Computational and an-
alytical challenges in single-cell transcriptomics. Nat Rev
Genet 2015;16:133–45.

20. Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel
digital transcriptional profiling of single cells. Nat Commun
2017;8:14049.

21. Satija R, Farrell JA, Gennert D, et al. Spatial reconstruc-
tion of single-cell gene expression data. Nat Biotechnol
2015;33:495–502.

22. Pedersen TL. ggraph: An Implementation of Grammar of
Graphics for Graphs and Networks. 2018. Available from: ht
tps://CRAN.R-project.org/package=ggraph, Accessed 21 May,

2018
23. Wickham H. ggplot2: Elegant Graphics for Data Analysis.

New York: Springer; 2010.
24. Pedersen TL. tidygraph: A Tidy API for Graph Manipulation.

2018. Available from: https://CRAN.R-project.org/package=t
idygraph, Accessed May 21, 2018

25. Wilke CO. cowplot: Streamlined Plot Theme and Plot Anno-
tations for ’ggplot2.’ 2018. Available from: https://CRAN.R-p
roject.org/package=cowplot, Accessed May 21, 2018

26. Zappia L, Oshlack A. clustree-paper GitHub repository, 2018.
Available from: https://github.com/Oshlack/clustree-paper,
Accessed May 21, 2018.

27. Satija Lab. Seurat PBMC3K Tutorial. ; 2018. Available from:
https://satijalab.org/seurat/pbmc3k tutorial.html, Accessed
May 21, 2018

28. Blondel VD, Guillaume J-L, Lambiotte R, et al. Fast unfolding
of communities in large networks. J Stat Mech. IOP Publish-
ing; 2008;2008:P10008.

29. Zappia L, Oshlack A. clustree: Visualise Clusterings at Differ-
ent Resolutions. 2018. Available from: https://CRAN.R-proje
ct.org/package=clustree, Accessed May 21, 2018

30. Zappia L, Oshlack A. clustree GitHub repository. ; 2018. Avail-
able from: https://github.com/lazappi/clustree, Accessed
May 21, 2018.

31. Zappia L, Oshlack A. Supporting data for ”Clustering trees:
a visualization for evaluating clusterings at multiple resolu-
tions.” GigaScience Database 2018. http://dx.doi.org/10.5524
/100478.

http://arxiv.org/abs/1304.2736
https://CRAN.R-project.org/package=ggraph
https://CRAN.R-project.org/package=tidygraph
https://CRAN.R-project.org/package=cowplot
https://github.com/Oshlack/clustree-paper
https://satijalab.org/seurat/pbmc3k_tutorial.html
https://CRAN.R-project.org/package=clustree
https://github.com/lazappi/clustree
http://dx.doi.org/100478

