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Abstract

Volatile molecules in exhaled breath represent potential biomarkers in the setting of infectious 

diseases, particularly those affecting the respiratory tract. In particular, Pseudomonas aeruginosa is 

a critically-important respiratory pathogen in specific subsets of the population, such as those with 

cystic fibrosis. Infections caused by P. aeruginosa can be particularly problematic when co-

infection with respiratory syncytial virus (RSV) occurs, as this is correlated with the establishment 

of chronic P. aeruginosa infection. In the present study, we evaluate the volatile metabolites 

produced by P. Aeruginosa (PAO1)-infected, RSV-infected, co-infected, or uninfected cystic 

fibrosis bronchial epithelial (CFBE) cells, in vitro. We identified a volatile metabolic signature that 

could discriminate between P. aeruginosa-infected and non-P. aeruginosa-infected CFBE with an 

area under the receiver operating characteristic curve (AUROC) of 0.850, using the machine 

learning algorithm Random Forest (RF). Although we could not discriminate between RSV-

infected and non-RSV-infected CFBE (AUROC = 0.431), we note that sample classification 

probabilities for RSV-infected cell, generated using RF, were between those of uninfected CFBE 

and P. aeruginosa-infected CFBE, suggesting that RSV infection may result in a volatile metabolic 

profile that shares attributes with both of these groups. To more precisely elucidate the biological 

origins of the volatile metabolites that were discriminatory between P. aeruginosa-infected and 

non-P. aeruginosa-infected CFBE, we measured the volatile metabolites produced by P. aeruginosa 
grown in the absence of CFBE. Our findings suggest that the discriminatory metabolites produced 

likely result from the interaction of P. aeruginosa with the CFBE cells, rather than the metabolism 

of media components by the bacterium. Taken together, our findings support the notion that P. 
aeruginosa interacting with CFBE yields a particular volatile metabolic signature. Such a signature 

may have clinical utility in the monitoring of individuals with cystic fibrosis.
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1. Introduction

Respiratory tract infections are among the leading causes of death worldwide, resulting in 

3.2 million deaths in 2015 alone [1], and pneumonia remains one of the world’s leading 

causes of death for children under the age of five [2]. According to the Etiology of 

Pneumonia in the Community (EPIC) study conducted by Centers for Disease Control and 

Prevention (CDC), human rhinovirus (9%), influenza virus (6%), and Streptococcus 
pneumoniae (5%) are the most prevalent pathogenic agents in the adult population, while 

respiratory syncytial virus (28%) and human rhinovirus (27%) are the predominant 

pathogens in children [3,4]. In this study, polymicrobial infections (i.e., infections caused by 

more than one pathogen) were identified in 36% of adults and 81% of children, with the 

occurrence of polymicrobial infections resulting in substantially worse morbidity and 

mortality [5–8]. Of particular interest are viral-bacterial polymicrobial infections, as viral 

infections have been shown to promote bacterial colonization of the airway up to several 

weeks following initial infection [9–13].

Polymicrobial infections involving influenza virus and S. pneumoniae are commonly 

encountered in the human population [10]. However, other viral-bacterial interactions may 

occur in specific subsets of the population, such as in the setting of cystic fibrosis (CF). In 

CF, a complex and dynamic respiratory microbiota interacts and evolves in a way that is not 

fully characterized to-date [14]. In this population, co-infection of respiratory viruses and 

Pseudomonas aeruginosa is correlated with the establishment and exacerbation of chronic P. 
aeruginosa lung infection [15][16–20], with respiratory syncytial virus (RSV) as the 

etiological agent in 9–58% of viral infections in these patients [21]. Chronic P. aeruginosa 
infection has dire health consequences in these individuals, including decreased quality of 

life and reduced life expectancy [22]. It has been demonstrated that the antiviral interferon 

host response to RSV, along with the release of transferrin-bound iron that occurs during 

viral infection, promotes P. aeruginosa biofilm formation, and this, in turn, can be correlated 

with disease exacerbation [23].

Volatile molecules have been investigated as potential biomarkers for the diagnosis of both 

acute and chronic respiratory infections [24]. Numerous studies have focused on the volatile 

metabolic fingerprints generated by bacterial infections in vivo [25–31], but none have 

evaluated the ability of this approach to discriminate between virally- and bacterially-

derived volatile compounds, nor deconvolute bacterial- and viral-associated signatures in the 

setting of a polymicrobial environment. Nevertheless, several transcriptomics studies have 

demonstrated that viral and bacterial infections induce distinct responses by host cells [32–

42]. Such findings provide the rationale behind our hypothesis that volatile metabolic 

signatures can be used to differentiate between virally-infected, bacterially-infected, and co-

infected cells. The aim of this study is thus to investigate the ability of volatile metabolites to 
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discriminate between respiratory epithelium infected, in vitro, with P. aeruginosa and RSV 

singularly, and to evaluate the polymicrobial fingerprint generated by the infection of P. 
aeruginosa and RSV simultaneously. For this, we employ solid-phase microextraction 

(SPME) followed by comprehensive two-dimensional gas chromatography (GC×GC) with a 

time-of-flight mass spectrometer (ToF MS), a powerful technique for the analysis of 

complex mixtures.

2. Materials and Methods

2.1 Viral and bacterial infection sample preparation

Cell culture: Immortalized homozygous CFTR ΔF508 CFBE41o- human bronchial epithelial 

cells (CFBE) were maintained in a humidified incubator at 37°C 5% CO2 in Minimum 

Essential Medium (MEM) containing phenol red (Gibco, Waltham, MA, United States) 

supplemented with 10% fetal bovine serum (FBS, Gemini Bio-Products, West Sacramento, 

CA, United States), 0.5 μg/mL Plasmocin prophylactic (InvivoGen, San Diego, CA, United 

States), 2 mM L-glutamine, 5 U/mL penicillin, and 5 μg/mL streptomycin (Sigma-Aldrich, 

St. Louis, MO, United States) (Hendricks PNAS 2016, 113:1642–1647). Immortalized 

STATE−/− NY3.2 mouse fibroblasts were maintained in MEM containing phenol red 

supplemented with 5% FBS, 5 U/mL penicillin, and 5 μg/mL streptomycin. Both cell types 

are not on the commonly misidentified list, and cells were tested quarterly for mycoplasma 

using a Southern Biotech mycoplasma detection kit. CFBE41o- cells were seeded at near 

confluency on 12 mm diameter, 0.4 μm pore size Transwell permeable polycarbonate 

membrane supports (Costar, St. Louis, MO, United States). After attachment and 

confluency, epithelial cells were differentiated at air-liquid interface (ALI) for one week. 

Respiratory syncytial virus (RSV) line A2 was propagated in NY3.2 cells. RSV was 

extracted and stored in high salt media (HSM) at −80°C. Plaque-forming units were 

determined by immunoreactive staining assay in NY3.2 cells. P. aeruginosa strain PAOl was 

grown in Lysogeny Broth (LB) at 37°C on a roller.

P. aeruginosa-only samples: Bacteria were prepared by washing an overnight culture in 

MEM supplemented with 2 mM L-glutamine and culturing in MEM supplemented with 2 

mM L-glutamine in a 25 cm2 cell culture flask (Coming, Coming, NY, United States) at 

37°C 5% CO2 for 24 h. Media was then transferred to a tube and centrifuged to remove 

bacterial aggregates. Clarified media was filtered through a 0.22 μm filter (Merck Millipore, 

Burlington, MA, United States) and stored at −80°C. The same set up was used without P. 
aeruginosa inoculation for media-only controls.

Bacterial-epithelial co-cultures: ALI-differentiated CFBE41o- cells were washed with MEM 

lacking phenol red (Gibco) supplemented with 2 mM L-glutamine, and basolateral media 

was replaced with MEM containing phenol red supplemented with 10% FBS and 2 mM L-

glutamine. Cells were inoculated with RSV at a multiplicity of infection (MOI) of 1 in 

MEM supplemented with 2 mM L-glutamine in the apical compartment. Control cells were 

inoculated with MEM containing an equal volume of vehicle (HSM). Apical media was 

removed after infection and cells were returned to ALI and maintained in antibiotic-free 

basolateral media. RSV-infected cells were then inoculated with P. aeruginosa that was 

prewashed in MEM lacking phenol red supplemented with 2 mM L-glutamine at an MOI of 
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approximately 25. After 1 h attachment, non-attached bacteria were removed and apical 

media was adjusted to 0.4% L-arginine. After an additional 5 h, apical media was transferred 

to a tube and epithelium-associated biofilms were disrupted in 0.1% Triton X-100 (Bio-Rad, 

Hercules, CA, United States) and analyzed by serial dilution and plating on LB agar for 

colony-forming units. Apical media was centrifuged to remove bacterial aggregates, passed 

through a 0.22 μm filter, and stored at −80°C. RNA was collected from a separate set of 

Transwells by RNeasy with QIAshredder columns (Qiagen, Hilden, Germany) according to 

manufacturer recommendations. Transcript levels for GAPDH, the RSV N gene, and IFNL1 

were assessed by converting RNA into cDNA with iScript cDNA Synthesis Kit and 

performing RT-qPCR using iQ SYBR Green Supermix (Bio-Rad) on a StepOne Real-Time 

PCR System (ThermoFisher Scientific, Waltham, MA, United States). Primers for GAPDH 

(5’- CGACCACTTTGTCAAGCTCA-3’, 5’-AGGGGAGATTCAGTGTGGTG-3’), for RSV 

N gene (5’-CGCCTTGGAAGAGTCACTCA-3′, 5’-GAAGCCTCAGGTCCCAATTC-3’), 

and for IFNL1 (5‘-GCTCTTAGCAAAGTCAAGTTGAATGA-3‘, 5‘-

TGCTCCGTTGGATGGTGTATT-3‘). Conditions analyzed were epithelial cells alone, RSV-

infected epithelial cells, P. aeruginosa-infected epithelial cells, and co-infected epithelial 

cells.

2.2. Sample preparation for volatile metabolites analysis

Five-hundred μL of filtered apical media was collected into a 10 mL air-tight glass vial 

sealed with a PTFE/silicone cap (Sigma-Aldrich) frozen at −20°C until analysis (within one 

month of collection). Samples were incubated for 15 min (the equilibration phase) at 37°C 

before fiber exposure for 45 min at the same temperature (the extraction phase). Samples 

were agitated at 250 rpm during both the equilibration and extraction phases. A 

divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) df 50/30 μm, 2 cm 

length fiber (Supelco, Bellefonte, PA, USA) was used to pre-concentrate the volatile 

molecules. The fiber was then introduced into the GC injector for thermal desorption for 1 

min at 250°C in splitless mode. The fiber was conditioned before use and baked-out after 

each run for 7 minutes at 250°C. Absence of carryover was verified by desorbing the fiber 

into the GC injector after the baking time.

2.3. Analytical instrumentation

The analyses of volatile molecules were carried out using a Pegasus 4D (LECO Corp., St. 

Joseph, MI, United States) GC×GC time-of-flight (TOF) MS instrument with an Agilent 

6890 GC, and equipped with an MPS autosampler (Gerstel, Linthicum Heights, MD, United 

States). The first dimension column was an Rxi-624Sil (60 m × 250 μm × 1.4 μm (length × 

internal diameter × film thickness)) connected in series with a Stabilwax secondary column 

(1 m × 250 μm × 1.4 μm), both from Restek (Bellefonte, PA, USA). The carrier gas was 

helium, at a flow rate of 2 mL/min. The primary oven temperature program was 35°C (hold 

1 min) ramped to 230°C at a rate of 3.5°C/min. The secondary oven and the thermal 

modulator were offset from the primary oven by +5°C and +25°C, respectively. A 

modulation period of 2.0 s (alternating 0.5 s hot and 0.5 s cold pulses) was used. The 

transfer line temperature was set at 250°C. A mass range of m/z 30 to 500 was collected at a 

rate of 200 spectra/s following a 2.5 min acquisition delay. The ion source was maintained at 
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200°C. Data acquisition and analysis were performed using ChromaTOF software, version 

4.50 (LECO Corp).

2.4. Processing and analysis of chromatographic data

Chromatographic data were processed and aligned using ChromaTOF. A signal-to-noise 

(S/N) cutoff was set at 50:1 in at least one chromatogram and a minimum of 20:1 S/N ratio 

in all others. For the alignment of peaks across chromatograms, maximum first and second-

dimension retention time deviations were set at 6 s and 0.2 s, respectively, and the inter-

chromatogram spectral match threshold was set at 600 (out of 1000). Compounds eluting 

prior to 4 min and artifacts were removed prior to statistical analysis. Artifacts were 

identified by running a series of instrument blanks (i.e., runs without SPME fiber injections) 

and fiber blanks (i.e., runs with SPME fiber injections but without fiber headspace exposure) 

to identify the compounds deriving from column and fiber bleeding (e.g., siloxane, silanol, 

etc.). Furthermore, the most common and ubiquitous plasticizers (i.e. phthalates) were 

removed as well.

A mixture of normal alkanes (C6-C20) was analyzed every 20 runs to calculate the linear 

retention index [43] and evaluate the instrument performance. The SPME and GC methods 

are as described above, except for the SPME exposition time, which was shorter (5 min) to 

avoid excessive overload of the fiber.

In agreement with the minimum reported standard guidelines suggested by the 

Metabolomics Standard Initiative, the most discriminatory features were putative annotated 

(Level 2) or putatively assigned to a chemical class (Level 3) [44] based on mass spectral 

similarities to the NIST 2011 mass spectral library, with a match score ≥ 800 (out of 1000) 

required for putative identifications. In addition to the MS similarity, the putative 

identification was also supported by the linear retention index (LRI) in agreement (i.e., in the 

±15 range), with data reported using the same stationary phase [45] (if available). Unless 

confirmed by the LRI value, hydrocarbons were generally assigned as “alkylated 

hydrocarbons”, as only the chemical class of these compounds can be assigned considering 

their mass spectral fragmentation pattern and their location in the two-dimensional 

chromatogram.

2.5. Statistical analysis

All statistical analyses were performed using R v3.3.2 (R Foundation for Statistical 

Computing, Vienna, Austria). Prior to statistical analyses, the chromatographic area of 

compounds across chromatograms was normalized using Probabilistic Quotient 

Normalization [46], Variables were log-transformed, mean-centered, and unit-scaled prior to 

all statistical analyses. Random forest (RF) [47] was used to identify the most highly 

discriminatory volatile molecules and predict the class to which a leave-one-out cross 

validation (LOOCV) sample belonged. LOOCV was repeated 31 times, leaving out each 

sample (e.g., 8 PA+/RSV+, 8 PA−/RSV+, 8 PA+/RSV−, and 7 PA−/RSV−) once. The class 

probabilities were used to generate receiver operating characteristic (ROC) curves, and from 

these ROC curves, sensitivities, specificities, and area under the ROC curve (AUROC) were 

calculated. The optimal thresholds for class probabilities were calculated using Youden’s J 
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statistic [48], rather than the 0.5 cutoff that is traditionally applied to two-class classification 

problems. Mean decrease in accuracy (MDA) was used as the measure of variable 

importance. The Mann-Whitney U test [49] was used to compare the normalized area of 

volatile molecules between experimental groups (Table 1), while a Student’s t-test was used 

to compare class probabilities between groups.

3. Results and Discussion

3.1. Respiratory syncytial virus and P. aeruginosa infections

Infections with RSV and/or P. aeruginosa were confirmed by RT-qPCR and dilution plating, 

respectively (Figure 1). RSV transcripts were readily detected in both RSV-infected and co-

infected respiratory epithelium (Figure 1A), indicating that a productive RSV infection was 

achieved. In addition to RSV transcript detection, we also observed a strong antiviral 

response by the RSV-infected and co-infected respiratory epithelium, evidenced by 

upregulation of the gene encoding IFN-λΙ (IFNL1, Figure 1B). Similar to previous studies 

[23,50], RSV co-infection of the respiratory epithelium enhanced P. aeruginosa biofilm 

biogenesis, as compared to P. aeruginosa alone (Figure 1C). Together, these results indicate 

that the samples processed for volatile fingerprinting were suitable to serve as representative 

uninfected (PA−/RSV−), P. aeruginosa- infected (PA+/RSV−), RSV-infected (PA−/RSV+), 

and co-infected (PA+/RSV+) respiratory epithelium.

3.2. Volatile fingerprints of P. aeruginosa and respiratory syncytial virus infections

Raw chromatographic data consisting of 762 features across the 31 samples of interest (8 PA
+/RSV+, 8 PA−/RSV+, 8 PA+/RSV−, and 7 PA−/RSV−) were pre-processed to remove 

artifacts, resulting in a final data matrix consisting of 230 compounds plausibly derived from 

the biological specimens themselves.

We first sought to determine whether there was a subset of volatile metabolites that were 

significantly different in abundance between experimental groups. Forty-three features were 

identified as significantly different in at least one comparison and are reported in Table 1, 

along with their putative identification (if possible). The abundance of each feature in the 

different pairwise comparisons is reported in Table 1. Arrow directions indicate the group in 

which the compound was more abundant, with “↑” indicating that the compound was 

significantly more abundant in the first group listed in the column heading, and “↓,” 

indicating that the compound was significantly more abundant in the second group. Thirty-

four of these 43 features were significantly different between PA+/RSV− and PA−/RSV−, 19 

between PA−/RSV+ and PA−/RSV−, and 16 between PA+/RSV+ and PA−/RSV−, of which 

only three (all alkylated hydrocarbons) were not overlapped with the features reported from 

the comparison between PA+/RSV− and PA−/RSV−. Only six features were significantly 

different between PA+/RSV− and PA−/RSV+, all more expressed in the former group, except 

one alkylated hydrocarbon. Notably, only one feature was significantly more expressed in 

PA+/RSV− versus PA+/RSV+ (cyclohexanone), whereas five were significantly different in 

the comparison of PA−/RSV+ versus PA+/RSV+, all more expressed in the latter group Seven 

of the putatively identified metabolites have been previously identified in the headspace of P. 
aeruginosa grown under in vitro conditions [51–57], three metabolites were previously 
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identified in the headspace of cell line infected with human respiratory viruses [58], and one, 

2-ethylhexanal, has been detected in the headspace of several cancer cell cultures [28].

3.3. Discriminatory ability of the volatile metabolite signature

We next sought to determine whether volatile metabolic fingerprints could discriminate 

between infected and uninfected cystic fibrosis bronchial epithelial cells (CFBE). Random 

forest (RF) was used to assess the capability of volatile fingerprints to discriminate between: 

I) P. aeruginosa-infected (including both PA+/RSV− and PA+/RSV+) versus non-P. 
aeruginosa-infected (PA−/RSV− and PA−/RSV+) cells, and II) RSV-infected (including both 

PA−/RSV+ and PA+/RSV+) versus non-RSV-infected (PA+/RSV− and PA−/RSV−) cells. 

Receiver operating characteristic (ROC) curves were generated using class probabilities for 

leave-one-out cross-validation (LOOCV) samples (Figure 2).

The results obtained from the first model (P. aeruginosa versus non-P. aeruginosa) yielded an 

AUROC of 0.850, with a sensitivity of 0.938 and specificity of 0.800 at an optimal class 

probability cutoff of 0.544 (2a, left). In contrast, the ability to discriminate between RSV-

infected and non-RSV-infected cells was approximately random, with an AUROC of 0.431, 

and optimal sensitivity and specificity of 0.500 and 0.533, respectively (2b, right). Taken 

together, these findings suggest that under the experimental conditions employed in the 

present study, infection of CFBE with P. aeruginosa produces a detectable volatile molecular 

fingerprint, while infection of CFBE with RSV does not.

The class probabilities for each sample in the comparison of P. aeruginosa versus non-P. 
aeruginosa infected CFBE were plotted, with 0 indicating non-P. aeruginosa-infected, and 1 

indicating P. aeruginosa-infected (Figure 3). Within the P. aeruginosa-infected group, there 

was no significant difference in class probabilities between PA+/RSV− and PA+/RSV+ (p = 

0.71). It is interesting, however, that the class probabilities for PA−/RSV+ were significantly 

different from both PA−/RSV− (p = 0.03) as well as PA+/RSV− (p = 0.02). This finding 

suggests that RSV singular infection results in a volatile molecular fingerprint that shares 

attributes with both PA−/RSV− as well as PA+/RSV−, possibly resultant from a general host 

response to infection. In contrast to the comparison of P. aeruginosa-infected versus non-P. 
aeruginosa-infected cells, there were no significant differences in class probabilities between 

groups for the comparison of RSV-infected versus non-RSV-infected cells (Supplementary 

Figure S1).

3.4. Most discriminatory metabolites and their possible origin

For the comparison of P. aeruginosa-infected versus non-P. aeruginosa-infected cells, volatile 

molecules were ranked according to their discriminatory ability, as defined by their mean 

decrease in accuracy (MDA, a measure of variable importance). The intensity profile of the 

most discriminatory molecules (MDA > 0.01) are visualized in Figure 4. Six of these nine 

were putatively identified [two ketones (acetone and 2-butanone), three aldehydes (3-

methylbutanal, 2-methylbutanal, and 2-ethylhexanal), one hydrocarbon (undecane)] and 

three compounds were generally assigned as alkylated hydrocarbons (Table 1).
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The chemical classes (ketones, aldehydes, hydrocarbons) reported herein in culture 

headspace can be plausibly attributed to lipid oxidation pathways. Acetone and 2-butanone 

derive from the decarboxylation of ß-keto acids, and have been reported as important 

markers of P. aeruginosa elsewhere [51–57,59,60]. Aldehydes have been related to lipid 

peroxidation during inflammation [61], and 3-methylbutanal and 2-methylbutanal have been 

also reported as key intermediate in the catabolism of amino acids, such as leucine [62,63]. 

Aliphatic hydrocarbons (e.g. undecane) may be derived from the metabolism of fatty acids, 

which are converted to aldehydes due to the activity of acyl-CoA reductase, and 

enzymatically decarboxylated to hydrocarbons [64]. A preponderance of hydrocarbons were 

also highlighted in the headspace of human and murine epithelial cells infected with RSV 

and Influenza A, respectively [58]. Indeed, it has been shown that viral infection increases 

the production of reactive oxygen species, in part through a NAD(P)H oxidase-dependent 

mechanism [65], which is associated with the formation of hydrocarbons.

3.4. Analysis of the headspace of P. aeruginosa during growth in MEM

Finally, we hypothesized that a subset of the nine metabolites identified as highly 

discriminatory between P. aeruginosa-infected versus non-P. aeruginosa-infected CFBE 

resulted from either the consumption or production of metabolites by the bacterium itself. To 

test this, P. aeruginosa was grown as a biofilm in MEM in the absence of respiratory 

epithelium. Of the nine compounds selected, six were found in the headspace of P. 
aeruginosa grown alone, namely acetone, 2-butanone, 2-methylbutanal, undecane, and two 

hydrocarbons (#29 and #40). However, none of these differed significantly in abundance 

between P. aeruginosa in MEM and sterile media (MEM alone), suggesting that the selected 

metabolites likely result from the interaction of P. aeruginosa with the CFBE cells, or are 

produced in higher quantity during the interaction between P. aeruginosa and CFBE cells. 

Three compounds, 3-methylbutanal, 2-ethylhexanal and a hydrocarbon (#33), were not 

found in the headspace of P. aeruginosa grown only in media, suggesting that they originate 

from the interaction of P. aeruginosa with CFBE cells, or from the response of CFBE cells to 

the presence of P. aeruginosa.

3.4. Study strengths and limitations

The present study represents a first attempt at evaluating the volatile metabolic signatures of 

both singular P. aeruginosa and RSV infection, as well as P. aeruginosa-RSV co-infection, in 

the setting of in vitro CFBE cell co-culture. The use of CFBE cell culture represents a more 

clinically-significant growth environment relative to growth in nutrient-rich in vitro 
environments. This, in turn, can provide insight for future in vivo experimental models and 

inform translational studies in patient populations. Furthermore, our evaluation of P. 
aeruginosa grown in MEM allows us to hypothesize about the origins of these metabolites, 

although further experiments are needed to determine whether these discriminatory 

metabolites arise from metabolism of alternate substrates by P. aeruginosa in the presence of 

CFBE, and/or the response of CFBE to the presence of P. aeruginosa.

With respect to study limitations, we acknowledge that we consider only a single, reference 

strain (PAO1), which may not be metabolically representative of all possible P. aeruginosa 
strains. Furthermore, we were able to analyze only a small volume (500 μL) per replicate, 
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and that this may have contributed to a relatively weak signal intensity, possibly below the 

detection limit for a subset of analytes. This, in turn, may have contributed to our inability to 

identify a robust volatile metabolic signature associated with RSV infection. Moreover, the 

volatile profiles obtained do not necessarily mirror the real profile present in the headspace 

of the sample, since it is mediated by the specific selectivity of the SPME fiber (PDMS/Car/

DVB) used. The identification of the discriminatory compounds was putative and the 

confirmation of their identity with analytical standards should be confirmed in future 

studies. Finally, it is important to consider that the CFBE cell system models the initial 

interaction (6 h) of P. aeruginosa with the respiratory epithelium. It is therefore possible that 

a longer interaction time might yield to a more robust signal and altered metabolite detection 

as the infection persists.

Conclusions

In the present study, we demonstrate that volatile metabolites can be used to discriminate 

between P. aeruginosa (PAO1) infected and non-P. aeruginosa infected respiratory 

epithelium. Although weak and non-discriminatory, a signature related to the RSV singular 

infection can be observed (see Figure 3), while the volatile signature of co-infected samples 

(PA+/RSV+) is dominated by the signature produced by P. aeruginosa. The contribution of 

the host response to the abundance of some of these discriminatory metabolites can be 

hypothesized, since their abundances were significantly different from the control when 

RSV singular infection was present (acetone, undecane, and a hydrocarbon (#29)). 

Furthermore, the formation of 2-butanone, 3-methylbutanal, and 2-ethylhexanal can be 

associated with the specific interaction between P. aeruginosa and the CFBE cells, as these 

metabolites were not detected in the headspace of P. aeruginosa grown as a biofilm in the 

absence of CFBE.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
RSV and P. aeruginosa infection of CF respiratory epithelial cells. A) ΔCT values for RT-

qPCR of infected CFBE cells with RSV N gene primers, normalized to GAPDH. Y axis 

inverted to represent that lower numbers (including more negative) indicate greater 

abundance of RNA. Data represent the mean and standard deviation, statistical comparison 

by paired ANOVA with Sidak correction for multiple comparisons. B) Fold change in 

IFNL1 expression for infected CFBE cells as determined by RT-qPCR, normalized to 

GAPDH and compared to uninfected control cells. Data represent the mean, statistical 

comparison to uninfected control by paired ANOVA with Dunnett correction for multiple 

comparisons. C) CFU of P. aeruginosa growing in mucosal biofilms associated with infected 

CFBE cells. Data represent the mean, statistical comparison by paired t-test. *: p < 0.05, 

***: p < 0.001, ****: p < 0.0001.
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Figure 2. 
Receiver operating characteristic (ROC) curves for the discrimination between: A) P. 
aeruginosa-infected (PA+/RSV− and PA+/RSV+) versus non-P. aeruginosa-infected (PA
−/RSV− and PA−/RSV+) cells, and B) RSV-infected (PA−/RSV+ and PA+/RSV+) versus non-

RSV-infected (PA−/RSV− and PA+/RSV−), generated using Random Forest. *Optimal 

sensitivity and specificity of each statistical model are calculated at the given class 

prediction cutoff (ranging from 0 to 1).
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Figure 3. 
Class probabilities for LOOCV samples (n = 31) for the comparison of P. aeruginosa-
infected versus non-P. aeruginosa-infected cells. Points towards the top of the plot indicate a 

higher probability of classifying as P. aeruginosa-infected, while points towards the bottom 

of the plot indicate a higher probability of classifying as non-P. aeruginosa-infected. The 

horizontal dotted line corresponds to optimal sensitivity/specificity cutoff (0.544). Wide bars 

represent median probability for each class, while narrow bars represent 25th and 75th 

percentiles.
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Figure 4. 
Boxplot of the most discriminatory features (MDA > 0.01) for discrimination between P. 
aeruginosa-infected versus non-P. aeruginosa-infected cells. *: p < 0.05. a: Data were mean 

centered and scaled before plotting. Identification as per Table 1.
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