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Granulocyte‑colony stimulating 
factor and umbilical cord blood cell 
transplantation: Synergistic therapies 
for the treatment of traumatic brain 
injury
Michael G. Liska, Ike dela Peña1

Abstract:
Traumatic brain injury  (TBI) is now characterized as a progressive, degenerative disease and 
continues to stand as a prevalent cause of death and disability. The pathophysiology of TBI is 
complex, with a variety of secondary cell death pathways occurring which may persist chronically 
following the initial cerebral insult. Current therapeutic options for TBI are minimal, with surgical 
intervention or rehabilitation therapy existing as the only viable treatments. Considering the success 
of stem‑cell therapies in various other neurological diseases, their use has been proposed as a 
potential potent therapy for patients suffering TBI. Moreover, stem cells are highly amenable to 
adjunctive use with other therapies, providing an opportunity to overcome the inherent limitations of 
using a single therapeutic agent. Our research has verified this additive potential by demonstrating 
the efficacy of co‑delivering human umbilical cord blood  (hUCB) cells with granulocyte‑colony 
stimulating factor (G‑CSF) in a murine model of TBI, providing encouraging results which support 
the potential of this approach to treat patients suffering from TBI. These findings justify ongoing 
research toward uncovering the mechanisms which underlie the functional improvements exhibited 
by hUCB + G‑CSF combination therapy, thereby facilitating its safe and effect transition into the 
clinic. This paper is a review article. Referred literature in this paper has been listed in the reference 
section. The datasets supporting the conclusions of this article are available online by searching 
various databases, including PubMed. Some original points in this article come from the laboratory 
practice in our research center and the authors’ experiences.
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Introduction

Traumatic brain injury (TBI) – defined as 
a physical insult which damages brain 

tissue by exceeding the protective capacity 
of the cranium – has continued to persist as 
a public health concern.[1] Approximately 
3.5 million TBIs were reported in 2009 alone, 
with 2.1 million resulting in emergency 
room visits and 53,000 in death.[2]   Moreover, 

a dramatic increase in blast injuries has 
paralleled the rise of improvised explosive 
devices in current armed conflicts, causing 
TBI to become the “signature wound” 
for American troops. The severity of TBI 
can vary, ranging from a mild change in 
mental status to coma and induction of 
amnesia after the injury. (National Institute 
of Neurological Disorders and Stroke, 
National Institutes of Health).  Mortality 
following TBI spans from 1% in mild TBI 
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cases to upward of 30%–50% following severe brain 
injuries;[3] mild TBI, however, constitutes the majority 
of TBI cases at 70%–80%.[4]

Following the primary cerebral insult, complex 
pathological sequelae propagate neural death which 
may persist days, months, or even years.[5,6] The initial 
cause of TBI can be focal, such as from a penetrating head 
wound, or diffuse, such as from a blast‑induced insult.[7] 
The secondary injuries stem from this primary trauma 
and result in multiple pathological cascades including 
excitotoxicity, hypoxia/ischemia, mitochondrial 
dysfunction, neuroinflammation, oxidative stress, 
and cerebral edema, which all contribute to the 
persistence of neurodegeneration and chronic functional 
deficits.[5,8‑13] These secondary effects are often the 
most devastating and influential component of TBI 
progression, responsible for the delayed mortality and 
symptom development seen both in patients and animal 
models of TBI.[5,14‑16] In search of novel therapeutics, 
halting the progression of these secondary pathologies 
presents an appealing target.

Beyond the physiopathology of the primary and 
secondary brain injury, TBI in humans is often associated 
with broader complications such as hydrocephalus, 
posttraumatic ventricular enlargement, seizures, nerve 
and vascular injuries, and polytrauma (National Institute 
of Neurological Disorders and Stroke, National Institutes 
of Health). Moreover, high‑functioning impairments in 
cognition, communication, sensory–motor integration, 
and mental status  (i.e., anxiety, aggression, and 
depression) may accompany chronic human TBI.[17‑20] 
TBI survivors have also been observed to present with 
symptoms which mimic neurodegenerative diseases 
including Alzheimer’s disease  (AD), Parkinson’s 
disease  (PD), dementia pugilistica, and posttraumatic 
dementia.[18,19,21‑23]

A general lack of awareness as to the prevalence of 
mild TBI has exacerbated this public health concern, 
with patients often forgoing treatment until symptoms 
begin worsening.[4] Even when seeking treatment, 
TBI patients’ therapeutic opportunities are extremely 
limited.[24] In severe cases, surgical intervention may 
be beneficial in the repair or excision of damaged 
vasculature or tissue, while the various other 
symptoms  –  such as seizures, headaches, chronic 
pain, behavioral abnormalities, and depression – are 
relegated to management through prescription 
drugs and rehabilitation therapy.[24‑30] Unfortunately, 
these treatment plans fail to prevent or reverse the 
underlying pathology. Thus, a substantial medical 
gap exists in the availability of TBI therapies which 
effectively treat the progressing secondary injury 
mechanisms and facilitate lasting functional recovery.

Umbilical Cord Blood Cells and a Viable 
Donor Source for Transplantation in 

Traumatic Brain Injury

By attenuating the toxic cell damage and detrimental 
edema which accompany TBI, neuroprotective 
pharmaceuticals and nontraditional agents aim to 
inhibit the development of secondary brain injuries.[24] 
Completed clinical trials investigating the safety and 
efficacy of select neuroprotective agents which exhibited 
preclinical success including glutamate inhibitors, 
nimodipine, magnesium sulfate, scavenging agents, 
and competitive N‑methyl‑D‑aspartate receptor 
antagonists have failed to exhibit efficacy in TBI 
patients.[11,28,31‑33] Testifying to the complexity of human 
TBI pathophysiology, these failed therapies indicate the 
need for new and improved treatment modalities.

In light of the extended therapeutic time window 
associated with chronic TBI, treatment strategies have 
been tailored to pursue chronic phase neuroregenerative 
efforts as opposed to targeting the narrow neuroprotective 
window of acute TBI.[34,35] the forefront of regenerative 
medicine has been stem cell‑based therapies, having 
displayed promising applications in many neurological 
disorders such as TBI and having reached limited clinical 
trials.[34,36‑41] A rigorous analysis of the safety, efficacy, 
and mechanisms of action has been critical to translating 
the use of stem cells for the treatment of neurological 
ailments. This has included extensive research into a 
multitude of transplantable cell types including fetal 
stem cells, cancer‑derived neuron‑like cells, embryonic 
stem cells, induced pluripotent stem cells, and adult stem 
cells, such as umbilical cord blood, bone marrow (BM) 
stromal cells, and amnion cells, among others.[39‑47] Of 
particular interest has been adult stem cell donor sources 
as they evade the ethical, logistical, and oncogenic 
concerns which plague transplantation of embryonal or 
fetal‑derived stem cells.[48]

Many laboratories,  including our own, have 
gauged the clinical value of human umbilical cord 
blood  (hUCB)‑derived cells for the treatment of 
neurological disorders such as cerebral palsy, stroke, 
PD, and Huntington’s disease.[49,50] These investigations 
have resulted in limited clinical trials of hUCB cells 
in cerebral palsy, stroke, and metabolic disorders.[50‑53] 
The advantages of hUCB cell transplantation are a low 
immunogenicity, an ability to retain effectiveness after 
years of cryopreservation, ease of harvesting, ease of 
in  vitro expansion, stemness potency, and successful 
history within the clinic for hematopoietic disorders.[54] 
Experimental models of TBI have responded favorably 
to hUCB treatment; transplantation of the mononuclear 
fraction of hUCB resulted in neuroprotective effects 
through reduced inflammation, heightened neurogenesis, 
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and a rescue of functional outcomes.[55‑57] Moreover, 
mesenchymal stem cells  (MSCs) derived from hUCB 
conferred neuroprotective and neuroregenerative 
benefits through improved angiogenesis and 
vasculogenesis.[49,58,59] The transition of hUCB cell 
transplantations for the treatment of TBI in the clinic 
will demand extensive basic science and translational 
research initiatives to uncover the intricate mechanisms 
of action, as well as the ideal timing, dosage, and route 
of administration. Furthermore, establishing the most 
appropriate and reproducible source of these cells will 
be essential for quality assurance, quality control, and 
reproducibility of experimental outcome measures.[36]

Despite inflammation and the harsh postinjury 
microenvironment being   unconducive  to long‑term 
graft survival,[60,61] a robust functional recovery is 
still attainable in animal models through bystander 
effects; achieving significant recovery in the clinic, 
however, will likely necessitate dampening the harsh 
microenvironment and making it more receptive to 
stem cell transplant survival. Indeed, rendering the 
harsh postinjury microenvironment more amenable to 
stem cells through adjunctive agents may enhance their 
effectiveness and facilitate their advancement into the 
clinic for the treatment of TBI.

An Introduction to Granulocyte‑colony 
Stimulating Factor

First discovered in the mid‑1960s, granulocyte‑colony 
stimulating factor (G‑CSF) is a hematopoietic glycoprotein 
growth factor released from various cell types 
including endothelial cells, activated macrophages, and 
fibroblasts.[62,63] Initially, G‑CSF was characterized to have 
roles in regulating differentiation, proliferation, survival, 
and function of neutrophil granulocyte progenitor cells 
and mature neutrophils.[62,63] G‑CSF is now known to 
have a more broad set of functions; these are inducing 
growth of primarily neutrophilic granulocyte colonies 
in a colony‑forming units‑granulocyte macrophage 
assay, enhancing production of the chemotactic peptide 
N‑formylmethionyl‑leucyl‑phenylalanine binding to 
mature neutrophils, and well‑characterized regulation 
of the proliferation and differentiation of granulocyte 
precursor cells.[63‑65] In addition, experiments utilizing 
G‑CSF knockout mice revealed the role which this 
growth factor has in maintaining appropriate levels of 
circulating neutrophils in baseline myelopoiesis.[63,64]

Specific cellular queues trigger the production and 
release of G‑CSF in the BM, whereby it can proceed 
to bind specialized receptors such as the canonical 
G‑CSF receptor in a variety of cell types including 
hematopoietic progenitor cells, monocytes, platelets, 
neurons, endothelial cells, and small‑cell lung cancer 

cells.[66‑70] Upon activation of these receptors, signaling 
cascades are initiated which have been implicated in 
cell proliferation, anti‑inflammatory processes, and 
anti‑apoptotic pathways as well as stem cell mobilization 
toward sites of injury.[44,67,70‑77] Furthermore, G‑CSF has 
been implicated in brain function and recovery due to 
its ability to bypass the blood–brain barrier (BBB) and 
promote neural recovery,[78‑80] indicating its candidacy as 
a possible treatment for neurodegenerative diseases.[81]

M o n o t h e r a p e u t i c  a p p l i c a t i o n s  o f 
granulocyte‑colony stimulating factor
With neutropenia or febrile neutropenia potentially 
resulting from myelosuppressive or myeloablative 
chemotherapies, G‑CSF has been approved by the Food 
and Drug Administration  (FDA) for the treatment 
of appropriate cancer patients.[82] Clinic trials of 
G‑CSF for small‑cell lung cancer patients showed 
that treatment reduced the occurrence of infection, 
need for antibiotics, and decreased hospitalization 
rates for patients.[83,84] Other randomized, controlled 
clinical trials have shown a reduced duration of 
neutropenia, decreased hospitalization, and reduced 
antibiotic treatment in lymphoma patients subjected 
to myeloablative chemotherapy and autologous BM 
transplantation.[85] Interestingly, stem cell transplantation 
can generate prolonged neutropenia.[86] In patients with 
lymphoma, injection of G‑CSF 24  h after autologous 
marrow transplantation resulted in quicker recovery 
of granulocyte count.[87] Accelerated recovery of 
neutrophil levels has also been reported in other 
studies of G‑CSF‑treated patients ailed with lymphoma, 
leukemia, and germ cell tumors.[88,89] Finally, G‑CSF has 
been demonstrated as valuable for patients undergoing 
consolidation therapy as well as other idiopathic, 
congenital, or cyclic neutropenic conditions.[90‑92]

Early clinical trials in cancer patients receiving 
G‑CSF revealed that a 100‑fold increase in circulating 
colony‑forming progenitor cells accompanied 
treatment.[93] These findings initiated a quest to determine 
if peripheral blood progenitor cells  (PBPC) mobilized 
by G‑CSF could rehabilitate hematopoiesis[94] or if 
G‑CSF could mobilize granulocytes in healthy donors. 
Indeed, in poor‑prognosis nonmyeloid malignancy 
patients, it was observed that G‑CSF‑mobilized PBPC 
treatment stimulated platelet recovery.[95] It has also been 
shown that G‑CSF‑mobilized PBPCs can be safely and 
effectively harvested from donors.[96] Studies utilizing 
G‑CSF‑mobilized PBPCs (as opposed to BM stem cells) 
in allogeneic transplantation have prompted the clinical 
use of G‑CSF for mobilization and collection of PBPC for 
disease treatment. The long history of safe and effective 
G‑CSF use in the clinic makes it an appealing option 
from a therapy‑development standpoint as entry of 
repurposed drugs into the clinic is typically expedited.
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Further indications for the use of granulocyte‑colony 
stimulating factor
The ability of G‑CSF to mobilize BM stem cells 
into circulation has been the basis for a number of 
investigation into this recombinant protein’s potential 
regenerative benefits in myocardial infarction.[97] A 
number of clinical trials of G‑CSF for cardiac repair 
which have inconclusive with their reports of efficacy 
are included in these investigations.[97] Still, valuable 
knowledge was attained from these studies regarding 
the therapeutic mechanisms of G‑CSF and relevant 
signaling pathways which modulate homing and prompt 
engraftment.[97]

With G‑CSF able to penetrate the BBB and bind to 
neural receptors, its potential in the treatment of central 
nervous system disorders is significant. G‑CSF has been 
demonstrated to incite a number of neuroprotective 
pathways which indicate its relevance in treating 
neurodegenerative diseases; among these, effects are 
mobilizing peripheral stem cells, stimulating neuronal 
lineage differentiation of endogenous stem cells, 
promoting angiogenesis, and dampening inflammation, 
all acting in concert to reduce apoptosis.[98‑101] Stroke, 
in particular, has been revealed as highly amenable 
to G‑CSF therapy, with properly dosed treatments 
resulting in increased CD34+ cells,[102] reduced glutamate 
excitotoxicity,[103] altered apoptotic pathways,[99,100] 
reduced edema and interleukin‑1 expression,[104] and 
decreased infarct size.[105] This promising preclinical 
evidence has precipitated clinical studies into the 
safety and efficacy of G‑CSF treatment in ischemic 
stroke patients.[106‑108] Positive indications have also 
been derived from clinical trials of G‑CSF in AD, 
with appropriate dosages being well‑tolerated and 
improving performance in hippocampal‑dependent 
cognitive tests.[42] The potential of G‑CSF to induce 
neuroregeneration  –  within the central nervous and 
peripheral nervous system – has been proposed. Indeed, 
studies have shown G‑CSF to promote function recovery 
from spinal cord injury  (SCI) by increasing neuron 
survival and oligodendrocyte protection.[109,110] The 
safety and feasibility of G‑CSF treatment for SCI was 
demonstrated in phase I/IIa clinical trials, signifying the 
promise of G‑CSF to confer functional benefits in acute 
SCI patients.[111]

With discrepant results being produced in studies of 
G‑CSF for the treatment of experimental TBI  –  some 
reporting improved histological markers and behavioral 
performance, others finding minimal effect on 
neurological outcomes  –  the merit of this protein as 
a stand‑alone therapy for TBI is inconclusive.[44,112,113] 
Despite the inconsistent efficacy results, a clinical trial 
has been initiated for G‑CSF in TBI patients on the basis 
of its solid safety profile and positive indications in 

both ischemic stroke and AD.[42,104,108,114,115] The multitude 
of positive findings for the use of G‑CSF in various 
neurological conditions warrants ongoing investigation 
into the potential applications of G‑CSF in TBI treatment.

Granulocyte‑colony Stimulating Factor as 
an Adjunctive Option

Different mobilizing agents may promote the 
dissemination of BM stem cells with different phenotypic 
profiles and biological characteristics; thus, G‑CSF 
has been used adjunctively with other mobilization 
compounds agents, such as stem cell factor  (SCF), to 
enhance and optimize the mobilization of stem cells.[116,117] 
Working synergistically, co‑administration of G‑CSF 
and SCF resulted in a 250‑fold increase in circulating 
pluripotent hematopoietic stem cells.[118] Consistent 
with these findings, myocardial infarct studies have 
reported that such combination therapy resulted in 
improved left ventricular function, reduced mortality 
and infarct size, and improved homing of BM stem cells 
to the affected myocardium, resulting in the formation 
of new cardiomyocytes.[116] Chronic stroke studies 
revealed the adjunctive therapy of G‑CSF and SCF 
augment functional recovery better than either treatment 
alone, citing increased neurogenesis, angiogenesis, and 
indirect neural network promotion as the mechanisms 
underlying the improvements.[116]

Similarly, co‑administration of G‑CSF and cytokine fms-
like tyrosine kinase 3 (Flt3), demonstrated therapeutic 
effects in models of SCI and acute myocardial infarction 
which were more effective than either single‑agent 
treatment.[92,115,119] An extended period of mobilized 
BM cells was associated with the improvements in 
tissue regeneration, morphological, and behavioral 
measurements observed following the adjunctive 
treatment.[119,120] Further, when combined with 
transplantation of the mononuclear fraction of BM cells, 
G‑CSF treatment produced combinatorial effects in a 
mouse model of ischemic stroke, potentially through 
enhanced proliferation and differentiation of BM stem 
cells which, in turn, promoted regeneration.[121]

The efficacy of G‑CSF alone or in combination with 
BM‑MSC was investigated after experimental stroke 
in aged rats.[98] Despite significant upregulation of 
angiogenesis in the infarct core and penumbral region, 
the neuroprotective effects of the combination therapy 
were less pronounced than those afforded by G‑CSF 
alone.[98] These findings, however, are in agreeance 
with previous studies which described the pro‑survival 
properties of G‑CSF in aged rats.[122] Thus, additional 
studies into the interactions between G‑CSF and stem 
cells are warranted to better understand the lack of 
synergism reported in this study.[98]
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In a model of spinal cord transection, BM‑MSC 
transplantation with G‑CSF did displayed synergistic 
effects on recovery, attributed largely to increased 
proliferation and differentiation of BM stem cells, and 
subsequent neural regeneration.[123] The additive effects 
may have also been due to increased neurogenesis of both 
the endogenous neurons and neural lineage‑committed 
transplant cells in the transverse SCI.[121] Using G‑CSF 
adjunctively with other therapeutic agents has been 
employed with pharmacotherapies,[124] erythropoietin,[125] 
amniotic membrane wrappings,[126] and other tools 
in experimental neurological disease models. When 
compared to single‑agent interventions, the majority 
of these investigations report synergism through 
combination therapies, supporting the concept of 
heightened therapeutic potency with G‑CSF as an 
adjunctive therapy.

Granulocyte‑colony stimulating factor and human 
umbilical cord blood cell transplantation – evidence 
toward clinical translation
Based on the previous successes of G‑CSF as both an 
adjunctive and stand‑alone therapy for neurological 
disorders – and in light of the discordant findings with 
G‑CSF in TBI models – we investigated the merit of a 
combinatorial approach in treating the controlled cortical 
impact model of TBI with transplantation of hUCB and 
co‑administration of G‑CSF.[127] Our study demonstrated 
greater therapeutic benefits offered through combination 
therapy of hUCB and G‑CSF than either agent alone.[127] 
Moreover, these functional improvements prevailed 
for a longer period than in the monotherapy groups.[127] 
These results attest to the ability of complementary brain 
repair processes not only to afford functional recovery 
but also to potentially sustain these benefits. Secretions 
of hUCB grafts, G‑CSF‑mobilized endogenous stem cells, 
and possible graft‑host interactions[128] may have exerted 
cooperative regenerative mechanisms which resulted in 
neurological recovery surpassing that afforded by G‑CSF 
or hUCB treatments alone.[112,127]

Considering our group’s long‑standing interest in the 
inflammatory basis of neurodegeneration, we utilized 
MHC‑II staining of activated microglia to determine 
the effects which G‑CSF + hUCB combination therapy 
exerted on TBI‑induced neuroinflammation.[127] In 
line with the functional improvements we noted, the 
combination therapy group displayed a reduction in 
the TBI‑induced upregulation of MHC‑II microglia in 
the cortex, striatum, subventricular zone (SVZ), dentate 
gyrus  (DG) of the hippocampus, corpus callosum, 
fornix, thalamus, and cerebral peduncle compared to 
either stand‑alone treatment.[127] Preclinical evidence 
has demonstrated the ability of hUCB transplantation 
to induce neurogenesis, angiogenesis, and attenuate 
neuroinflammation in models of TBI as well as stroke 

and aging.[129‑131] G‑CSF treatment has similarly been 
noted to promote neurogenesis in TBI models.[115] Our 
results support the notion that these two treatment 
modalities can combine synergistically, encouraging 
neurogenesis in the DG and SVZ, dampening 
neuroinflammation, and preserving hippocampal 
cells to confer functional benefits which surpass that 
of either monotherapy.[112,127]

Complementary interactions between hUCB and 
G‑CSF likely facilitated the aforementioned widespread 
effects seen in the TBI brain. G‑CSF has been shown to 
mobilize stem cells which can infiltrate damaged brain 
tissue and promote repair,[104,114] while also crossing the 
BBB itself where it can interact with neurons and glial 
cells to downregulate pro‑inflammatory mediators 
and increase neurogenesis.[72,131,132] Furthermore, G‑CSF 
may encourage the hUCB cells to maintain stemness 
and even promote neural lineage commitment.[71,133] 
Combination treatment of G‑CSF and SCF was shown to 
promote senescence and neural lineage commitment of 
hematopoietic stem cells, possibly through neurogenin‑1 
activation.[134] Simultaneously, the mobilized BM stem 
cells can exert bystander effects by the way of paracrine 
signaling/immunomodulation through cytokines, 
chemokines, and trophic factors.[38,56,113,135] These diverse 
and cooperative mechanisms likely underlie the 
anti‑inflammatory, neurogenic, and pro‑survival effects 
seen in cases treated with G‑CSF and hUCB.

Conclusion

Shifting the paradigm of TBI from an acute event to a 
progressive, neurodegenerative disease has paved the 
way for novel therapeutic opportunities which target 
this extended pathological window. These opportunities 
are welcomed as treatment options for TBI are practically 
nonexistent, with patient treatment relegated to 
symptom management and rehabilitation therapy. Stem 
cells have been proposed as a biological agent which 
may effectively target the progressive degeneration of 
chronic TBI, largely due to promising preclinical data 
in experimental models of TBI and various neurological 
disorders. Importantly, it is becoming increasingly 
evident that optimizing stem‑cell therapy may require 
adjunctive therapies which work synergistically with the 
stem cells to promote significant and sustained functional 
recovery. We have provided experimental evidence that 
one such adjunctive option  –  G‑CSF co‑administered 
with hUCB cells  –  is a viable and effective modality 
and may present a means of overcoming the innate 
limitations that exist in monotherapy with either 
therapeutic. This evidence warrants further investigation 
into G‑CSF + hUCB combination therapy, as well as other 
promising combinations, in an attempt to demonstrate 
their safety and efficacy, eventually propelling these 
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regenerative therapeutic approaches into the clinic for 
the treatment of TBI.
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