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Abstract
Migraine and major depressive disorder (MDD) are common brain disorders that frequently co-occur. Despite
epidemiological evidence that migraine and MDD share a genetic basis, their overlap at the molecular genetic level has
not been thoroughly investigated. Using single-nucleotide polymorphism (SNP) and gene-based analysis of genome-
wide association study (GWAS) genotype data, we found significant genetic overlap across the two disorders. LD Score
regression revealed a significant SNP-based heritability for both migraine (h2 = 12%) and MDD (h2= 19%), and a
significant cross-disorder genetic correlation (rG= 0.25; P= 0.04). Meta-analysis of results for 8,045,569 SNPs from a
migraine GWAS (comprising 30,465 migraine cases and 143,147 control samples) and the top 10,000 SNPs from a
MDD GWAS (comprising 75,607 MDD cases and 231,747 healthy controls), implicated three SNPs (rs146377178,
rs672931, and rs11858956) with novel genome-wide significant association (PSNP ≤ 5 × 10−8) to migraine and MDD.
Moreover, gene-based association analyses revealed significant enrichment of genes nominally associated (Pgene-based ≤
0.05) with both migraine and MDD (Pbinomial-test= 0.001). Combining results across migraine and MDD, two genes,
ANKDD1B and KCNK5, produced Fisher’s combined gene-based P values that surpassed the genome-wide significance
threshold (PFisher’s-combined ≤ 3.6 × 10−6). Pathway analysis of genes with PFisher’s-combined ≤ 1 × 10−3 suggested several
pathways, foremost neural-related pathways of signalling and ion channel regulation, to be involved in migraine and
MDD aetiology. In conclusion, our study provides strong molecular genetic support for shared genetically determined
biological mechanisms underlying migraine and MDD.

Introduction

Migraine and major depressive disorder (MDD) are
among the most common neurological disorders, each
affecting ~10–20% of the population with more females
than males affected [1–3]. Bidirectional comorbidity
between migraine and MDD is widely recognized [4–8]; it
highly reduces the quality of life of patients with a huge
impact on relatives and society [9]. As epidemiological
studies have revealed a moderate heritability for migraine
and MDD with estimates ranging from 30–50% [10, 11],
shared genetic factors may underlie these disorders
[12–14], although molecular evidence for such an asso-
ciation is lacking.

A number of genome-wide association studies
(GWAS) have been conducted separately for migraine
[15–21] and MDD [22–33]. For both disorders an
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increasing number of loci have been identified. The lar-
gest, latest, migraine GWAS analysed 59,674 cases and
316,078 healthy controls and identified 38 genome-wide
significant (PSNP ≤ 5 × 10−8) loci containing 44 indepen-
dent single nucleotide polymorphisms (SNPs) associated
with migraine risk [21]. While the largest, latest, MDD
GWAS analysed a combined 130,620 self-reported and
clinically evaluated lifetime major depression cases and
347,620 controls identified 15 genome-wide significant
loci, containing 17 independent SNPs associated with
MDD risk [33]. Comparison of the genome-wide sig-
nificant loci between the two disorders yielded no shared
loci. It remains however of interest to investigate whether
signals of other SNPs, below the threshold for genome-
wide significance, reveal molecular genetic overlap
between migraine and MDD.

Compared to epidemiological studies, analyzing GWAS
SNP data provides an opportunity to test for genetic overlap
between migraine and MDD at the molecular genetic level
and can yield genetic risk variants associated with both
migraine and MDD. Also, extending the genetic overlap
analysis from the SNP-level to the gene-level—given that
genes are the predominant functional unit of the human
genome and more closely related to biology than individual
SNPs—can (i) provide novel evidence on the genetic
association between migraine and MDD; (ii) give insight
into shared biological pathways underlying the two dis-
orders; and (iii) help identify target genes for drug devel-
opment. Moreover, the identification of genetic overlap and
specific genetic variants shared across disorders can be used
to assess the validity of the clinical diagnosis and classifi-
cation of patients.

Here we examined the genetic overlap across migraine
and MDD by (i) evaluating SNP-based genetic overlap
utilizing LD (linkage disequilibrium) Score regression
(LDSC) and SNP effect concordance analysis (SECA)
using genome-wide summary statistics from the 2016
International Headache Genetics Consortium (IHGC)
migraine and 2013 Psychiatric Genomics Consortium
(PGC) MDD GWAS, and the ‘top’ 10,000 most sig-
nificant SNP results from the 2016 23andMe MDD
GWAS; (ii) identifying genetic risk variants associated
with both migraine and MDD by meta-analysis of 2016
IHGC migraine and 2016 23andMe MDD GWAS results;
(iii) evaluating gene-level genetic overlap across migraine
and MDD to identify genes associated with migraine and
MDD using gene-based association analysis of summary
statistics from the 2016 IHGC migraine and 2013 PGC
MDD GWAS; and (iv) exploring the biological pathways
represented by the genes showing association to migraine
and MDD.

Materials and methods

Study samples

2016 IHGC migraine GWAS

The 2016 IHGC (http://www.headachegenetics.org/)
migraine GWAS sample comprised 59,674 migraine cases
and 316,078 healthy controls [21]; all participants were of
European ancestry. Migraine phenotypes were diagnosed by
self-reported questionnaires or clinical interviews according
to the International Classification of Headache Disorders
(ICHD) criteria [34]. Subjects in each individual GWAS
had their specific standard genotyping platform and quality
control criteria, which were summarized elsewhere [21]; all
subjects were imputed using the 1000 Genomes Project [35]
reference panel (Phase I, v3 release or later). Each indivi-
dual GWAS also performed their association analysis
independently, adjusted for sex and the top ten principal
components to account for potential population stratification
where required [21]. A combined fixed-effect (FE) meta-
analysis was then performed using the Genome-wide
Association Meta-Analysis (GWAMA) program [36].
After SNP filtering, the final 2016 IHGC migraine GWAS
included association results for 8,045,569 SNPs. For more
detailed descriptions of the migraine cohorts and statistical
analyses, please refer to the original publication [21]. Here,
we utilized the GWAMA output after excluding results
from the 23andMe GWAS sample (30,465 migraine cases
and 143,147 controls), leaving a total migraine GWAS
sample of 29,209 cases and 172,931 controls, to ensure
there was no sample overlap between 2016 IHGC migraine
GWAS and the 2016 23andMe MDD GWAS.

2013 PGC MDD GWAS

The 2013 PGC (http://pgc.unc.edu) MDD GWAS sample
comprised 18,759 unrelated participants of European
ancestry (9240 MDD cases and 9519 healthy controls)
from nine MDD GWA case-control samples. [23] All
MDD cases were diagnosed by a structured clinical
interview or clinical-based checklist according to the
Diagnostic and Statistical Manual of Mental Disorders,
fourth edition (DSM-IV) criteria. [37] The PGC per-
formed a mega-analysis, which required centralizing the
genotype data from all GWA samples prior to performing
consistent QC, imputation and association analysis. Indi-
vidual genotypes were all imputed up to the CEU (Utah
Residents with Northern and Western European Ancestry)
and TSI (Toscani in Italy) HapMap3 reference panel.
Association analysis was carried out using a logistic
regression assuming an additive SNP effect (allelic
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association) model. The final 2013 PGC MDD GWAS
comprised results for 1,232,794 SNPs.

2016 23andMe MDD GWAS

The 2016 23andMe MDD discovery GWAS sample [33]
recruited 307,354 subjects of European ancestry, including
75,607 self-reported MDD cases and 231,747 healthy
controls. Subjects were systematically genotyped, QCd, and
imputed using the 1000 Genomes Project [35] Phase I
reference panel. Under the assumption of additive allelic
effects, GWA analysis was performed using logistic
regression adjusted for age, sex, and the top five ancestry
principal components. After removing SNPs with low
quality imputation, 13,519,496 SNPs were included in the
discovery GWAS; and only the top 10,000 most significant
SNPs (http://www.nature.com/ng/journal/v48/n9/full/ng.
3623.html#supplementary-information) with P ≤ 1 × 10−5

were available for download and used in our study.
In addition to the above details and original publications

describing the GWAS summary statistics analysed in our
study—including URLs from where the data can be
obtained online—details and data from the analysed data-
sets are available from the GWAS Central database
(http://www.gwascentral.org/study/HGVST1855).

Genetic analyses

LD score regression to evaluate genetic similarity

LD scores were calculated according to the European
1000 Genomes Project haplotype reference data (Phase I,
v3). LD score regression was performed using the LDSC
software (https://github.com/bulik/ldsc) [38]. GWAS
summary statistics from the 2016 IHGC migraine GWAS
and the 2013 PGC MDD GWAS were utilized in this
analysis. GWAS data were reformatted and harmonized
utilizing the “munge_sumstats.py” script, based on the
SNP list used in LD score calculation. As per the LDSC
manual, SNPs were removed if they were not present in
the relevant reference data, had a rare frequency (minor
allele frequency [MAF] ≤ 0.01), were poorly imputed
(INFO score ≤ 0.90) or strand-ambiguous. We first per-
formed single-trait LD Score regression to evaluate the
SNP-based liability heritability (h2SNP) for the 2016 IHGC
migraine and 2013 PGC MDD GWAS, using their sample
prevalence of 14.5% for migraine and 49.3% for MDD,
and a population prevalence of 15% for both migraine and
MDD; and then built a cross-trait LD Score regression to
estimate the genetic correlation (rG) between migraine and
MDD.

SECA analysis to evaluate genetic overlap

Whereas LD Score regression requires GWAS results for
millions of SNPs spread evenly across the genome, SECA
is able to assess genetic overlap for a subset of SNPs. [39]
Since only the top 10,000 most significant SNPs (P value ≤
1 × 10−5) were available for the 2016 23andMe MDD
GWAS, we utilized SECA to examine the genetic overlap
between the 2016 IHGC migraine GWAS and 2016
23andMe MDD GWAS. SECA first aligned the SNP effects
across the two GWA study summary results to the same
effect allele, and then extracted a subset of independent
SNPs via ‘P value informed’ linkage disequilibrium (LD)
clumping. The approach iterated from the first to last SNP
on each chromosome sorted from smallest to largest 2016
IHGC migraine GWAS P value that had not already been
clumped (denoting this as the ‘index’ SNP) and formed
clumps of all other SNPs that are within 1Mb and in LD (r2

> 0.1, based on 1000 G PhaseI v3 CEU genotype data) with
the index SNP. A second round of LD clumping was per-
formed to clump any of the round 1 index SNPs within 10
Mb of each other to account for long-range LD (r2 > 0.1).
The approach identified the subset of independent (index)
SNPs with the most significant association P values in the
2016 IHGC migraine GWAS. After subgrouping SNPs with
P value thresholds P ≤ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0} in the 2016 IHGC migraine GWAS,
two-sided exact binomial tests were performed to assess
the concordance of SNP effect directions across the 2016
IHGC migraine GWAS and 2016 23andMe MDD GWAS
results.

Meta-analysis of migraine and MDD

Meta-analysis of the 2016 IHGC migraine GWAS and 2016
23andMe MDD GWAS (for the top 10,000 SNPs) was
performed using the METASOFT (URL: http://genetics.cs.
ucla.edu/meta/) inverse variance-weighted FE model, [40]
where the SNP effect size estimates (β) are weighted by
their estimated standard errors (se) to calculate a meta-
analysis P value. To allow for the presence of effect het-
erogeneity across studies, the METASOFT Han and Eskin’s
random-effects (RE2) model [40] was also utilized, as it is
optimised to detect associations under heterogeneity. A total
of 8687 SNPs in both the 2016 IHGC migraine and 2016
23andMe MDD GWAS were included in the meta-analysis.
Following the meta-analysis, we calculated the LD (r2)
between the implicated SNPs (PSNP ≤ 5 × 10−8) at each
locus using PLINK (http://pngu.mgh.harvard.edu/purcell/
plink/) [41] and the European 1000 Genomes Project hap-
lotype reference data (Phase I, v3).
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Gene-based analysis to evaluate genetic overlap

A gene-based approach [42] was also used to evaluate the
genetic overlap across the 2016 IHGC migraine GWAS and
2013 PGC MDD GWAS. After downloading RefSeq gene
information (hg19) from the UCSC genome browser (acces-
sed 20 March 2014), overlapping isoforms of the same gene
were combined to form a single full-length version of the
gene, while isoforms that did not overlap were left as dupli-
cates of that gene. This led to 23,438 unique genes. The
common SNPs from the 2016 IHGC migraine and 2013 PGC
MDD GWAS were then assigned to genes if they mapped to
between 15 kb 5′ of the transcription start site (TSS) and
15 kb 3′of the transcription end site (TES). This 15-kb gene
boundary extension was chosen based on the observation that
90% of SNPs effecting expression quantitative trait loci
(eQTLs) are within this proximity [43]. Gene-based associa-
tion tests were performed using the GATES test [44] imple-
mented in the Fast ASsociation Tests (FAST) package [45].
GATES performs gene-based tests by adjusting the observed
P value of the most significant SNP assigned to a gene by the
total effective number of independent SNPs tested across the
gene. GATES performs eigenvalue analysis of the n × n SNP
correlation matrix (estimated from the 1000 Genomes Project
[released on May 2012] CEU reference population) for each
gene to estimate the effective number of independent SNPs.
The original report introducing the GATES gene-based test
used computer simulation to demonstrate that the test offers
effective control of the type 1 error rate regardless of gene size
and LD pattern among SNPs, and does not need permutation
or simulation to validate significance [44].

Given that gene-based association results may be corre-
lated across neighbouring genes due to LD between the most
significant SNP assigned to each gene, we estimated the
effective number of independent genes (i.e., number of
independent gene-based tests) by examining the LD
between the top (most) significant SNP assigned to each
gene. This calculation was performed using the Genetic
type I Error Calculator (GEC) [46]. The GEC approach first
divides the input SNPs into LD blocks, and assumes LD
blocks are independent by ensuring the SNPs between
blocks are not in LD (r2 < 0.1). GEC subsequently performs
eigenvalue analysis of the correlation matrix for each LD
block to estimate the effective number of independent
SNPs. In the original report introducing the GEC [46],
computer simulation and permutation was used to demon-
strate that using the GEC estimate of the effective number
of independent SNPs in a Bonferroni procedure yields
correct type I error rates and behaves similarly to the gold
standard of permutation.

To test genetic overlap, we first generated gene sets for
each disorder based on three levels of significance (i.e.,
gene-based P value ≤ 0.01, 0.05, or 0.1) to allow for

differences in power across the different GWA studies, and
then calculated the effective number of independent genes
per disorder. Next, we set the 2016 IHGC migraine GWAS
as the ‘discovery’ dataset and 2013 PGC MDD GWAS as
the ‘target’ dataset to test for genetic overlap according to
three P value significance levels (e.g., test whether the
proportion of genes with a gene-based P value ≤ 0.05 for
both migraine and MDD was more than expected by
chance). The observed number of overlapping genes was
defined as the effective number of genes with P values less
than the threshold in both the discovery and target datasets.
The observed proportion of overlapping genes was the
observed effective number of overlapping genes divided by
the effective number of genes with a P value less than the
threshold in the discovery dataset. The expected proportion
of overlapping genes was the effective number of genes
with a P value less than the threshold in the target dataset
divided by the total effective number of genes in the target
dataset. The statistical significance of whether the number
of overlapping genes was more than expected by chance
was calculated using one-sided exact binomial tests.
Moreover, to identify the individual genes associated across
migraine and MDD, we combined gene-based evidence for
association across the two disorders using the Fisher’s
combined P value approach. This gene-based approach was
recently utilized to show gene-based pleiotropy across
migraine with aura and migraine without aura [42], as well
as the five major disorders in the PGC: attention deficit
hyperactivity disorder, autism spectrum disorder, bipolar
disorder, MDD, and schizophrenia [47].

Pathway analysis of overlapping genes

To discover shared biological pathways underlying
migraine and MDD, we performed a pathway analysis of
the significant overlapping genes from the gene-based
analysis using the g:GOSt tool of the g:Profiler web server
(http://biit.cs.ut.ee/gprofiler/) [48]. The overlapping genes
with Fisher’s combined P value lower than 1 × 10−3 were
selected [49] and evaluated using the g:Profiler web server.
The g:GOSt tool can identify significantly enriched path-
ways through different functional databases including Gene
Ontology (GO) [50] (biological process, cellular component
and molecular function), Kyoto Encyclopedia of Genes and
Genomes (KEGG) [51], and Reactome [52]. Further
advanced options are also available for term filtering,
including the functional category size thresholds for limit-
ing enrichment analyses and the significance threshold for
multiple testing (e.g., Benjamini–Hochberg False Discovery
Rate [FDR], and Bonferroni correction). For our analyses,
no size boundaries were set for functional category and term
intersection; Benjamini–Hochberg FDR was utilized for
multiple testing correction; and other advanced options
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were kept as their default. Analyses were first run without
including then run including electronic GO annotations.
Lastly, given such pathway analyses may be biased in the
presence of strong LD across neighbouring genes, we
ensured the enriched pathways did not contain genes with
top significant SNPs in LD (r2 > 0.1).

Results

LD score-based genetic correlation between
migraine and MDD

As summarized in Table 1, using LD score regression with
no intercept constraining, we observed a significant SNP-
based liability-scale heritability of 12% (95% CI: 9–15%)
for 2016 IHGC migraine, and 19% (95% CI: 12–26%) for
2013 PGC MDD. For cross-trait analysis, a significant
positive genetic correlation (rG) of 0.25 (95% CI:
0.01–0.48) was estimated between the 2016 IHGC migraine
and 2013 PGC MDD GWAS.

SECA-based genetic concordance between migraine
and MDD

SECA revealed a significant genetic concordance between
genetic risk factors (SNP risk alleles) for 2016 IHGC
migraine and 2016 23andMe MDD. For instance, the SNP
effect concordance between migraine and MDD is con-
siderable given that of the 358 independent SNPs with the
smallest P values in the 2016 IHGC migraine GWAS,
the risk increasing allele for MDD and migraine was the
same for 202 (56.42%, two-sided binomial test P= 0.017).

The SNP effect concordance was further enriched (by 31%)
in the subset of independent SNPs with nominal MDD
association (P ≤ 0.05), with 34 (73.91%) out of 46 inde-
pendent SNPs having the same risk increasing allele for
migraine and MDD (two-sided binomial test P= 0.0016).
SNP effect concordance results for all 12 analysed P value
thresholds are provided in Table 2.

Genetic risk variants associated with both migraine
and MDD

A total of 683,106 participants were included in the meta-
analysis of 2016 IHGC migraine and 2016 23andMe MDD
GWAS. In total, 542 SNPs at 9 genomic loci produced
evidence for genome-wide significant association (PSNP ≤
5 × 10−8) based on the FE model (Supplementary Table 1
contains meta-analysis results for the 542 SNPs using both
the FE and RE2 model). After examining LD between the
most significant (top), or “index”, risk SNPs, 9 independent
SNPs were identified (Table 3).

Among these nine independent SNPs, five (rs12127789
hg19.chr1:g.72740073G>T, rs2195636 hg19.chr3:
g.158352440C>T, rs768705 hg19.chr5:g.87568710A>G,
rs9536359 hg19.chr13:g.53691446C>T and rs5751069
hg19.chr22:g.41627775C>G) presented a significantly
stronger association with MDD (either the SNP showed a
genome-wide significant association or the SNP was in LD
with a genome-wide significant SNP) compared to
migraine, indicating that these SNPs are predominantly
driven by the association signal in the 2016 23andMe MDD
GWAS. However, one SNP (rs6476606 hg19.chr9:
g.37005561A>G) showed near-suggestive association
(PSNP ≤ 1 × 10−5) with both MDD (PSNP= 1.5 × 10−5) and

Table 1 Summary of LD score
regression

SNP-based heritability

Pheno-
type

Number of valid SNPs in analysis h2SNP (95% CI) Estimated intercept (se)

2016
IHGC
migrai-
ne

834,361 12.31% (9.17–15.45%) 1.08 (0.015)

2013
PGC
MDD

877,768 19.10% (12.16–26.04%) 1.01 (0.0083)

SNP-based genetic correlation

Phenotype 1 Phenotype 2 Number of valid
SNPs in analysis

rG (se) [P
value]

Estimated intercept for
genetic covariance (se)

2016 IHGC
migraine

2013 PGC MDD 686,287 0.25 (0.12)
[0.040]

0.040 (0.0075)

h2SNP SNP-based heritability, 95% CI 95% confidence interval, rG SNP-based genetic correlation, se standard
error
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migraine (PSNP= 4 × 10−4), and was genome-wide sig-
nificantly associated with MDD (PSNP= 1.2 × 10−8) in the
published joint analysis of 23andMe discovery, PGC, and
23andMe replication MDD GWAS [33]. Thus providing an
ideal example where combining MDD GWAS and migraine
GWAS results can improve power to identify risk loci for
MDD. The remaining three SNPs (rs146377178 hg19.chr8:
g.25386973C>T, rs672931 hg19.chr11:g.30920897T>C,
and rs11858956 hg19.chr15:g.70261228T>C) showed
suggestive association with MDD (and are not in LD [r2 <
0.1] with genome-wide significant SNPs) also showed
association with migraine (PSNP ≤ 0.005), and are novel
genome-wide significant risk loci. SNP rs146377178 is
located between CDCA2 and EBF2 on chromosome 8p21.2,
rs672931 is located within DCDC5 on 11p14.1, and
rs11858956 is located between RPLP1 and TLE3 on 15q23.

Gene-based genetic overlap between migraine and
MDD

As summarized in Table 4, similar to the SNP-based ana-
lysis, a significant gene-level genetic overlap between
migraine and MDD was observed. For instance, a sig-
nificant proportion of genes with gene-based P value ≤ 0.05
overlapped between migraine and MDD (Pbinomial-test=
0.001): the observed proportion (8.7%) of genes with a
gene-based P value ≤ 0.05 in both migraine and MDD is
significantly higher than the expected proportion (6.5%) of
genes with P value ≤ 0.05 for MDD. Furthermore, the use of
a less stringent gene-based P value threshold ≤ 0.1 produced
more significant genetic overlap across two disorders

(Pbinomial-test= 2.60 × 10−6), while the use of a more strin-
gent gene-based P value threshold ≤ 0.01 produced less
significant genetic overlap (Pbinomial-test= 0.045).

Combining gene-based evidence for association across
the disorders (2016 IHGC migraine and 2013 PGC MDD)
using Fisher’s combined test (Table 5), two genes were
identified with combined P values that are below the
genome-wide significance threshold adjusted for 13,524
independent gene-based tests (3.7 × 10−6= 0.05/13,524),
namely ANKDD1B on chromosome 5q13.3 and KCNK5 on
6p21.1. Interestingly, the effect alleles of the top SNPs
driving the ANKDD1B gene-based association (rs34358
hg19.chr5:g.74965122G>A for migraine and rs904743
hg19.chr5:g.74917862A>G for MDD) and the KCNK5
association (rs9394578 hg19.chr6:g.39165859C>A for
migraine and rs2815095 hg19.chr6:g.39156108T>C for
MDD) had opposite effects on risk for migraine and MDD,
and were in weak LD (r2= 0.24 and 0.39, respectively),
providing evidence for allelic heterogeneity at these asso-
ciated genes.

Pathway analysis of the overlapping genes

Pathway analysis was performed for a total of 86 over-
lapping genes with PFisher’s-combined ≤ 1 × 10−3 (see Supple-
mentary Table 2). After excluding pathways having
common genes with top significant SNPs in LD r2 > 0.1, 39
pathways with 21 genes were enriched (FDR ≤ 0.05) with at
least one annotation of a human gene (summarized in
Table 6), from which 10 pathways with 12 genes showed at
least two human gene annotations.

Table 2 SECA-based genetic
concordance between migraine
and MDD

2016 IHGC migraine
GWAS P value
threshold

No. of SNP effects across
migraine and MDDa

Proportion of SNPs with
concordant effects

Concordance test P
valueb

Concordant Discordant Total

1 202 156 358 0.5642 1.73 × 10−2

0.9 192 150 342 0.5614 2.65 × 10−2

0.8 178 140 318 0.5597 3.78 × 10−2

0.7 166 124 290 0.5724 1.59 × 10−2

0.6 159 112 271 0.5867 5.11 × 10−3

0.5 146 100 246 0.5935 4.03 × 10−3

0.4 126 85 211 0.5972 5.76 × 10−3

0.3 109 69 178 0.6124 3.35 × 10−3

0.2 88 46 134 0.6567 3.60 × 10−4

0.1 66 22 88 0.7500 2.88 × 10−6

0.05 34 12 46 0.7391 1.64 × 10−3

0.01 14 3 17 0.8235 1.27 × 10−2

aThere were a total of 358 independent SNPs (linkage disequilibrium r2 < 0.1) with results in both the 2016
IHGC Migraine GWAS and the top 10,000 SNPs (P value ≤ 1 × 10−5) in the 2016 23andMe MDD GWAS
bTwo-sided exact binomial test for concordance: where the number of successes, number of trials and
probability of success is the number of concordant SNPs, total SNPs and 0.5, respectively
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Among these pathway terms, neural-related pathways
were substantially over-represented, especially for pathways
related to signalling (e.g., “Wnt signalling pathway”;
KEGG:04310; PLCB3, SERPINF1 and DVL3; FDR P
value= 0.02) and the ion channel regulations (e.g.,
“potassium ion leak channel activity”; GO:0022841;
KCNK5 and KCNK4; FDR P value= 0.02), both of which
were also strongly dominant in the pathways with at least
two human gene annotations. Enzymatic activity-related
pathways (e.g., “serine O-acyltransferase activity”;
GO:0016412; MBOAT4; FDR P value= 0.05) and meta-
bolic pathways (e.g., “arsonoacetate metabolic process”;
GO:0018872; AS3MT; FDR P value= 0.05) were also
observed to be enriched in migraine and/or MDD aetiology.
Notably, only one term “endocrine and other factor-
regulated calcium reabsorption” (KEGG:04961; PLCB3
and AP2M1; Bonferroni corrected P value= 0.05) remained
after using more conservative Bonferroni correction for
multiple testing, which is related to processes of intracel-
lular signalling and neuronal excitability [53].

Extending pathway analyses to also include functional
annotations of GO assigned by in silico curation methods
(Inferred from Electronic Annotation [IEA]) provided fur-
ther evidence for the molecular signalling-related pathways
involved in migraine and/or MDD aetiology, with 38 addi-
tional pathways (see Supplementary Table 3) represented by
11 genes (ECM1, DLST, TMEM208, PLXNB1, RNF113B,
FARP1, CLEC17A, GPR126, CENPH, GRK6, and TFB1M).
Importantly, this analysis highlighted sevenpathways with at
least two human gene annotations: “regulation of release
of cytochrome c from mitochondria” (GO:0090199; NOL3
and BAD; FDR P value= 0.03); “negative regulation of
peptidase activity” (GO:0010466;NOL3, ECM1, NGF and
SERPINF1; FDR P value= 0.03); “negative regulation of

cytokine-mediated signalling pathway” (GO:0001960; NOL3
and ECM1; FDR P value= 0.03); “Rac GTPase binding”
(GO:0048365; DVL3 and FARP1; FDR P value= 0.03);
“cysteine-type endopeptidase regulator activity involved in
apoptotic process” (GO:0043028; NOL3 and BAD; FDR P
value= 0.03); “extracellular matrix binding” (GO:0050840;
ECM1 and GPR126; FDR P value= 0.05); and “death
receptor binding” (GO:0005123, NOL3 and NGF; FDR
P value= 0.05).

Discussion

Here we performed a comprehensive analysis to assess the
genetic overlap between migraine and MDD using three
GWAS data sets, which is the first systematic study aimed
at identifying shared genetic factors between migraine and
MDD at the molecular genetic level. Several interesting
findings are noteworthy.

Firstly, we estimated a significant SNP-based liability-
scale heritability of 12% using the 2016 IHGC migraine
GWAS data set and 19% using the 2013 PGC MDD GWAS
data set. The SNP-based heritability estimates of migraine
and MDD are lower than those estimated from twin and
family studies [10, 11]. This so-called “missing heritability”
is likely due to the combined effects of rare SNPs and SNPs
with small effects that are difficult to capture using current
GWAS sample sizes and analysis of common SNPs
[54, 55].

Our study reported a significant SNP-based rG of 0.25
between migraine (2016 IHGC) and MDD (2013 PGC),
which is similar to estimates (rG= 0.30–0.36) from twin
and family studies [13, 14]. Although the rG between 2016
IHGC migraine and 2016 23andMe MDD could not be

Table 3 Summary of the independent genome-wide significant SNPs from meta-analysis of 2016 IHGC migraine and 2016 23andMe MDD
GWAS

SNP Chr Position RefSeq gene context EA NEA FE meta-analysis Migraine MDD

OR P value OR P value OR P value

rs12127789 1 72740073 [NEGR1] T G 1.05 7.20 × 10−9 1.04 0.015 1.05 1.67 × 10−7

rs2195636 3 158352440 MLF1-[]-GFM1 T C 1.03 1.42 × 10−8 1.02 0.048 1.04 5.63 × 10−8

rs768705 5 87568710 [TMEM161B‒AS1] A G 0.97 1.52 × 10−8 1.01 0.22 0.95 6.58 × 10−13

rs146377178 8 25386973 CDCA2-[]--EBF2 T C 1.09 7.41 × 10−9 1.09 4.24 × 10−3 1.09 6.13 × 10−7

rs6476606 9 37005561 [PAX5] A G 1.03 2.52 × 10−8 1.04 2.98 × 10−4 1.03 1.50 × 10−5

rs672931 11 30920897 [DCDC1] T C 1.03 7.01 × 10−9 1.04 8.27 × 10−4 1.03 2.34 × 10−6

rs9536359 13 53691446 OLFM4--[]-LINC01065 T C 0.96 2.75 × 10−13 0.97 3.88 × 10−3 0.96 1.15 × 10−11

rs11858956 15 70261228 RPLP1--[]-TLE3 T C 0.97 4.20 × 10−8 0.97 3.51 × 10−3 0.97 3.27 × 10−6

rs5751069 22 41627775 [CHADL] C G 0.96 5.42 × 10−11 0.96 4.58 × 10−4 0.96 2.51 × 10−8

SNP dbSNP v147 variant ID, Chr chromosome, Position hg19 human genome assembly, RefSeq gene context for genic SNPs, the relevant gene is
listed within brackets and for intergenic SNPs the genes flanking the locus are listed, EA effect allele, NEA non-effect allele, FE meta-analysis fixed
effect model meta-analysis, OR odds ratio for the EA, Migraine 2016 IHGC migraine GWAS, MDD 2016 23andMe MDD discovery GWAS
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assessed via LD Score regression (due to the restricted
availability of genome-wide results for the 23andMe MDD
GWAS), our SECA results provided strong evidence for a
significant genetic overlap, indicated by the significant
enrichment in concordant SNP effects across the 2016
IHGC migraine and 2016 23andMe MDD GWAS.

Given the strong evidence for shared genetic factors, we
performed a meta-analysis of the 2016 IHGC migraine and
2016 23andMe MDD GWA studies. No substantial differ-
ence was observed when comparing results of the FE and
the RE2 models (Supplementary Table 1), indicating neg-
ligible SNP effect heterogeneity across studies. The meta-
analysis identified 3 novel (index) SNP loci near several
genes: rs146377178 between CDCA2 and EBF2, rs672931
within DCDC5, and rs11858956 between RPLP1 and
TLE3. Whereas little evidence exists that supports a biolo-
gical role in migraine or MDD risk for DCDC5 and TLE3,
at least some evidence is reported in the literature for the
other three genes. Specifically, CDCA2, which is related to
cell division cycle, was previously observed to be involved
in the overlapping pathways across migraine with aura and
migraine without aura [42]; EBF2 is reported to play a role
in regulating dopaminergic neurons in the midbrain peria-
queductal grey matter, which is relevant to pain modulation
[56], and therefore may contribute to both migraine and
MDD risk; and RPLP1 was revealed to be related to MDD
in a mouse model, suggesting that the ribosome pathways of
proteins synthesis/degradation were implicated in MDD
aetiology [57].

One SNP (rs6476606) showed association in both the
2016 IHGC migraine GWAS (PSNP= 0.0003) and 2016
23andMe MDD discovery GWAS (PSNP= 1.50 × 10−5),
with genome-wide significant evidence for association in
the FE meta-analysis (PSNP= 2.52 × 10−8), and genome-
wide significant association with MDD in the joint analysis
of 23andMe discovery, PGC, and 23andMe replication
MDD GWAS (PSNP= 1.2 × 10−8) [33]. This indicates that
combining migraine and MDD GWAS data has the poten-
tial to identify robust MDD risk loci. Interestingly, this
finding is in line with previous results suggesting that in at

least a subset of migraine patients with MDD, migraine may
be a symptom or consequence of MDD [58]. Further
research will be required to determine whether combining
migraine and MDD GWAS data can help to identify robust
migraine risk loci (e.g., utilizing genome-wide results from
more powerful MDD GWAS).

Extending our analysis from SNP-level to gene-level
revealed a significant genetic overlap across migraine and
MDD, providing additional evidence for such overlap
(‘pleiotropy’) between the disorders. Application of Fisher’s
combined test identified two genes with genome-wide sig-
nificant gene-based P values (ANKDD1B and KCNK5).
Although minimal data exist for ANKDD1B, it may be
relevant to migraine and MDD susceptibility due to its role
in coding ankyrin-repeat proteins, which have been asso-
ciated with a number of human disorders, and include the
Notch protein (a key component of cell signalling path-
ways) in which mutations can cause cerebral autosomal
dominant arteriopathy with subcortical infarcts and leu-
koencephalopathy (CADASIL)—for which the most com-
mon clinical manifestations are migraine headaches and
transient ischaemic attacks [59]. In contrast, the two-pore
forming potassium channel gene KCNK5 is an attractive
candidate for disorders of the central nervous system and
other members of this protein family have already been
linked to migraine or MDD susceptibility. For instance,
although the genetic evidence has been debated [60, 61], the
TWIK-related spinal cord potassium channel (TRESK,
encoded by KCNK18) has been associated with migraine
susceptibility [62, 63]; and the inactivation of the TWIK-
related potassium channel (TREK, encoded by KCNK4)
produces a depression-resistant phenotype in a mouse
model [64].

Based on the significant overlapping genes identified in
gene-based association analyses, multiple pathways were
observed, which were over-presented in neural-related
pathways such as metal ion channel regulations, signalling
pathways, and enzymatic activity. These results provide
evidence for the importance of neurological mechanisms on
triggering comorbid migraine and MDD, suggesting that

Table 4 Summary of gene-
based association analyses under
three P value thresholds

Discovery Target Overlapping genes Proportion of overlap Binominal test P value

Raw Effective Expected Observed

P value ≤ 0.01

Migraine MDD 21 12 0.016 0.027 0.045

P value ≤ 0.05

Migraine MDD 173 115 0.065 0.087 0.001

P value ≤ 0.10

Migraine MDD 468 318 0.12 0.15 2.60 × 10−6

Migraine 2016 IHGC migraine GWAS,MDD 2013 PGC MDD GWAS, Raw total number of genes, effective
effective number of independent genes
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comorbid migraine and MDD may be induced by their
shared neurological symptoms.

Our study has limitations. Firstly, LD Score regression
defaults with calculating heritability based on the observed
scale. Although we converted the conditions onto the lia-
bility scale by setting a fixed population and sample pre-
valence of migraine and MDD, the estimates may still be
underestimated due to the relatively high sample prevalence
of PGC MDD (around 50%). In addition, we identified a
very small genetic covariance intercept of 0.04, indicating a
small sample overlap between 2016 IHGC migraine GWAS
and 2013 PGC MDD GWAS that may have influenced our
gene-based association analyses. However, we believe such
effects will be negligible since the intercept is very close to
zero. Moreover, the restricted availability of genome-wide
GWAS summary statistics for the 2016 23andMe MDD
GWAS limited our findings: (1) we could not estimate a
genetic correlation between the 2016 IHGC migraine and
2016 23andMe MDD GWAS using LD Score regression;
hence, we utilized SECA to test for their genetic overlap;
(2) it is possible most of the genome-wide significant SNPs
from meta-analysis of migraine and MDD showed a
stronger signal for MDD compared to migraine because the
2016 23andMe MDD GWAS was limited to the top 10,000
SNPs (i.e., ‘weaker’ MDD SNP associations were not meta-
analysed); and (3) we could not perform a complete
genome-wide meta-analysis of the 2016 IHGS migraine and
2016 23andMe MDD GWAS; nor could we perform gene-
based genetic overlap analysis across the 2016 IHGC
migraine and 2016 23andMe MDD GWAS. Lastly, because
our gene-based association tests assigned SNPs to genes
based on close proximity (i.e., within 15 kb 5′ of the TSS
site and 15 kb 3′ of the TES), more distant SNPs associated
with gene-to-phenotype risk may influence the interpreta-
tion of our gene-based overlap analyses.

In conclusion, we have shown a significant genetic
overlap across migraine and MDD at both the SNP- and
gene-level. Importantly, we identified three novel indepen-
dent genome-wide significant SNPs (rs146377178,
rs672931, and rs11858956; located between CDCA2 and
EBF2, within DCDC5, and between RPLP1 and TLE3,
respectively), and two genome-wide significant genes
(ANKDD1B and KCNK5). Multiple pathway terms, espe-
cially the neural-related pathways of signalling and metal
ion channel regulation, were implicated. Overall, our study
provides strong molecular genetic support for shared
genetically controlled mechanisms underlying migraine and
MDD risk, and provide impetus to perform further com-
bined analyses of migraine and MDD GWAS data.
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Table 6 Summary of independent pathway analysis

Pathway term name Pathway term ID FDR-corrected P
value

Gene list

Source: Gene Ontology (biological process)

Stabilization of membrane potential GO:0030322 0.021 KCNK5,KCNK4

Protein octanoylation GO:0018190 0.050 MBOAT4

Arsonoacetate metabolic process GO:0018872 0.050 AS3MT

Mitochondrial threonyl-tRNA
aminoacylation

GO:0070159 0.050 TARS2

Source: Gene Ontology (cellular component)

Mitochondrial oxoglutarate dehydrogenase
complex

GO:0009353 0.050 MRPS36

Source: Gene Ontology (molecular function)

Potassium ion leak channel activity GO:0022841 0.021 KCNK5,KCNK4

Peptidase regulator activity GO:0061134 0.023 BAD,SERPINF1,
NGF,NOL3

Nerve growth factor receptor binding GO:0005163 0.050 NGF

Extracellular-glutamate-gated chloride
channel activity

GO:0008068 0.050 GABRP

Serine O-acyltransferase activity GO:0016412 0.050 MBOAT4

Arsenite methyltransferase activity GO:0030791 0.050 AS3MT

Methylarsonite methyltransferase activity GO:0030792 0.050 AS3MT

Nucleoside phosphotransferase activity GO:0050146 0.050 NT5C2

Mechanically gated potassium channel
activity

GO:0098782 0.050 KCNK4

Source: Kyoto Encyclopedia of Genes and Genomes (KEGG)

Wnt signalling pathway KEGG:04310 0.020 SERPINF1,PLCB3,
DVL3

Endocrine and other factor-regulated
calcium reabsorption

KEGG:04961 0.016 PLCB3,AP2M1

Amyotrophic lateral sclerosis (ALS) KEGG:05014 0.019 BAD,NEFM

Source: Reactome

G1 phase REAC:69236 0.012 CDK7,E2F4

Retrograde neurotrophin signalling REAC:177504 0.0017 NGF,AP2M1

Phase 4—resting membrane potential REAC:5576886 0.0031 KCNK5,KCNK4

RNA polymerase II transcribes snRNA
genes

REAC:6807505 0.050 CDK7,RPRD2

BH3-only proteins associate with and
inactivate anti-apoptotic BCL-2 members

REAC:111453 0.048 BAD

Nef-mediated downregulation of CD28 cell
surface expression

REAC:164939 0.012 AP2M1

NGF processing REAC:167060 0.024 NGF

Nef-mediated CD8 downregulation REAC:182218 0.042 AP2M1

TRKA activation by NGF REAC:187042 0.012 NGF

NRAGE signals death through JNK REAC:193648 0.020 BAD,NGF

p75NTR negatively regulates cell cycle via
SC1

REAC:193670 0.036 NGF

Ceramide signalling REAC:193681 0.018 NGF

Signalling to STAT3 REAC:198745 0.018 NGF

NFG and proNGF binds to p75NTR REAC:205017 0.018 NGF

Axonal growth stimulation REAC:209563 0.024 NGF

REAC:434316 0.048 PLCB3
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