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Abstract

X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a proapoptotic tumor suppressor that is frequently
inactivated in multiple human cancers. However, the molecular basis for the XAF1-mediated growth inhibition remains
largely undefined. Here, we report that XAF1 forms a positive feedback loop with interferon regulatory factor-1 (IRF-1)
and functions as a transcriptional coactivator of IRF-1 to suppress tumorigenesis. Under various stressful conditions,
XAFT transcription is activated by IRF-1, and elevated XAF1 stabilizes and activates IRF-1. Mechanistically, XAF1 binds to
the multifunctional domain 2 of IRF-1 via the zinc finger domain 6, thereby hindering C-terminus of Hsc70-interacting
protein (CHIP) interaction with and ubiquitination of IRF-1. Activation of the IRF-1—XAF1 loop greatly increases stress-
induced apoptosis and decreases the invasive capability of tumor cells. Oncogenic Ras and growth factors interfere
with the IRF-1—XAF1 interplay via Erk-mediated repression of XAFT transcription. Furthermore, XAF1 enhances IRF-1-
mediated transcription of proapoptotic genes via the XAF1-IRF-1 complex formation on these target promoters.
Meanwhile, XAF1 inhibits NF-kB-mediated tumor cell malignancy by reinforcing IRF-1 binding to a subset of
coregulated promoters. Expression levels of IRF-1 and XAF1 correlate tightly in both cancer cell lines and primary
tumors, and XAF1-induced tumor regression is markedly attenuated in IRF-1-depleted tumors. Collectively, this study
identifies a novel mechanism of XAF1-mediated tumor suppression, uncovering XAF1 as a feedback coactivator of IRF-
1 under stressful conditions.

Introduction

X-linked inhibitor of apoptosis (XIAP)-associated
factor 1 (XAF1) is a proapoptotic tumor suppressor
whose expression is commonly inactivated in a broad
range of human malignancies mainly by aberrant pro-
moter hypermethyaltion' ™. Epigenetic silencing of
XAFI is associated with the stage and grade of many
tumors, supporting the implication of its inactivation in
the malignant progression of tumors®™>. A recent inte-
grated analysis of data from a PTEN loss-driven mouse
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model and cancer patients demonstrated that XAF1
downregulation is a predictive and actionable signature
of castration-resistant prostate cancer®. The XAFI gene
encodes 33kDa protein that contains seven tumor
necrosis factor (TNF) receptor-associated factor
(TRAF)-like zinc finger (ZF) domains, suggesting its role
in the regulation of protein—protein interaction?,
Several isoforms of XAFI, including the full-length
transcript (XAFIA, hereafter referred to as XAFI) and
short truncated transcripts (XAF1B-E), are expressed
in normal tissues™’. Among these isoforms, XAFIA is
preferentially lost or downregulated in tumors whereas
truncated isoforms, such as XAFIC, are rather upregu-
lated®®. Our recent study showed that compared
to XAF1A, XAFIC has considerably low apoptosis-
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promoting and growth-inhibiting activities both in vitro
and in vivo, supporting that preferential loss of XAFIA
and concurrent isoform switch contribute to tumor
progression”.

XAF1 was first identified as a nuclear protein that binds
and antagonizes the anticaspase activity of XIAP by
inducing the nuclear translocation of cytoplasmic XIAP".
It was thus proposed that altered expression of XAF1 may
elevate the cytoplasmic XIAP protein level, thereby
deregulating the apoptotic caspase signaling®. However,
the nuclear translocation of XIAP is not recognized in
certain tumor cells undergoing XAF1-driven apoptosis
and that XAF1 has comparable proapoptotic activity in
XIAP™'~ and XIAP™'" cells, indicating that XAF1 can
promote apoptosis through the XIAP-independent
mechanisms™'’. A growing body of evidence demon-
strate that XAF1 activates caspases and increases tumor
cell response to various apoptotic stresses, including y-
irradiation, fluorouracil (5-FU), H,O,, and growth factor
withdrawal, and regulates autophagic cell death, tumor
angiogenesis, and G2/M checkpoint of the cell cycle'' ™',
Our study has shown that XAF1 is a feedback activator of
the p53 tumor suppressor and functions as a molecular
switch in p53-mediated cell-fate decisions favoring
apoptosis over cell-cycle arrest’. In this process, XAF1
appears to bind to p53 and interferes with mouse double
minute 2 (MDM2) binding and ubiquitination of p53, and
promote homeodomain-interacting protein kinase 2
(HIPK2)-mediated p53 phosphorylation and zinc finger
protein 313 (ZNF313)-mediated p21%“"! ubiquitination.
Recently, we also reported that XAF1 is induced by heavy
metals and triggers an apoptotic switch of stress response
by binding and destabilizing metallothionein 2A
(MT2A)"™. XAF1 is an interferon (IFN)-stimulated gene
that enhances IFN-induced apoptosis and strongly influ-
ences IFN-mediated cellular sensitization to the proa-
poptotic actions of TNF-related apoptosis-inducing ligand
(TRAIL)*17.

Interferon regulatory factor (IRF)-1 is the first member
of the IRF family of transcription factor that is originally
identified as a key regulator of type I IFN (a/p)'®*°. IRF-1
is induced by viruses, lipopolysaccharide (LPS),
interleukin-1 (IL-1), IFNs, and TNF, and plays a critical
role in the regulation of host defense, such as innate and
adaptive immune responses, viral infection, inflammation,
and autoimmunity®®. IRF-1 also acts as a tumor sup-
pressor by modulating expression of genes involved in
apoptosis, cell-cycle control, and angiogenesis*' ~>*, IRF-1
is expressed at low levels by most types of resting cells but
transcriptionally upregulated by the Janus kinase (JAK)-
signal transducer and activator of transcription (STAT) or
NE-kB pathway in viral infected cells or by the ataxia-
telangiectasia mutated (ATM) pathway in response to
genotoxic stress'®**, IRF-1 is inactivated by genetic and
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epigenetic mechanisms in multiple human malignancies,
including myeloid leukemia®®*~2®, IRF-1 protein turns over
rapidly with a short half-life and several ubiquitin E3
ligases, including C-terminus of Hsc70-interacting pro-
tein (CHIP), have been shown to play a key in the reg-
ulation of IRF-1 stability””*°. However, the molecular
mechanism by which IRF-1 is controlled to evoke
appropriate responses to various stimuli remains to be
characterized.

In the present study, we demonstrate that XAF1 forms a
feedback loop with IRF-1 under stressful conditions and
evokes its tumor suppression effect in a highly IRF-1-
dependent fashion. Our data illuminate the potential
mechanistic consequences of the IRF-1—-XAF1 loop dis-
ruption in human cancers.

Results
IRF-1 and XAF1 cooperate to promote apoptosis under
various stressful conditions

To investigate the functional interplay of IRF-1 and
XAF1 in tumor suppression, we initially characterized
their interrelationship in stress-induced apoptosis. Both
mRNA and protein levels of IRF-1 and XAF1 were
markedly increased in response to various cytotoxic
stresses, including genotoxic agents (etoposide and 5-FU),
y-irradiation (IR), hypoxia, and cytokines (TNF-a and
IFN-y) (Fig. 1a and Supplementary Figure 1a). Under the
same conditions, however, XAFI mRNA induction was
blocked if IRF-1 expression was repressed by siRNA-
mediated depletion while IRF-1 protein induction was
blocked if XAF1 expression was depleted. Moreover,
stress-induced cleavage of poly (ADP-ribose) polymerase
(PARP) was profoundly reduced by depletion of either
IRF-1 or XAF1, supporting the crucial role for their
interplay in apoptotic stress response. Using short hairpin
(sh) RNA-mediated stable knockdown and IFN
treatment, we confirmed that apoptosis-promoting func-
tion of XAF1 and IRF-1 is debilitated in sh-IRF-1 and sh-
XAF1 cells, respectively (Fig. 1b, c¢). Flow cytometric
analysis also revealed that IRF-1 and XAF1 increase
apoptotic sub-G1 fraction in cells exposed to 5-FU, eto-
poside, and H,O, and this effect is abolished by depletion
of XAF1 and IRF-1, respectively (Fig. 1d, e). Consistently,
XAF1 and IRF-1 decreased the colony-forming ability of
tumor cells in a highly IRF-1- and XAF1-dependent
manner, respectively (Fig. 1f, g). The off-target effect of
siRNAs was excluded by usage of three different si-IRF-1s
and si-XAF1s (Supplementary Figure 1b and c). Effect of
RNA/DNA transfection-evoked IFN signaling on IRF-1
and XAF1 expression was excluded by testing effect of
siRNA molecules and shRNA plasmids (Supplementary
Figure 1d—f). These results support that IRF-1 and XAF1
form a feed-forward loop to promote apoptosis under
cytotoxic stress conditions.
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Fig. 1 An XAF1-IRF-1 interrelationship in stress-induced apoptosis. a Induction of IRF-1 and XAF1 by various stresses and their relationship in the
regulation of stress-induced apoptosis. HCT116 cells were transfected with siRNA (20 pM) as indicated and exposed to etoposide (50 uM), 5-FU (25
pM), y-IR (6 Gy), H,0, (50 uM), hypoxic condition (1% O,), TNF-a (50 ng/ml), or IFN-y (0.5 pg/ml). After 48 h exposure, immunoblot (IB) and RT-PCR
(reverse transcription-PCR) assays were performed. cl cleaved. b, € The mutual dependency of XAF1 and IRF-1 in apoptosis induction. Short hairpin
(sh) RNA-expressing stable cells were transfected with empty vectors (pcDNA3.1) or increasing doses of green fluorescence protein (GFP)-tagged
XAF1 or hemagglutinin (HA)-tagged IRF-1. The cells were exposed to IFN-3 (200 U/ml) or IFN-y (0.5 pg/ml) for 48 h. CASP3 Caspase 3. d, e Flow
cytometry assay of apoptotic sub-G1 fraction. Cells were cotransfected with siRNAs (20 pM) and expression plasmids (2 pg) as indicated and exposed
to 5-FU (25 uM), etoposide (50 uM), or H,O, (50 uM) for 48 h. Data represent means + SD of triplicate assays. *p < 0.05, **p < 0.01 (Student’s t test).
f, g The IRF-1—XAF1 interplay in suppression of tumor cell growth. HCT116 sublines (sh-Control and sh-IRF-1) and DU145 sublines (sh-Control and sh-
XAF1) were transfected with XAF1 and IRF-1, respectively and its effect on colony-forming ability of the cells was compared. Data represent means +

SD of triplicate assays

XAF1 stabilizes IRF-1 in response to apoptotic stresses

Next we defined the molecular basis for the IRF-1
—XAF1 interplay. As predicted, assays using ectopic
transfection and comparison of stress-induced IRF-1
expression in HT1376 XAFI™" and XAFI~’~ sublines
support that XAF1 upregulates IRF-1 protein expression
while IRF-1 activates XAF1 transcription (Fig. 2a, b). It
was reported that XAF1 transcription is activated by c-
Jun N-terminal kinase (J]NK1) through IRE-1*'. Based on
this, we tested whether IRF-1 directly activates XAFI
transcription in stressed cells. A promoter luciferase
assay using the XAF1-Pro221-Luc reporter, which
comprises the IRF element (IRFE, nucleotides —30/-41
relative to ATG), revealed that the reporter respon-
siveness to 5-FU and IFN-y is substantially decreased if
IRF-1 is depleted or IRFE is mutated (Fig. 2c—e).
Chromatin immunoprecipitation (ChIP) assay also
revealed that IRF-1 binds to the IRFE within the XAFI
promoter (Fig. 2f and Supplementary Figure 2a). Our
previous studies demonstrated that XAF1 regulates
protein stability through direct interaction with ubi-
quitin E3 ligases”*?. To address whether XAF1 enhances
the protein stability of IRF-1, a cycloheximide (CHX)
chase experiment was performed using tetracycline-
inducible XAF1 system (HCT116/Tet-XAF1). XAF1
induction by tetracycline addition led to an increase in
the half-life of IRF-1 protein from approximately 1.2 to
5.2 h while tetracycline itself did not affect IRF-1 level
(Fig. 2g, h and Supplementary Figure 2b and c). More-
over, IRF-1 reduction caused by XAF1 depletion was
blocked by the proteasome inhibitor MG132, and ubi-
quitinated IRF-1 level was up- and downregulated by
XAF1 depletion and expression, respectively, supporting
that XAF1 prevents the ubiquitination and proteasomal
degradation of IRF-1 (Fig. 2i, j). Meanwhile, it was
observed that XAF1 does not affect expression of other
IRF family members, such as IRF-3 and IRF-7 (Fig. 2k).
Collectively, these results indicate that under stressful
conditions, IRF-1 is a key transcription factor for XAF1
activation and XAF1 plays a crucial role in IRF-1 sta-
bilization and activation.
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XAF1 protects IRF-1 from CHIP-mediated ubiquitination
through direct interaction

To dissect the molecular mechanism underlying XAF1-
induced IRF-1 stabilization, we asked whether XAF1
binds to IRF-1. An immunoprecipitation (IP) assay for
endogenous IRF-1 and XAF1 expressed in HCC1937 cells
and in vitro pull-down assay using purified GST-XAF1
and recombinant IRF-1 revealed that XAF1 binds directly
to IRF-1 (Fig. 3a, b and Supplementary Figure 3a). Using a
series of deletion mutants, we identified that the ZF6
domain of XAF1 and the multifunctional domain 2 (Mf2)
of IRF-1 are crucial for their interaction and XAF1-
mediated IRF-1 stabilization (Fig. 3c—e). Given that CHIP
is a U box-carrying ubiquitin E3 ligase that binds to the
Mf2 domain of IRF-1, we assessed if XAF1 competes with
CHIP in binding IRF-1, thereby interfering with CHIP-
mediated IRF-1 ubiquitination®”. As predicted, IRF-1
protein level was decreased by WT-CHIP but not affec-
ted by the U box-deleted CHIP (AUBox-CHIP), con-
firming that CHIP downregulates IRF-1 via its E3 ligase
activity (Supplementary Figure 3b and c). CHIP-mediated
IRF-1 ubiquitination was suppressed by WT-XAF1 in a
dose-associated manner but not affected by AZF6-XAF1
(Fig. 3f and Supplementary Figure 3d). Moreover, the
CHIP—IRF-1 interaction was inhibited by WT-XAF1 but
not by AZF6-XAF1, and their dissociation triggered by
stresses was attenuated if XAF1 induction was blocked,
indicating that XAF1 competes with CHIP in interaction
with IRF-1 (Fig. 3g and Supplementary Figure 3e). In
addition, it was seen that XAF1 expression leads to CHIP
reduction, suggesting that XAF1 may also activate IRF-1
through CHIP downregulation (Fig. 3f). An immuno-
fluorescence (IF) assay showed that XAF1 increases and
colocalizes with IRF-1 in stressed cells (Fig. 3h). Likewise,
proximity ligation assay (PLA) revealed an increase in the
XAF1—IRF-1 interaction and a decrease in the CHIP
—IRF-1 interaction in cells exposed to 5-FU or IFN-y and
an inhibitory role for XAF1 in the CHIP—IRF-1 interac-
tion in these stressful conditions (Fig. 3i and Supple-
mentary Figure 3f). Given that the full-length transcript of
XAF1 (XAFIA) is preferentially lost and short isoforms
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Fig. 3 XAF1 binds directly to IRF-1. a An IP assay showing the interaction of XAF1 and IRF-1 expressed in HCC1937 cells. IP and IB for IRF-1 were
done using rabbit and mouse antibody, respectively. b In vitro GST pull-down assay showing the direct interaction of purified GST-XAF1 and His-IRF-1
proteins. r Recombinant. ¢ XAF1 constructs and its IRF-1-binding status. ZF zinc finger. d, e Identification of ZF6 and Mf2 as essential regions for the
XAF1—IRF-1 interaction. DBD DNA binding domain, Mf2 multifunctional domain 2, RD regulatory domain, ED enhancer domain. f XAF1 inhibition of
CHIP-mediated IRF-1 ubiquitination. g XAF1 competition with CHIP in binding IRF-1 and loss of IRF-1-binding activity of AZF6-XAF1.

h Immunofluorescence microscopic analysis of XAF1 and IRF-1. Cells exposed to 5-FU (25 uM, 24 h) were incubated with anti-XAF1 or anti-IRF-1
antibody and proteins were visualized with secondary antibodies. i Proximity ligation assay for the IRF-1 interaction with XAF1 or CHIP. Cells
transfected with siRNAs (20 pM) were exposed to 5-FU (25 pM, 24 h). Incubation with primary antibodies and PLA probes and amplification using
polymerase were performed according to the manufacturer’s instruction. DAPI was used for counterstaining of the nuclei. j An IP assay showing no

activity of XAF1C to bind and induce IRF-1

are upregulated in human tumors, we examined the IRF-
1-stabilizing activity of XAF1C, a representative tumor-
overexpressing variant lacking the ZF6 domain”®. Unlike
XAF1A, XAFIC failed to bind to and stabilize IRF-1 and
also showed no activity to downregulate CHIP, suggesting
that the isoform switch of XAF1 may cause the disruption
of the IRF-1—XAF1 loop in tumorigenic process (Fig. 3j).

XAF1 functions as a transcriptional coactivator of IRF-1

IRF-1 evokes growth inhibition effects mainly through
its transactivation function” %, We asked whether
XAF1 stabilization of IRF-1 leads to an increase in the
nuclear IRF-1 level and activates IRF-1-mediated tran-
scription. XAF1 overexpression resulted in an increase in
both the nuclear and the cytoplasmic IRF-1 and upregu-
lated mRNA expression of IRF-1 target genes, such as
PUMA, CASP1, CASP8, and TNF-a in an IRF-1-
dependent manner (Fig. 4a and Supplementary Fig-
ure 4a). Likewise, in cells exposed to IFN-y, blockade of
XAF1 induction greatly attenuated IFN-y activation of the
IRF-1 targets, indicating XAF1 stimulates IRF-1-mediated
transcription (Fig. 4b). A luciferase assay using the Pro/
ISRE-Luc reporter harboring the IRFE showed that
reporter activation by IRF-1 and XAF1 is significantly
impeded by depletion of XAF1 and IRF-1, respectively
(Fig. 4c). It was also shown that the reporter is activated
by 5-FU and this is inhibited by depletion of XAF1 as well
as IRF-1. As predicted, AZF6-XAF1 failed to activate the
reporter, IRF-1 targets, and IRF-1-induced apoptosis
(Fig. 4d—f). Furthermore, a sequential ChIP assay revealed
that WT-XAF1 but not AZF6-XAF1 forms a complex
with IRF-1 on the IRFE region within the PUMA pro-
moter, supporting that XAF1 not only stabilizes IRF-1 but
also activates its transactivation function through direct
interaction (Fig. 4g and Supplementary Figure 4b). Con-
sistently, XAF1C showed no activity to promote IFN-y-
induced apoptosis and rather impaired XAF1A’s proa-
poptotic effects, suggesting that XAF1C may act as a
dominant-negative inhibitor against XAF1A (Fig. 4h).
Together, these findings demonstrate that stress-induced
XAF1 functions as an IRF-1 coactivator to stimulate
apoptosis and suppress tumorigenesis.
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XAF1 suppresses NF-kB tumor-promoting function by
reinforcing IRF-1 binding to coregulated target promoters

Matrix metalloproteinase 9 (MMP9) plays a key role in
tumor cell migration and invasion induced by various
tumor-promoting cytokines and growth factors, including
TNF-a and EGF*®. The IRFE and «B site are closely linked
within the MMP9 promoter and IRF-1 binding to the
IRFE hinders p65/RelA binding to the kB site**. On this
basis, we assessed whether XAF1 inhibits tumor cell
migration and invasion by blocking p65/RelA-mediated
MMP9 transcription through IRF-1 induction. Wound
healing and Matrigel assays revealed that IRF-1 and
XAF1 strongly suppresses TNEF-induced tumor cell
migration and invasion and this effect is abrogated by
depletion of XAF1 and IRF-1, respectively, indicating
TNF-driven tumor malignancy is impaired by the IRF-1
—XAF1 interplay (Fig. 5a, b and Supplementary Figure 5a,
b). Both basal and TNF-induced MMP9 levels were up-
and downregulated by XAF1 depletion and expression,
respectively in the IRF-1-dependent manner (Fig. 5¢, d). A
luciferase assay showed that WT-XAF1 but not AZF6-
XAF1 debilitates TNF activation of the MMP9-Pro/670-
Luc reporter while this effect is not exerted for an IRFE-
mutated reporter (Fig. 5e, f). Moreover, XAF1 stimulated
IRF-1 binding to the IRFE within the MAMP9 promoter
and this is accompanied with a decrease in p65/RelA
binding to the kB site (Fig. 5¢ and Supplementary Fig-
ure 5c¢). Next we tested XAF1 effect on other NF-kB
targets (MMP2, FN1, VCAM1I, and TNC), which harbor
the IRFE closed to kB site in their promoters (Fig. 5h).
XAF1 inhibited TNF-a activation of these NF-«B targets
in a highly IRF-1-dependent manner while XAF1 deple-
tion caused further elevation of their expression (Fig. 5i, j).
These support that XAF1 inhibits NF-kB tumor-pro-
moting function by reinforcing IRF-1 interaction with a
subset of coregulated target promoters.

The IRF-1—XAF1 loop is commonly altered in human
cancer

To delineate the possible implication of the IRF-1
—XAF1 axis alteration in tumorigenesis, we characterized
expression status of IRF-1 and XAF1 in established cell
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lines and primary tumor tissues. Expression assay for
XAF1 and IRF-1 in 30 human cancer cell lines of various
origins and 60 primary colon carcinoma tissues revealed a
strong correlation between XAF1 and IRF-1 levels (Fig. 6a
—d). Immunohistochemical (IHC) study revealed that 18
(45%) and 20 (50%) of 40 primary tumors have < 1.5 levels
of XAF1 and IRF-1, respectively while all of 20 normal
tissues tested show > level 2.0 of XAF1 and IRF-1 (Fig. 6c,
d). Moreover, 14 of 18 (77.8%) low XAF1 tumors and 14 of
20 (70%) low IRF-1 tumors displayed low IRF-1 and XAF]1,
respectively, indicating that XAF1 and IRF-1 levels
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correlate tightly in both normal and tumor tissues. It was
reported that Ras/MEK activation increases tumor resis-
tance to antiviral effects of IFNs by downregulating IRF-1
and that XAFI transcription is repressed by Ras/MEK?**~%”,
We asked whether Ras/MEK downregulates IRF-1
through XAF1 repression. Oncogenic Ras (G12V) trans-
fection abolished IFN induction of XAFI mRNA and IRF-1
protein but this effect was not seen in XAF1-depleted cells
(Fig. 6e). Consistently, MDA-MB-468 cells with high
EGER level displayed a strong induction of XAFI mRNA
and IRF-1 protein following treatment with the MEK
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(see figure on previous page)

Fig. 6 Frequent alteration of the IRF-1—XAF1 loop in human cancer. a, b A tight correlation of XAF1 and IRF-1 expression in human cancer cells.
Relative expression levels were classified as levels 0—5. r Pearson'’s correlation coefficient. ¢, d IHC study showing a strong correlation of XAF1 and IRF-
1 immunoreactivity (dark brown) in human colon carcinoma and normal tissues. Purple staining indicates the nuclei. Relative staining levels were
classified as levels 0-5. r Pearson’s correlation coefficient. @ Ras suppression of IFN-mediated IRF-1 induction in a XAF1-dependent manner. Cells
transfected with oncogenic H-Ras (G12V) were exposed to IFN- (200 U/ml) for 48 h. f IRF-1 elevation by UO126 (10 uM, 8 h) and its blockade by XAF1
depletion. g IRF-1 induction by Erk1/2 depletion in an XAF1-dependent manner. IB assay was performed after 48 h si-Erk1/2 transfection.

h Suppression of etoposide-mediated XAF1 and IRF-1 induction by Ras/MEK-activating growth factors. DU145 cells were incubated with EGF

(50 ng/ml), IGF (100 ng/ml), FGF (50 ng/ml), or TGF-B1 (2 ng/ml) for 30 min and then exposed to etoposide (50 uM) for 16 h

inhibitor UO126 and this induction of IRF-1 was abolished
if XAF1 is depleted (Fig. 6f). Likewise, Erk1/2 depletion led
to IRF-1 induction in DU145/sh-Control cells but not in
sh-XAF1 cells, supporting that Ras/MEK inhibits IRF-1 by
repressing XAF1 expression (Fig. 6g). Additionally, we
observed that Ras/MEK-activating growth factors suppress
etoposide-mediated IRF-1 induction by blocking XAFI
mRNA induction (Fig. 6h). Together, these support that
the XAF1-IRF-1 axis is a target for oncogenic Ras-driven
tumorigenesis.

Disruption of the IRF-1—XAF1 axis contributes to tumor
growth

To elicit the role for the IRF-1—XAF1 interplay in vivo,
we carried out mouse tumor xenograft assays using sh-
Control and sh-IRF-1 sublines of HCT116 (Tet-XAF1)
cells. As predicted, sh-IRF-1 tumors exhibited higher
growth rate compared to sh-Control tumors (Fig. 7a, b).
Following XAF1 induction by tetracycline injection, sh-
Control tumors displayed a drastic regression whereas sh-
IRF-1 tumors showed only mild response (37 versus 7%)
(Fig. 7a). IB assay of tumor tissues revealed that XAF1
induction leads to MMP9 reduction and strongly increa-
ses both cleaved PARP and CASP3 levels in sh-Control
but not sh-IRF-1 tumors (Fig. 7c). A TUNEL assay verified
that XAF1-induced apoptosis is considerably attenuated
in sh-IRF-1 versus sh-Control tumors (Fig. 7d). Collec-
tively, our study identifies that XAF1 is a positive feedback
regulator of IRF-1, which acts as a coactivator of IRF-1 to
suppress tumorigenesis (Fig. 7e).

Discussion

In the present study, we provide evidence that XAF1
binds directly to IRF-1 under stressful conditions and
functions as a feedback activator of IRF-1 to induce
apoptosis. Furthermore, XAF1 inhibits growth, migration,
and invasion of tumor cells and suppresses in vivo tumor
growth in a highly IRF-1-dependent manner, indicating
that the tumor suppressive role of XAF1 is tightly linked
to its ability to bind and activate IRF-1. We reported
recently that XAF1 directs apoptotic switch of p53 func-
tion by modulating the p53-MDM2, Siah2-HIPK2, and
ZNF313-p21 YA axes®. XAF1 was also shown to enhance
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cellular sensitivity to apoptotic stresses through the p53-
independent mechanism and amplify TNF-a-induced
apoptosis by activating the mitochondrial apoptotic
pathway, supporting that XAF1 promotes apoptosis via
multiple routes®'’. Our data demonstrate that XAF1
promotes apoptosis through the interplay with IRF-1 in
multiple p53-deficient cancer cells, suggesting that the
p53-independent function of XAF1 might be provoked
through IRF-1 activation'®~°. Together, this study adds a
new XIAP- and p53-independent mechanism by which
XAF1 acts as a proapoptotic tumor suppressor.

XAF1 controls protein stability through the regulation
of ubiquitin E3 ligases, such as Siah2, ZNF313, cIAP2, and
XIAP”?*, Consistent with this, we found that XAF1 is a
novel IRF-1-stabilizing protein, which protects IRF-1 from
CHIP-mediated ubiquitination. Our data identified two
distinct mechanisms by which XAF1 stabilizes IRF-1.
Firstly, XAF1 binds to IRF-1 and interferes with CHIP
interaction with IRF-1. Secondly, XAF1 downregulates
CHIP expression. IRF-1 stability is controlled mainly by
the ubiquitin-proteasome system>*>°. It was reported that
CHIP is a major E3 ligase that limits growth inhibition
activity of IRF-1 through the K48-linked polyubiquitina-
tion under certain stress conditions while it may play a
positive role in the regulation of IRF-1 levels in unstressed
cells®. Our study shows that XAF1 competes with CHIP
in binding to the Mf2 region of IRF-1, thereby blocking
the CHIP—IRF-1 interaction. The Mf2 region interacts
with multiple IRF-1-destabilizing proteins, including
CHIP, NPM1, TRIM28, and YB-1'**’. However, its role
for the regulation of IRF-1 activity under stressful con-
ditions remains to be characterized. In this context, our
data support that Mf2 has a regulatory role in activation
as well as stability of IRF-1, raising the possibility that the
Mf2 region may serve as a sensor and/or switch that
determines IRF-1 stress response by allowing the “dock-
ing” competition for multiple IRF-1 modulators with
opposite functions. In this study, XAF1 was also found to
downregulate CHIP protein level, supporting that XAF1
contributes to IRF-1 stabilization independently of its
IRE-1-binding activity. Further studies will be required to
define the molecular mechanism underlying the XAF1
regulation of CHIP. Nevertheless, our study demonstrates
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that through its IRF-1-binding property, XAF1 forms a
complex with IRF-1 on the promoters of target genes,
such as PUMA, CASP8, and TNF-a, to activate IRF-1-
mediated transcription. This finding strongly suggests
that XAF1 may reinforce IRF-1’s tumor suppression role
by playing as a transcriptional coactivator of IRF-1 rather
than simply enhancing its protein stability. It is also
noticeable that IFNs activate IRF-1 at both mRNA and
protein level. Our study demonstrates first that XAF1
plays a crucial role in IFN stabilization of IRF-1 by pro-
tecting IRF-1 from CHIP binding and subsequent
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ubiquitination-mediated proteasomal degradation. This
observation supports that through the interplay with IRF-
1, XAF1 might have an important role in IFN-mediated
apoptosis and viral defense. Together, this study adds a
new tumor suppression mechanism by which XAF1
functions as a coactivator of stress-inducible transcription
factors, such as IRF-1.

NF-«B activates transcription of multiple genes involved
in the regulation of cell survival or apoptosis in a cell type-
and stimulus-dependent manner*®*. However, the
mechanisms governing the target selectivity of NF-kB
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remain largely unknown. In the present study, we iden-
tified that XAF1 attenuates NF-kB-mediated transcription
of tumor-promoting genes by facilitating IRF-1 repression
of p65/RelA-mediated transcription. A previous study
showed that IRF-1 function as a competitive inhibitor of
p65/RelA in binding to the MMP9 promoter, which
comprises the IRFE overlapping or located closely to the
kB site*. We observed that XAF1 stimulates IRF-1
binding to the IRFE, which is accompanied with
reduced p65/RelA interaction with the B site in multiple
NF-kB target genes, including MMP9, MMP2, VCAMI,
and TNC. These results suggest that XAF1 may switch the
outcomes of NF-kB activation through the IRF-1-
mediated repression of a specific subset of NF-kB target
genes. Collectively, these demonstrate that XAF1 mod-
ulates IRF-1 function to stimulate and repress transcrip-
tion of proapoptotic and tumor-promoting genes,
respectively, thereby provoking its tumor suppressive
function.

Multiple XAFI transcripts, including full-length
(XAF1A) and short truncated (XAFIB-E), are expressed
via alternative splicing in normal human tissues>”’.
Interestingly, a switch from full-length to short transcripts
was detected in tumors, raising the possibility that the
truncated forms may have tumor-promoting functions or
elicit a dominant-negative action against XAF1A>®, Our
recent study showed that XAF1C has substantially lower
tumor suppression activity compared to XAF1A®. In the
present study, we found that XAF1C, which lacks the IRF-
1-binding domain, fails to activate IRF-1-mediated tran-
scription and apoptosis. Moreover, XAF1C was shown to
interfere with XAF1A’s apoptosis-promoting activity,
lending support to the notion that XAF1C is a dominant-
negative inhibitor of XAF1A and its preferential expres-
sion contributes to tumor progression. Given that both
XAF1 and IRF-1 are frequently inactivated in multiple
human cancers, it is conceivable that disruption of the
XAF1—-IRF-1 axis by loss of expression of XAF1 or IRF-1,
isoform switch of XAF]I transcript, or oncogenic activa-
tion of Ras/MEK signaling might be a common event that
drives tumorigenesis. The restoration of a functional
interplay of XAF1—IRF-1 could be an attractive avenue
for the therapeutic intervention of tumor progression.

Materials and methods
Cell lines and reagents

Human cell lines (HCT116, DU145, HCC1937,
HT1376, AGS, HaCaT, MDA-MB-231, and MDA-MB-
468) were obtained from American Type Culture Col-
lection (Rockville, MD, USA) or Korea Cell Line Bank
(Seoul, Korea). All these cell lines were authenticated by
short tandem repeat profiling, and allelic score data
revealed a pattern related to the scores reported by the
ATCC, and consistent with their presumptive identity.
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The HCT116 (Tet-XAF1l) cells were generated by
cotransfection of XAF1 (pcDNA4/TO) and tetracycline
repressor vector (pcDNA6/TR) (Invitrogen, Carlsbad, CA,
USA) as we described previously”. DU145 and
HCT116 sublines with short hairpin (sh) RNA-mediated
stable knockdown of XAF1 or IRF-1 were established by
transfection of sh-XAF1, sh-IRF-1 or sh-Control con-
structs (Genolution Pharmaceuticals Inc, Seoul, Korea)
and Zeocin (Invitrogen) selection. Recombinant human
TNEF-a was obtained from R&D Systems (R&D Systems
Inc., MN, USA). Cyclohexamide was purchased from
Sigma Aldrich (Saint Louis, MO, USA).

Expression plasmids and siRNA

Expression vectors for XAF1, IRF-1, and CHIP were
constructed using a PCR-based approach as previously
described™”. siRNA duplexes against XAFI (si-XAF1; 5"
AUGUUGUCCAGACUCAGAG-3') and IRF-1 (si-IRF-1;
5-CAGAUUAAUUCCAACCAA-3’) were synthesized by
Bioneer Inc (Daejeon, Korea). Control siRNA duplex
served as a negative control was purchased from Dhar-
macon Research (Lafayette, CO, USA). Transfection of
siRNAs or expression plasmids was performed using
Neon® Transfection System (Thermo Fisher Scientific,
Waltham, MA, USA) or Turbofect™ in vitro Transfection
Reagent (Pierce Biotechnology, Rockford, 1L, USA).

Chromatin immunoprecipitation (ChIP)

ChIP assay was carried out using a Simple ChIP™ Enzy-
matic Chromatin IP Kit (Cell Signaling Technology, Dan-
vers, MA, USA) and antibodies specific for p65/RelA and
IRF-1. PCR was done using primers 5F (sense; 5-TTAC
AACCTACAGTGTTCTA-3’) and 6R (antisense; 5-AAGG
GAAAGTGATGGAAGACT-3) for the MMP9 promoter,
PU-F (sense; 5'-GTAAGATCCATGTAAGTGATGTCAT-
3’) and PU-R (antisense; 5'-AGACCCCATGCCAAATTTC
ATCCTG-3') for the PUMA promoter, and CP8-F (sense;
5-TATTTGCTACATAACTAAGAATGAA-3’) and CP8-
R (antisense; 5-CAAACATAGGTGTAAGTGCCCACTT-
3’) for the Caspase-8 promoter.

Semi-quantitative RT-PCR analysis

Our strategy for the semi-quantitative RT-PCR analysis
was described®™. Briefly 1 pug of total cellular RNA was
converted to cDNA by reverse transcription using ran-
dom hexamer primers and MoMuLV reverse tran-
scriptase (Invitrogen). PCR was initially performed over a
range of cycles (20-40 cycles) by using serially diluted
¢DNA, and 1:4 diluted cDNA (12.5 ng per 50 ul of PCR)
undergoing 24-38 cycles was found within the logarith-
mic phase of amplification with primers used for XAF1
(sense; 5-CAGAAGTCCTCGCTGGAGTTTC-3" and
antisense; 5-TGAAATTCTTTCCCCTTTCC-3'), IRF-1
(sense; 5-ATGCCCATCACTCGGATGCGCAT-3’ and



Jeong et al. Cell Death and Disease (2018)9:806

antisense; 5-GATATCTGGCAGGGAGTTACA-3),
MMP9 (sense; 5-ATACCTGTACCGCTATGGTT-3"and
antisense; 5-AACTCGTCATCGTCGAAATG-3'), and an
endogenous expression standard gene GAPDH. PCR was
performed in 1.5 mM MgCl,-containing reaction buffer.
Ten 10 pl of PCR products were resolved on 2% (wt/vol)
agarose gels. Quantitation was achieved by densitometric
scanning of the ethidium bromide-stained gels. Integra-
tion and analysis was performed by using Quantity One
software program (Bio-Rad, Hercules, CA, USA).

Immunoblot, immunoprecipitation, and
immunohistochemistry

Immunoblot and immunoprecipitation assays were
performed as described previously”?>.

Antibodies specific for XAF1 (SC-19194, ab17204), IRF-
1 (SC-497, SC-514934), IRF-3 (SC-9082), IRE-7 (SC-
9083), CHIP (SC-33264, SC-66830), cleaved PARP (CST
#9541), cleaved CASP3 (CST #9661S), p65/RelA (SC-372,
SC-514451), MMP-9 (CST #3852), phospho-Erk1/2 (CST
#9101), U1 SnRNP 70 (SC-9571), anti-HA (SC-7392, SC-
805, A2095), anti-GEP (SC-9996, ab69314), anti-Flag (SC-
166384), anti-V5 (SC-83849, A7345), anti-Myc (SC-40),
anti-His (SC-803), anti-GST(SC-33613), anti-Ubi (CST
#8081), and p-tubulin (T0198) were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA), Cell Signal-
ing Technology, Abcam (Cambridge, MA, USA), or BD
Bioscience (Franklin Lakes, NJ, USA). To discriminate
IRF-1 from the similar size of Ig heavy chain, IP and IB for
IRF-1 were carried out using rabbit and mouse antibodies,
respectively. Immunohistochemistry assay for human
colon tissues was performed using tissue arrays (US Bio-
max, Inc., Rockville, MD, USA) and Vectastain ABC
(avidin-biotin-peroxidase) kit (Vector Laboratories, Bur-
lingame, CA. USA) as described previously®>. Briefly,
slides were incubated with XAF1 or IRF-1 antibody
overnight wusing biotin-free polymeric horseradish
peroxidase-linked antibody conjugate system. Slides were
counterstained with hematoxylin, dehydrated and visua-
lized using an Olympus CK40 microscopy (Tokyo, Japan).
For the immunoreactive score, we established a 1- to 12-
point system by multiplying the percentage of positive
cells by the intensity of the staining score. Two patholo-
gists performed the assessment of immunostaining sec-
tions. Immunoreactive scores of 0-5 were classified as
negative (level 0) and scores of 6-12 were regarded as
positive (levels 1-5).

Protein pull-down and in vitro binding assay

GST pull-down assays was performed as described®>*.
For in vitro binding assay, GST-fused XAF1 (GST-XAF1)
proteins overexpressed by IPTG in BL21 strain were
purified using Glutathione Sepharose 4B (GE Healthcare,
Little Chalfont, UK). N-terminal His-tagged recombinant
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human IRF-1 (r-His-IRF-1) proteins were purchased from
Biomatik (Wilmington, DE, USA). The GST-XAF1 and r-
His-IRF-1 proteins were incubated with binding assay
buffer for 6 h at 4 °C. Immunocomplexes were separated
by incubation with protein-A/G Sepharose for 1 h, heated
at 95°C in SDS sample buffer, and subjected to SDS/
PAGE for immunoblot analysis.

Immunofluorescence assay

Cells were fixed with 4% formaldehyde, permeabilized
with 0.2% Triton X-100 in PBS, and blocked with 2% BSA
and 0.1% Triton X-100 in PBS. Cells were incubated
overnight with anti-XAF1 (ab17204, Abcam) or anti-IRF-1
(SC-514934) antibody at 4 °C, and stained with secondary
antibodies. After mounting the coverslips, fluorescent
imaging was obtained with a confocal laser scanning
microscopy (LSM700, Carl Zeiss Microlmaging, Inc).

Proximity ligation assay

Proximity ligation assay was performed using the
Duolink” In Situ Orange Starter Kit (DUO92102, Sigma)
according to the manufacturer’s instruction. Briefly, after
fixation and permeabilization, cells were incubated with
primary antibodies (ab17204 for XAF1, SC-514934 for
IRF-1, SC-66830 for CHIP) and then incubated with anti-
rabbit PLUS and anti-mouse MINUS PLA probes for 1 h
and ligation buffer for 30 min. For amplification step, the
slides were incubated with amplification solution con-
taining polymerase for 100 min at 37°C. After DAPI
staining, protein complexes in the cells were analyzed by
confocal microscopy.

Ubiquitination assay

Cells were incubated with MG132 (5 M) for 4h and
cell extracts were prepared in buffer containing
complete protease inhibitor (Roche) and deubiquitinase
inhibitor N-Ethylmaleimide (E3876; Sigma Aldrich). The
lysates were incubated with IRF-1 or anti-HA antibody
overnight at
4°C, and protein complexes were pelleted with protein
A-agarose beads (Thermo Fisher Scientific, Waltham, MA,
USA) and separated by SDS/PAGE. Ubiquitinated IRF-1
was immunoblotted with anti-HA or anti-IRF-1 antibody.

Apoptosis and colony formation assay

Flow cytometric analysis of apoptotic sub-G1 fraction
and Annexin V expression were performed using FACS-
can flow cytometer (Becton Dickinson) and CellQuest
software (Becton Dickinson). For colony formation assay,
1x10° cells per dish were maintained in the presence of
G418 (1600 pg/ml) for 4—6 weeks. Selection medium was
replaced every 2 days. Colonies were fixed with methanol
for 15 min and stained with 0.05% crystal violet in 20%
ethanol.
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Wound healing, cell tracking, and tumor invasion assay

For wound healing assay, cells grown to 100% con-
fluency were scratched with a pipette tip and incubated in
the absence and presence of TNF-a (25ng/ml). Cell
migration was monitored with a JuLi™ Br (Live cell movie
analyzer, NanoEnTek Inc., Seoul, Korea). Invasion assay
was performed using BD Matrigel™ matrix (BD Bios-
ciences) and Polycarbonate Membrane Transwell” Inserts
(Corning, Corning, NY, USA). Cells were added to the
matrigel-coated insert well and incubated for 48 h in the
absence or presence of TNF-a (25 ng/ml). The invaded
cells on the lower surface were stained with Diff-Quik
staining kit (Sysmex, Kobe, Hyogo Prefecture, Japan). The
number of stained cells per field was counted under a
microscope at a magnification of x200.

Gelatin zymography for MMP9 activity

Cells were harvested with lysis buffer (25 mM Tris-HCI,
pH 7.5, 100 mM NaCl, 1% IGEPAL CA-630, and protease
inhibitors) and 40 pg of lysates were mixed with 5x
sample buffer (without [-mercaptoethanol). Protein
samples were run on the gel (10% polyacrylamide—0.1%
gelatin gel) for 4 h. The gel was incubated in 1x rena-
turing buffer (2.5% Triton X-100) and then in 1x devel-
oping buffer (50 mM Tris-HCI pH 8.0, 0.2 M NaCl, 5 mM
CaCl,, 0.02% NaN3) for 14 h. The gel was stained with
Coomassie Blue R250.

Terminal deoxynucleotidyl transferase-mediated
deoxyuridine triphosphate nick-end labeling (TUNEL)
assay

TUNEL assay for extracted xenograft tumors were
performed using a DeadEnd™ Colorimetric TUNEL Sys-
tem Kit (Promega #G7360). Briefly, tumor cells were fixed
with 4% paraformaldehyde in PBS, and incubated at 4 °C
for 15 min with the buffer containing 3% bovine serum
albumin and 0.1% Triton X-100. Signals were visualized
directly under microscopy.

Animal studies

Four-week-old immune-deficient male nude mice (nu/
nu) (Orient Bio Inc., Sungnam, Korea) were maintained in
pressurized ventilated cages. Tumor xenograft assay was
carried out as described®***. Briefly, the identical num-
bers (4x10°) of HCT116 (Tet-XAF1) sh-Control and sh-
XAF1 subline cells were injected s.c. into six mice. Tumor
growth was monitored periodically, and volume (V) was
calculated by using the modified ellipsoidal formula: V=
1/2 x length x (width)?. At day 24, four mice of each group
were exposed to saline or tetracycline by intratumoral
injection, and tumor volume was measured at the begin-
ning of injection and monitored regularly for 9 days. All
studies were performed with the approval of Korea
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University Institutional Animal Care and Use Committee
(IACUC) and Korea Animal Protection Law.

Statistical analysis

Reporter luciferase, flow cytometry, cell viability,
apoptosis, migration, and invasion assays were performed
in triplicates, and data were presented as mean + SD.
Student’s ¢ test was used to determine the statistical sig-
nificance. A p value of <0.05 was considered significant.
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