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Abstract

Purpose—Preeclampsia is known to be a leading cause of mortality and morbidity among 

mothers and their infants. Approximately 3–8% of all pregnancies in the US are complicated by 

preeclampsia and another 5–7% by hypertensive symptoms. However, less is known about its 

long-term influence on infant neurobehavioral development. The current review attempts to 

demonstrate new evidence for imprinting gene dysregulation caused by hypertension, which may 

explain the link between maternal preeclampsia and neurocognitive dysregulation in offspring.
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Method—Pub Med and Web of Science databases were searched using the terms “preeclampsia,” 

“gestational hypertension,” “imprinting genes,” “imprinting dysregulation,” and “epigenetic 

modification,” in order to review the evidence demonstrating associations between preeclampsia 

and suboptimal child neurodevelopment, and suggest dysregulation of placental genomic 

imprinting as a potential underlying mechanism.

Results—The high mortality and morbidity among mothers and fetuses due to preeclampsia is 

well known, but there is little research on the long-term biological consequences of preeclampsia 

and resulting hypoxia on the fetal/child neurodevelopment. In the past decade, accumulating 

evidence from studies that transcend disciplinary boundaries have begun to show that imprinted 

genes expressed in the placenta might hold clues for a link between preeclampsia and impaired 

cognitive neurodevelopment. A sudden onset of maternal hypertension detected by the placenta 

may result in misguided biological programming of the fetus via changes in the epigenome, 

resulting in suboptimal infant development.

Conclusion—Furthering our understanding of the molecular and cellular mechanisms through 

which neurodevelopmental trajectories of the fetus/infant are affected by preeclampsia and 

hypertension will represent an important first step toward preventing adverse neurodevelopment in 

infants.
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Preeclampsia, genomic imprinting, and child neurobehavioral development

Preeclampsia, a hypertensive disorder unique to human pregnancy, is one of the most 

common and potentially modifiable metabolic problems, and affects approximately 3–8% of 

all pregnancies [1, 2]. In the United States among 2,748,302 births in 2008, there were 

104,850 cases of preeclampsia [3]. It is defined by the onset of hypertension (140/90 mm 

HG) after 20 weeks’ gestation in the index pregnancy, accompanied by 300 mg of protein in 

a 24-h urine specimen, or persistent >30 mg/dL (1+) protein on a dipstick [2, 4]. While the 

etiology of preeclampsia is still elusive, it remains a leading cause of mortality and 

morbidity among mothers and their babies [4–6].

Recent research has demonstrated that preeclampsia is associated with an increased risk for 

impaired early language development, lower neurocognitive functioning, and ADHD [7–10]. 

And there is accumulating evidence to show that pregnancy-induced hypertensive disorders, 

especially preeclampsia, can have potentially long-term consequences for the offspring’s 

neurobehavioral development [11, 12] via changes in the epigenome. In recent animal 

studies, genomic imprinting perturbations have been linked to both hypertensive problems 

and neurodevelopmental syndromes [13]. Similarly, in humans, adverse pregnancy outcomes 

have been associated with genomic imprinting perturbations, leading to neurodevelopmental 

syndromes [14] and subsequent disorders [15, 16]. Delineating some of the underlying 

biological mechanisms by which preeclampsia influences the trajectory of optimal/

suboptimal child development and functioning can help us in our aim to uncover the 
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mechanisms of dysregulated neurobehavioral development and related mental disorders via 

epigenetic changes.

Severe preeclampsia may cause symptoms such as hypertension, proteinuria, eclampsia, 

cerebral edema, cerebral hemorrhage, long-term neurocognitive dysfunction, blindness, liver 

swelling, and other liver damage leading to elevated serum transaminase, oliguria, 

thrombocytopenia, pulmonary edema necrotizing pancreatitis. All of these symptoms can be 

fatal to mothers, and, importantly, to their child in utero, resulting in greater mortality in 

mothers and varying degrees of child morbidity after birth [2, 17]. The main impact of 

preeclampsia on the fetus is malnourishment, resulting from uteroplacental vascular 

insufficiency hypoxia, which restricts nutrient supplies and oxygen flow from the placenta to 

the fetus [18, 19], which affects approximately 30% of preeclampsia cases. This leads to 

various perinatal and neonatal problems, including intrauterine growth restriction (IUGR, 

defined as birth weight less than the 10th percentile) [6, 18, 20–25], emergency C-section 

[6], preterm delivery [24, 26, 27], reduced birth weight [6, 28, 29], lower APGAR scores 

[30], more frequent and prolonged neonatal intensive care unit (NICU) stays [6, 20, 31], and 

increased acute respiratory distress syndromes after birth [32]. In some cases, fetal damage 

is so severe that it results in fetal demise, such as stillbirth and neonatal death [32, 33]. 

Beyond birth, while the long-term health and developmental consequences of exposure to 

maternal preeclampsia for the surviving child are relatively unexplored, there is some 

evidence for suboptimal neurocognitive development among infants with IUGR [34, 35], 

which is one of the major fetal/child consequences of preeclampsia [6, 20–25]. Recently, 

with the leadership of the NICHD, growing efforts have been made to find associations 

between preeclampsia and health consequences in offspring, including IUGR [34–36], 

preterm birth [37–40], LBW [41–43], and child neurobehavioral development [44–46].

The extent of adverse neurobehavioral and other developmental consequences for surviving 

infants with perinatal problems has been investigated less frequently. Many and colleagues 

[47], for example, reported that IQ at age 3 years was significantly lower among IUGR 

children with maternal preeclampsia, compared to those without (85.5 versus 96.9, p = .03) 

[47]. Similarly, Cheng and colleagues documented that preterm infants of preeclamptic 

mothers, compared to those of non-preeclamptic mothers, had a compromised 

neurodevelopmental index [48], as measured by the Bayley Scales of Infant and Toddler 

Development—Second Edition (Bayley-II) [49]. Children born to mothers with 

preeclampsia had a lower Mental Developmental Index (MDI) than children born to mothers 

without at 2 years of age (p = .04), while there was no significant difference between the two 

groups on the Physical Developmental Index (PDI) (p = .56). Furthermore, they reported 

that preeclampsia was associated with an over tenfold increased risk of mildly delayed MDI 

(p = .007), after controlling for demographic and biomedical confounders. Temperament is 

thought of as an early biological characteristic similar to a personality trait. Although it is 

not typically considered to be a neuropsychological construct, there are many overlaps. In 

particular, the temperamental construct of effortful control is very similar to the 

neuropsychological construct of attention and executive functioning [50]. More recently, 

anger and negative emotionality have gained considerable attention as temperamental traits 

that are closely linked to the limbic system in the brain [51–53].
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Thus, further investigation of the underlying epigenetic mechanisms that show how 

preeclampsia or pregnancy-induced hypertensive problems are associated with early 

emerging temperament profiles of the infant as well as child suboptimal neurodevelopment, 

using validated clinical instruments such as the Early Childhood Behavior Questionnaire 

(ECBQ) [54] and the Bayley Scales of Infant and Toddler Development—Third Edition 

(Bayley-III) [49], is warranted. In this paper, we are going to propose that imprinting 

dysregulation might be the intermediate underlying conditions that could link maternal 

preeclampsia and possible suboptimal neurodevelopment in offspring.

Method

PRISMA guidelines for conducting and reporting systematic reviews were followed during 

this analysis [55]. Studies were selected using PubMED and Web of Science. Three 

categories (A: preeclampsia, B: imprinting genes, and C: child neurodevelopment) were first 

searched separately. The following keywords were used: For category A, “preeclampsia” or 

“gestational hypertension”; for category B, “imprinting genes,” “imprinting dysregulation,” 

or “epigenetic modification”; and for category C, “neurodevelopment,” “neuro-behavior,” or 

“developmental problems.” Results were further limited to (1) English language articles, (2) 

human studies, and (3) participants aged 10 years or younger. The initial search returned 

28,649 results in category A, 14,426 results in category B, and 72,667 results in category C. 

There were 138 articles that covered both categories B and C, and there were 9 that covered 

both categories A and B. The titles and abstracts of those 138 and 19 articles were examined 

against previous exclusion criteria. Among those, 75 articles were examined against 

previous exclusion criteria.

Placenta Epigenetics and neurodevelopment

The medical condition of the mother affects the nature of the in utero condition (i.e., 

environment) and perturbs gene expression (i.e., genes), which governs the developmental 

trajectories of offspring. When information from these two areas, environment and genes, 

are examined together, they can provide us with important clues as to how the mother’s 

medical complications influence the trajectories of child development.

Over the past decade, researchers have begun to consider how the placenta, which is usually 

discarded at birth, could hold important information about the relationship between the pre- 

and perinatal environment and cognitive neurobehavioral outcomes in the developing child, 

over and above the effects of postnatal environment. Many studies have linked poor 

placentation during pregnancy with a wide range of chronic neurodevelopmental disorders in 

children [36], including Autism Spectrum Disorder (ASD) [56–59], Attention Deficit 

Hyperactivity Disorder (ADHD) [11], and learning disabilities [60]. Moreover, recent data 

from the CDC showed a 23% increase in identified cases of ASD between 2009 and 2011 

[61]. It is important to note that placenta tissue should not be viewed as a surrogate (to the 

brain) but as a target tissue in understanding the genes–environment interplay. The placenta 

develops from the extra-embryonic cell layer of the blastocyst, as opposed to the embryonic 

cell mass that will differentiate into the fetus. In an effort to understand the mechanisms of 
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how the environment gets “under the skin,” attention has been focused on the potential 

importance of the link between the placenta and fetal/child brain development.

The placenta has been shown to produce an array of neuropeptide hormones that are 

analogues to those produced by the hypothalamus and the pituitary gland including GnRH, 

TRH, CRH, and oxytocin [62]. Rapid advancements in the discovery of integrated regulation 

of neuropeptide homeostasis within the brain and placenta [63, 64] have led to the concept 

that the placenta may be like a “third brain” linking the developed (maternal) and developing 

(fetal) brains [64, 65]. Maternal perturbations are conveyed to the fetus via the placenta, in 

the expression of transporters that regulate the flux of glucose, amino acids, and vitamins 

required for growth and development [66]. Thus, the placenta serves as the “master 

regulator” in utero and plays a highly functional role in shaping fetal development [65].

Imprinted genes expressed in the placenta and fetoplacental development

Fetoplacental development begins with a complex and highly coordinated set of epigenetic 

events that take place few hours after fertilization and before the implantation of the 

fertilized egg [66–68]. During this relatively short but very active window an almost 

complete reprogramming of the genome methylation takes place accompanied by a 

reorganization of the histone coding [68, 69]. Other, less characterized, epigenetic events 

also contribute to preparing the newly fused parental genomes for implantation and 

embryogenesis [68]. At this stage, specific genomic regions carrying a unique set of 

multilayer epigenetic signals inherited from the germline, known as Imprinting Control 

Regions (ICRs), are spared this epigenome reprogramming wave (Fig. 1) [66, 70]. ICRs 

control the allele-specific expression of clusters of over 100 genes (or about 1% of the 

protein-coding genes) distributed across the human genome. Genes which are 

monoallelically expressed through the action of these ICRs are known as imprinted genes 

(Table S1) with their expressed allele determined by the parent of origin. Imprinted genes 

are thus physically present as two copies but functionally haploid with about 50% of them 

maternally expressed and 50% paternally expressed [70, 71].

A number of imprinted genes play critical roles in regulating the fetoplacental growth and 

development and instructing postnatal development [13, 72]. Based on their functional roles, 

imprinted genes have been classified in four main categories: (1) genes that directly regulate 

fetal growth; (2) genes that indirectly regulate fetal growth by modifying the function of the 

placenta; (3) genes that modulate metabolic processes postnatally; and (4) genes that modify 

behavior postnatally [13, 72, 73].

We confirmed the reported findings by feeding the full set of imprinted genes to the online 

Ingenuity Pathway Analysis (IPA) software. IPA identified 8 main gene networks (Table 1 

and Table S2) tied to organ development (including the placenta), metabolic regulation, and 

the development and functioning of the brain and nervous system (i.e., neurodevelopment), 

heart and vascular system, and metabolic organs (e.g., pancreas). The first three networks, 

including the majority of the input genes, are presented in Fig. 2a–c, and the remaining five 

networks are available in Figure S1.
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The IPA tool connects genes with known diseases and functions, and we can further generate 

an imprinted super-pathway which shows the gene network involved in the development and 

functioning of the placenta, brain, heart and vasculature, and pancreas, as well as those with 

important metabolic functions (Fig. 2d). Figure 3 shows the overlap among the genes 

between different organ systems, including placenta, neurodevelopmental, vascular and 

metabolic genes (see Tables S3 and S4 for details).

Furthermore, recent research suggests that a subset of imprinted genes expressed in the 

placenta may regulate maternal adaptations to pregnancy, i.e., controlling the function of the 

mother, by regulating the production of placental hormones [74]. The timely expression of 

imprinted genes has been shown to play an important role in fetoplacental development [13, 

75, 76]. These findings are in agreement with the functional importance of imprinted genes 

which, as shown for other such genes [77, 78], once altered, can lead to serious phenotypic 

consequences [79, 80], some being lethal [81, 82], which may be further enhanced by the 

constitutional haplo-insufficiency of imprinted genes [83].

The endurance of ICRs in the face of extensive epigenetic reprogramming early in 

development and through the life course raises many interesting points. As the ICR 

epigenetic setup is not reprogrammed at fertilization, it represents one of the few known 

instances of epigenetic inheritance [84]. This in turn may explain the influence of parental 

environments prior to conception in determining fetal development. Environmentally driven 

alterations of the ICR epigenetic status in the parents’ gametes at different stages of life may 

be preserved. Similarly, environmental exposure may influence the process that protects 

ICRs from the epigenome reprogramming wave happening at fertilization. As both types of 

exposure occur very early, the consequences are likely to be wide-ranging impacting the 

whole embryo and potentially detectable in most tissues [85]. Environmental exposures 

occurring after implantation that alter the ICR epigenetic setup or function also carry the 

potential for modifying the fetoplacental development trajectory at different stages [69, 86–

88]. Lastly, it must be mentioned that the effects of the alteration of the ICR epigenetic setup 

can extend beyond the F1 generation. Primordial germ cells (PGCs) are the only embryonic 

cells that actually undergo ICR reprogramming in order to generate gametes that carry the 

ICR epigenetic setup specific to the sex of the developing embryo [89]. Alterations that 

affect the process of erasure, reestablishment, or maintenance during maturation into 

gametes could be passed to the F2 generation. To summarize, the epigenetic setup of ICRs 

can be considered as a recording devices of past exposures [5] acting as lasting 

environmental biosensors of the intrauterine status as conveyed by the mother (e.g., changes 

in blood pressure). Of note, alterations of both the ICR epigenetic setup and imprinted genes 

have been linked to different pregnancy and newborn outcomes [86, 89–96].

Imprinted genes as a sensor of pregnancy-induced hypertensive disorder and predictor of 
child development

Imprinted genes have been found to respond to common environmental stimuli. For 

example, peri-conceptional and prenatal exposures to both insufficient and excessive 

maternal nutrient intake have been found to leave lasting signals on the methylation profile 
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of several imprinted domains, including imprinted genes INS, IGF2, GNASAS, and MEG3 
[65].

Previous studies have examined the expression of imprinted genes in the placenta from 

preeclamptic pregnancies, often with conflicting results. For example, the maternally 

expressed imprinted gene CYCLIN-DEPENDENT KINASE INHIBITOR 1C (CDKN1C) 

has variously been reported to be significantly decreased [97], increased [98, 99], or 

unaltered [100] in preeclamptic placentas. These conflicting results may be explained by a 

difference in mode of delivery, given recent evidence demonstrating significantly increased 

CDKN1C expression in laboring versus non-laboring placentas [101]. Some mothers 

carrying babies with loss-of-function of CDKN1C have a very severe form of preeclampsia 

called HELLP (Hemolysis, Elevated Liver enzymes, Low platelet count) syndrome which is 

a life-threatening complication [102]. There are data from an animal model to suggest loss-

of-function of CDKN1C in the placenta may contribute to preeclampsia-like symptoms in 

the mother. Genetically unaltered female mice carrying Cdkn1c loss-of-function fetuses 

exhibit increased blood pressure and proteinuria during pregnancy [103]. However, in a 

separate study, maternal symptoms were less apparent initially suggesting an environmental 

component [104]. Loss-of-function of Cdkn1c in the mouse placenta was associated with 

increased trophoblast proliferation and a narrowed intervillous space in some studies [103, 

105]. A narrowed intervillous space could impede uteroplacental blood flow, which, 

combined with the shallow trophoblast invasion observed, could contribute to the 

development of preeclampsia-like symptoms [103]. However, a more recent study revealed a 

very different placental phenotype with a severely disorganized placenta late in gestation, 

and with maternal blood hemorrhaging into the blood spaces suggesting that genetic 

background could influence the phenotypic consequences of loss-of-function of Cdkn1c 
[106]. Taken together, these studies highlight the importance of further research 

investigating the relationship between preeclampsia and CDKN1C.

A second imprinted gene, PLECKSTRIN HOMOLOGYLIKE DOMAIN, FAMILY A, 
MEMBER 2 (PHLDA2), has also been linked to preeclampsia. PHLDA2 was found to be 

highly overexpressed in placentas from preeclamptic pregnancies [107]. The phenotype of 

female mice carrying fetuses with loss-of-function of Phlda2 has not been reported, but 

overexpression of PHLDA2 in a human placental cell line resulted in impaired cell 

proliferation, migration, and invasion [107]. Placental PHLDA2 expression may also be 

important in preeclampsia.

Around 70% of the known imprinted genes are expressed in the placenta [91], and recent 

work has demonstrated that alterations in placental imprinted gene expression are associated 

with infant neurodevelopmental outcomes [108]. In two small pilot studies on 50 placenta 

samples from the Stress in Pregnancy (SIP) Study, we found both an alteration of the 

methylation profile of the ICR that regulates the parent-of-origin-specific expression of two 

key imprinted genes, IGF2 and H19 (imprinted in the opposite direction), in correlation with 

maternal stress in pregnancy and an alteration of the global DNA methylation in correlation 

with preeclampsia [72]. We also found that imprinted gene expression in the placenta 

correlates with fetal growth and development, as measured by head circumference and birth 

weight [87, 108]. Furthermore, the imprinting status of each imprinted locus, as defined by 
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the ICR methylation status, has been shown to exert different effects on the reactivation of 

the silent allele of imprinted genes at that specific locus [91, 108].

Understanding the molecular mechanisms for fetal programming, through exposure to 

pregnancy-related medical problems, such as preeclampsia and pregnancy-induced 

hypertension, is a promising, but neglected, area of research, while as a whole the area of 

fetal programming represents an important first step toward prevention of lifelong negative 

developmental and mental health consequences for offspring. To achieve this, epigenetically 

informative longitudinal research that follows a birth cohort from a period in utero through 

childhood is the key to understanding how maternal preeclampsia in utero can influence an 

infant’s developmental trajectory by increasing vulnerability to cognitive and 

neurobehavioral impairment. If imprinting gene profiles are determined to be early 

biomarkers for impaired cognitive neurobehavioral development, they could be used as 

biomarkers to design more targeted preventive measures for childhood developmental 

problems by alleviating and reducing the risk for maternal preeclampsia during pregnancy.

Conclusion

In sum, gaining further understanding regarding the ways in which common pregnancy-

induced problems such as preeclampsia may lead to suboptimal fetal/infant development, 

specifically impaired neurobehavioral development via dysregulation in genomic imprinting 

status in the placenta, and may yield effective clues for the prevention of 

neurodevelopmental disorders in early childhood. Prenatal influence caused by preeclampsia 

or hypertensive disorders will not fully explain the cause of the neurodevelopmental 

problems, as there are also many postnatal assaults that influence the risk for 

neurodevelopmental disorders in offspring, as well as other possible prenatal mechanism. 

However, if epigenetic pathways can be used as potential tools for identifying high-risk 

infants, it is the first step toward developing prevention plans for full-fledged disorders later 

in childhood, perhaps through educating pregnant mothers. To this end, it is important to 

encourage collaboration among obstetricians, pediatricians, child psychiatrists, as well as 

early childhood educators to encourage research around the peri- and prenatal periods to 

reduce the risk for impaired neurodevelopmental disorders in childhood. Knowledge gained 

from such studies could contribute to an enhanced capacity for early prevention. At the same 

time, it will help inform and educate pregnant mothers about the importance of prenatal 

monitoring of blood pressure, weight gain, and metabolic functioning during pregnancy for 

the health of their offspring.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Fetal imprinting reprogramming of DNA methylation marks during the early zygote 

developmental phases. F0 sperm and egg carry global (red and blue lines) and imprinting 

specific methylation signals (pink and light blue). After fertilization, global methylation is 

reprogrammed at the blastocyst stadium. Imprinting signals are maintained unaltered to 

generate an embryo with distinct parental contributions. Imprinting reprogramming takes 

place only in the primordial germ cells later in development to generate gametes carrying 

imprinting marks according to the sex of the developing embryo. Perturbations of the 

imprinting profiles at the blastocyst stage can directly affect the embryo and also the 

gametes (F1 and F2 windows). Somatic cells separately develop from the embryo carrying 

the parental imprinting signals and the newly reprogrammed global methylation setting 

(purple line). They later rearrange their methylation status coherently with the adult tissue 

they will originate (green, orange, and brown lines) Adapted from Lambertini et al. [66]; 

Perera and Herbstman [69]
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Fig. 2. 
IPA network analysis for imprinted genes (see Table 1 and S2 for more details). A total of 

131 genes were entered into IPA software (see Table S1 for the full list). a Depiction of 

Network 1 (IPA label is “gene expression, neurological disease, organismal injury and 

abnormalities”). This network includes 31 imprinted genes out of 70 network members. b 
Depiction of Network 2 (IPA label is “gene expression, cellular development, cellular 

growth and proliferation”). This network includes 25 imprinted genes out of 70 network 

members. c Depiction of Network 3 (IPA label is “post-translational modification, endocrine 

system disorders, metabolic disease”). This network includes 21 imprinted genes out of 70 

network members. d Depiction of the imprinted super-pathway determined by scoring the 

imprinted genes associated with the development and functioning of the placenta, brain and 

nervous system, heart and vascular system, metabolic organs (mainly pancreas), and 
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metabolism regulation. For all panels, the light blue shading identifies the input imprinted 

genes. In d, red shading identifies disease and function areas as labeled by the IPA, light 
blue lines (either dashed or continuous) identify connections between genes, red lines (either 

dashed or continuous) identify connections between disease and function areas as well as 

connections between disease and function areas and imprinted genes
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Fig. 3. 
Venn diagram showing the overlap between the imprinted genes involved in the development 

and functioning of placenta, brain and nervous system, heart and vascular system, metabolic 

organs (mainly pancreas), and metabolism regulation (see Table S4 for additional details)
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