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Abstract

Infantile spasms syndrome is an epileptic encephalopathy in which prompt diagnosis and 

treatment initiation are critical to therapeutic response. Diagnosis of the disease heavily depends 

on the identification of characteristic electroencephalographic (EEG) patterns, including 

hypsarrhythmia. However, visual assessment of the presence and characteristics of hypsarrhythmia 

is challenging because multiple variants of the pattern exist, leading to poor inter-rater reliability. 

We investigated whether a quantitative measurement of the control of neural synchrony in the 

EEGs of infantile spasms patients could be used to reliably distinguish the presence of 

hypsarrhythmia and indicate successful treatment outcomes. We used autocorrelation and 

Detrended Fluctuation Analysis (DFA) to measure the strength of long-range temporal correlations 

in 21 infantile spasms patients before and after treatment and 21 control subjects. The strength of 

long-range temporal correlations was significantly lower in patients with hypsarrhythmia than 

control patients, indicating decreased control of neural synchrony. There was no difference 

between patients without hypsarrhythmia and control patients. Further, the presence of 

hypsarrhythmia could be classified based on the DFA exponent and intercept with 92% accuracy 

using a support vector machine. Successful treatment was marked by a larger increase in the DFA 

exponent compared to those in which spasms persisted. These results suggest that the strength of 

long-range temporal correlations is a marker of pathological cortical activity that correlates with 

treatment response. Combined with current clinical measures, this quantitative tool has the 

potential to aid objective identification of hypsarrhythmia and assessment of treatment efficacy to 

inform clinical decision-making.
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1. Introduction

Infantile spasms (IS) is a potentially devastating form of epilepsy characterized by epileptic 

spasms and often accompanied by a chaotic electroencephalographic (EEG) pattern known 

as hypsarrhythmia (Pavone et al. 2013). In contrast with the low amplitude, mixed frequency 

activity of normal awake EEG (Fig. 1a), classic hypsarrhythmia is defined by multi-focal, 

independent epileptiform discharges on a disorganized background activity with 

asynchronous large amplitude slow waves (Fig. 1b) (Stamps et al. 1959). There are also 

several variants of hypsarrhythmia that include episodes of voltage attenuation, burst-

suppression patterns, increased interhemispheric synchronization, and hyperactive 

epileptiform foci (Hrachovy et al. 1984). Quantifying the presence and severity of 

hypsarrhythmia is nontrivial, as these variants exhibit drastically different power and 

spectral characteristics (Lux and Osborne 2004; Hussain et al. 2015). For example, Hussain 

et al. showed that the inter-rater reliability for hypsarrhythmia identification is unacceptably 

low, with kappa less than 0.5 (2015). This can impede accurate diagnosis and evaluation of 

short-term treatment response for patients with IS. Therefore, quantitative measurements of 

hypsarrhythmia are needed to improve the accuracy, objectivity, and reliability of these 

assessments (Hussain et al. 2015). Improving these methods may also reduce the time 

between diagnosis and successful treatment, a factor that has been shown to be related to 

improved developmental outcome (Riikonen 2010).

As opposed to hypsarrhythmia, which is qualitatively described as a “chaotic” pattern, it is 

known that EEG activity in a healthy human brain possesses scale-free structure over 

multiple time scales (Linkenkaer-Hansen et al. 2001). Neural data has been shown to exhibit 

amplitude modulations on a power-law scale, in which the power in the amplitude envelope 

y is related to its frequency f by: y = 1
f α , with a scaling constant α termed the Hurst 

parameter (Linkenkaer-Hansen et al. 2001). The power-law scaled nature of amplitude 

fluctuations in EEG data gives rise to long-range temporal correlations in the time series 

(Stadnitski 2012).

The autocorrelation is one of the simplest methods to assess long-range temporal structure in 

time series data. It has been used to characterize periodic phenomena in childhood absence 

seizures (Babloyantz and Destexhe 1986) and to perform automatic detection of neonatal 

seizures (Liu et al. 1992). However, the autocorrelation function often provides a noisier 

estimate of the decay of temporal correlations than more complex methods (Smit et al. 

2011). The noise level in these calculations can be reduced by using techniques that are 

based on random walk theory rather than analyzing the time series directly (Kantelhardt et 

al. 2001). Specifically, detrended fluctuation analysis (DFA) has been shown to be robust to 

certain nonstationarities in positively correlated signals, such as discontinuities due to 

artifact removal, and it is appropriate for use on shortened data segments (Chen et al. 2001; 

Hardstone et al. 2012). Both of these factors directly affect the stability of the 

autocorrelation. Thus, we used both the autocorrelation and DFA to characterize the long-

range temporal dependence in EEG data associated with infantile spasms before and after 

treatment. We hypothesized that the presence of infantile spasms and hypsarrhythmia would 

Smith et al. Page 2

Brain Topogr. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



disrupt long-range temporal correlations in the EEG and that a response to treatment would 

be associated with the return of temporal correlations to normal levels.

2. Methods

2.1 EEG Data Recording

Scalp EEG data was recorded from infantile spasms and control patients using Nihon-

Kohden acquisition hardware and software in the Epilepsy Monitoring Unit at the Children’s 

Hospital of Orange County (CHOC). Nineteen scalp EEG electrodes recorded neural 

activity, placed according to the 10–20 international electrode placement system. Data were 

sampled at 200 Hz with electrode impedances below 5 kOhms. A clinical pediatric 

epileptologist at CHOC (DS) retrospectively collected the datasets from the electronic 

medical record and stored them in an encrypted database. Approval to perform this study 

was obtained from the CHOC Institutional Review Board.

We gathered EEG and clinical data for 21 infantile spasms patients. Two separate recordings 

were collected during wakefulness (median recording duration: 22.1, IQR 19.4–24.1 

minutes). The first recording was performed at the time of the infantile spasms diagnosis 

prior to treatment (median age: 6.3, IQR 5.2–8.1 months), and the second was done after 

treatment initiation to assess response (median time to second recording: 29, IQR 19–42.25 

days). The data was clipped without reviewer knowledge of treatment status or outcome. 

Awake EEG was chosen for analysis because EEG characteristics vary significantly across 

different sleep stages. The pre-treatment EEGs of all 21 patients exhibited findings 

consistent with hypsarrhythmia. In three patients, this pattern occurred intermittently, 

whereas in the other 18 it was consistently present.

We also collected data for 21 control subjects of a similar age distribution (median age: 7, 

IQR 5.75–11.25 months). In this group, neurologists had ordered routine EEGs for 

suspected neurological abnormalities due to trauma or atypical behavior, but later classified 

the EEG as normal. These recordings contained both sleep and awake data, and the sections 

of wakefulness were selected for analysis (median recording duration: 12.2, IQR 10.1–16.3 

minutes). Additional exclusion criteria for control patients in this study included a history of 

epilepsy, abnormal developmental history, abnormal video-EEG telemetry monitoring, and 

known neurological conditions.

2.2 Data pre-processing

The EEG data were re-referenced to a linked-ear montage and divided into narrow frequency 

bands using FIR filters for the delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), and beta 

(13–30 Hz) ranges. Epileptologists at CHOC marked and removed artifacts due to eye 

blinks, muscle activity, movement, poor electrode contact, and periods of photic stimulation 

prior to analysis.

2.3 The autocorrelation function

We calculated the autocorrelation of the amplitude envelope of infantile spasms patients with 

and without hypsarrhythmia in the Cz electrode. Electrode Cz was chosen because it is 
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minimally affected by muscle and eye movement artifacts. The amplitude envelope was 

extracted from the bandpass-filtered data by applying the Hilbert transform and calculating 

the magnitude of the analytic signal. We then calculated the autocorrelation using a biased 

cross-correlation of the envelope at all possible time lags, normalized to correlation values 

between 0 and 1. To assess the significance of temporal correlations in the data, we 

compared the result of the autocorrelation to surrogate data that was created by shuffling the 

Fourier phases of the original envelope. We calculated the time lag at which each patient 

autocorrelation function failed to exceed the 95th percentile of the surrogate data. This 

represented the time lag at which the correlations in the time series were not significantly 

different from chance levels.

2.4 Detrended Fluctuation Analysis

Detrended Fluctuation Analysis (DFA) was implemented using the following algorithm, 

adapted from Hardstone et al. (2012):

First, the amplitude envelope was extracted from each channel by similar methods used in 

the autocorrelation calculation. We then subtracted the mean of the amplitude envelope and 

computed the cumulative sum of the signal to create the signal profile. This signal profile 

was divided into equally-sized windows with 50% overlap. Within each window, we 

performed a linear fit of the signal profile, subtracted the fit from the time series, and 

calculated the standard deviation of the detrended signal. After computing the standard 

deviations of the detrended signal for all windows of that size, we recorded the median 

standard deviation for that window size. This process was repeated for logarithmically-

spaced window sizes from 3 seconds to 25 seconds in length.

When the median standard deviations are plotted on a logarithmic scale against the log-

spaced window sizes, the result is linear with slope α (Fig. 2). This slope is a direct 

estimation of the Hurst parameter and indicates the strength of the temporal correlations 

present in the time series (Hardstone et al. 2012). The slope of the resultant DFA plot varies 

between 0 and 1.0. Exponents less than 0.5 designate anti-correlated signals, while 

positively correlated signals have an exponent greater than 0.5, indicating strong long-range 

temporal correlations. Uncorrelated signals, such as white noise, result in a DFA exponent of 

0.5.

We averaged α from all individual channels to obtain a single value approximating the 

strength of long-range temporal correlations in the EEG, as individual channels within a 

subject exhibited consistent slopes (Fig. 2). The intercept of the DFA plot was calculated 

from the linear fit of the channel average by extrapolating on the logarithmic plot to find the 

fluctuation value when window size was one sample, the value at which the logarithm of the 

window size equals zero. (Fig. 2, filled black dot).

Note that DFA has been shown to robustly measure temporal dependence in positively-

correlated signals, even when the data contains discontinuities due to artifact removal (Chen 

et al. 2001). Although DFA has been criticized by several groups in this regard (Bardet and 

Kammoun 2008; Bryce and Sprague 2012), their concerns are often aimed at the 

generalizability of the technique to all signal nonstationarities. We use the method under the 
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careful assumption that neural signals are positively correlated and we use sufficiently long 

window sizes to mitigate the uncertainty of the measure in small data segments. Other forms 

of the algorithm increase the largest window size to 1/10 of the signal length (Hardstone et 

al. 2012), but the use of large windows can cause a piecewise linear result with one or more 

“cross-over” points, requiring special analysis techniques (Chen et al. 2001; Ferree and Hwa 

2003). Therefore, we set the smallest window size to 3 seconds and the largest window size 

to 25 seconds to maintain consistent linearity at all window sizes (mean SSE: 0.0017 +/

− 0.0042).

2.5 Support Vector Machine Classification

To quantify our ability to distinguish between patients with and without hypsarrhythmia, we 

trained one-dimensional and two-dimensional support vector machines (SVM). The one-

dimensional SVM imposes a simple threshold, while the two-dimensional SVM optimizes a 

linear classifier to separate the two groups. To train the SVM, we randomly selected half of 

the subjects with hypsarrhythmia (n=25) and half of the subjects without hypsarrhythmia 

(both spasms and control patients, n=38) and used the MATLAB function “svmtrain”. We 

then tested the classifier with the remainder of the data using the MATLAB function 

“svmclassify”. The number of correct classifications, the sensitivity, and specificity were 

recorded over 1000 iterations of randomly-selected training and testing datasets.

2.6 Amplitude histogram calculation

We quantified the amplitude variation for each EEG, as hypsarrhythmia is defined as a high-

amplitude pattern. We calculated amplitude histograms of the broadband (0.5–55 Hz) 

bandpass-filtered data for all patients, as follows: For each 1-second window of data, we 

recorded the amplitude as the difference between the maximum and minimum voltage in the 

Cz electrode. We then binned the resulting amplitudes into a histogram consisting of 50 bins 

with occurrences represented as a fraction of the total number of windows in the dataset.

2.7 Effect of amplitude and standard deviation on DFA parameters

To gain insight into how basic characteristics of the EEG data, including amplitude and 

standard deviation, affect the DFA measurement, we performed simulations using pink 

noise. Pink noise was generated at 200 Hz for 20 minutes to match the characteristics of our 

EEG dataset. After bandpass filtering, the amplitude envelope was extracted by performing 

the Hilbert transform and calculating the magnitude of the analytic signal.

We then measured the DFA exponent and intercept of the simulated signal, using scaling 

factors to independently vary the amplitude and variance of the envelope. The 1000 scaling 

factors were linearly-spaced values from 1 to 100. To vary the overall amplitude, we 

calculated the mean value of the amplitude envelope, multiplied the mean by the scaling 

factor, and added this constant to the original envelope (Fig. 3, green line). To scale the 

variance, we first subtracted the mean from the original amplitude envelope, multiplied the 

zero-mean signal by the scaling factor, and added the original mean value back into the 

signal (Fig. 3, blue line). For each scaling factor, DFA was performed on all three envelopes: 

the original envelope, the envelope with increased amplitude, and the envelope with 

increased variance.
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3. Results

3.1 Hypsarrhythmia is associated with weaker long-range temporal correlations

In the beta frequency band, the EEGs of patients without hypsarrhythmia exhibited stronger 

autocorrelation values over all time lags when compared to data with hypsarrhythmia (Fig. 

4a). Both patient groups showed significant correlations over longer time lags than surrogate 

data (Fig. 4a), but the autocorrelation of data without hypsarrhythmia remained significantly 

higher than surrogate data over longer time lags (Wilcoxon rank-sum: p<0.01, z = −2.58, 

Fig. 4b). Results in other frequency bands were not significant (data not shown). The 

differences in the beta band motivated further investigation into how hypsarrhythmia 

disrupts temporal structure in EEG. Note, however, that we were unable to directly compare 

to the autocorrelation functions for the control group, as the control subject EEG data was 

often shorter and contained both sleep and wakeful states. The autocorrelation measurement 

is negatively impacted by the discontinuities created by concatenating the awake segments, 

and it was not possible to extract uninterrupted segments of awake data of sufficient length 

to directly compare the autocorrelation functions of the three groups.

Thus, further quantification and a comparison with control data warranted the use of 

detrended fluctuation analysis to more robustly characterize the strength of long-range 

temporal correlations in the data. First, we compared DFA exponents of patients with 

hypsarrhythmia to those without, regardless of whether the data was collected before or after 

treatment. Recall that some patients did not respond to treatment and still had 

hypsarrhythmia in the post-treatment EEG (4 out of 21 patients, see Table 1). Patients with 

hypsarrhythmia exhibited lower DFA exponents than control subjects in all frequency bands 

(Fig. 5, Wilcoxon rank-sum test: p<0.0125 corrected for multiple comparisons, average z = 

−3.74). Patients without hypsarrhythmia had significantly greater DFA exponents than 

patients with hypsarrhythmia in the theta (p<0.0125, z = −3.31), alpha (p<0.0125, z = 

−2.92), and beta (p<0.0001, z = −3.92) bands. There was no significant difference between 

patients without hypsarrhythmia and control patients in any frequency band (Fig. 5).

3.2 DFA parameters enable classification of patients with and without hypsarrhythmia

DFA analysis results in a straight line that is characterized by both its slope (exponent) and 

y-intercept (Fig. 2). The DFA exponent measures how the amplitude envelope is modulated 

over time, whereas the DFA intercept is a function of the standard deviation of the amplitude 

envelope (see Fig. 9d). When these two quantities were plotted against one another, we saw 

a separation between subjects with hypsarrhythmia (Fig. 6, red and pink circles) and those 

without hypsarrhythmia (Fig. 6, blue and black circles), regardless of treatment status (pre- 

or post-treatment). We note a strong negative correlation between the DFA intercept and 

DFA exponent in our data, despite the fact that they are derived from independent properties 

of the signal (Fig. 6).

We used a support vector machine to quantify our ability to classify patients with and 

without hypsarrhythmia. The SVM was trained first using only the DFA exponent as input 

(the one-dimensional case based on a simple threshold for the exponent), and then with both 

the exponent and intercept as inputs (the linear, two-dimensional case). When the data were 

Smith et al. Page 6

Brain Topogr. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classified using only the DFA exponent, the highest classification accuracy was 80.9%, 

based on the beta frequency band, with 80% sensitivity and 81% specificity (Table 2). When 

the intercept was added as a parameter, the mean classification accuracy, sensitivity, and 

specificity increased an average of 11% in all categories. Using both parameters as input, we 

achieved a maximum classification accuracy of 92% in the delta band with 92% sensitivity 

and 91% specificity (Table 2).

3.3 The change in the DFA exponent reflects treatment response

Successful treatment of infantile spasms is defined by both a resolution of hypsarrhythmia 

and a cessation of clinical spasms. In our dataset, 10 of the 21 patients were classified as 

“non-responders” because they still exhibited clinical spasms after the administered 

treatment. Four of those 10 patients had persistent hypsarrhythmia following treatment.

Based on the results in Section 3.1, we expected a group-wise increase in strength of long-

range temporal correlations due to the resolution of hypsarrhythmia in 17 subjects (see also 

Fig. 5). An analysis of pair-wise measurements in the theta and beta bands of pre- and post-

treatment datasets showed that a significant number of responders exhibited an increase in 

strength of long-range temporal correlations after treatment (Wilcoxon left-tailed sign-rank 

test: p<0.01), whereas non-responders did not (Fig. 7b and 7d).

In the beta band, responders had a greater increase in strength of long-range temporal 

correlations after treatment than non-responders (Fig. 7d). The median post-treatment DFA 

exponent in the beta band of responders was not significantly different from the median 

value for the control patients (Wilcoxon rank-sum: p=0.4509, z = −0.75). However, the non-

responder post-treatment median exponent was significantly lower than the control patient 

median exponent (Wilcoxon rank-sum: p<0.001, z = −3.44) (Fig. 7d). Accounting for the 

DFA intercept induces further separation between responders and non-responders 

(Supplementary Fig. 1). These results suggest that the change in the DFA exponent may 

reflect the clinical response to treatment, rather than just the presence or absence of 

hypsarrhythmia.

3.4 Interpretation of DFA exponent and intercept relative to basic EEG characteristics

Because the long-range temporal correlation measurement integrates information over many 

time scales, it is informative to interpret the DFA parameters relative to basic characteristics 

of the EEG that can be visually assessed by the human eye and are used for clinical 

diagnosis. For example, hypsarrhythmic EEG is clinically defined as a high amplitude 

signal, so pre-treatment EEGs with hypsarrhythmia have a much higher amplitude than post-

treatment EEGs without hypsarrhythmia. Indeed, our calculation of amplitude histograms in 

patient EEGs revealed a decrease in amplitude after treatment, consistent with a resolution 

of hypsarrhythmia in most cases (17 out of 21 patients) (Fig. 8). To investigate how this 

change in amplitude affected the analysis of temporal correlations, we performed DFA on 

simulated data with varying amplitude characteristics. We modulated both the overall 

amplitude value as well as the variance of the amplitude envelope (Fig. 3). Our simulations 

confirmed that the DFA exponent is robust to variations in the amplitude of the signal (Fig. 

9a and 9c). The DFA intercept is also independent from the EEG amplitude (Fig. 9b), but it 
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exhibits a logarithmic relationship to the scaled amplitude variance (Fig. 9d, see also Fig. 3, 

blue line).

4. Discussion

In this study, we demonstrated a relationship between infantile spasms and hypsarrhythmia 

and the strength of long-range temporal correlations in the developing brain. Consistent with 

the idea that long-range temporal correlations reflect the brain’s normal functional control of 

synchrony, we found that the strength of correlations in the EEGs of infantile spasms 

patients were weaker than those seen in healthy brains. Using the DFA parameters, the 

presence of hypsarrhythmia could be classified with up to 92% accuracy. We further found 

that successful treatment caused the strength of long-range temporal correlations to return to 

the level of control patients, with responders exhibiting a significantly greater increase in 

exponent values than non-responders. These results suggest that the strength of long-range 

temporal correlations may not only be an indicator of hypsarrhythmia, but also reflect 

treatment response.

Researchers and clinicians have tried to quantify various characteristics of hypsarrhythmia in 

an attempt to ameliorate the subjectivity of the assessment (Sue et al. 1997). Some groups 

have attempted to quantitatively describe the underlying functional and neuronal network 

that facilitates hypsarrhythmia through EEG-fMRI (Siniatchkin et al. 2007), source analysis 

methods (Japaridze et al. 2013), and detection of fast oscillations (Kobayashi et al. 2015). 

Though the hypsarrhythmia signal is often empirically described as “chaotic,” with the term 

describing the signal’s disorganized appearance (Pavone et al. 2013), the mathematical 

definition of chaos and signal nonlinearity has been explored in several forms of epilepsy 

(Babloyantz and Destexhe 1986; Van Putten and Stam 2001; Kannathal et al. 2014). In 

hypsarrhythmia, an inter-ictal phenomenon, the deviation from stochastic behavior was 

greater than in control data, but not as nonlinear as seen during seizure periods (Van Putten 

and Stam 2001). Our results correspondingly indicate that temporal structure reliably exists 

in hypsarrhythmia, although it is disrupted as an effect of the disease.

DFA has been used to show that the scaling properties of the EEG change when a patient 

experiences a stroke, enabling accurate detection of stroke by EEG in the absence of MRI 

(Hwa and Ferree 2004). In a study of epilepsy, long-range temporal correlations measured 

by DFA in depth electrodes and subdural EEG were shown to be stronger when in close 

proximity to the epileptogenic zone (Parish et al. 2004; Monto et al. 2007). Similar to our 

results, the effects of proximity to the seizure onset zone and treatment were the most 

prevalent in the beta frequency band (Monto et al. 2007). However the pathogenic zone in 

that study showed elevated levels of long-range temporal correlations (Monto et al. 2007), 

whereas our results showed weaker correlations in the untreated, pathologic state. Under the 

interpretation of DFA as measuring the functional self-control of the underlying network of 

the brain, we associated weaker temporal correlations with an inability to self-regulate the 

amplitude modulations necessary for healthy processing over long time scales.

The classification accuracy of infantile spasms patients in this study indicates that the 

strength of long-range temporal correlations measured with DFA is highly differentiable in 
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patients with and without hypsarrhythmia. We used a support vector machine to classify 

patients in this study to simulate how this measure might perform if used in a clinical 

environment. Because the training and testing procedures used in the SVM are independent 

of one another, the classification accuracy indicates how well new data would be categorized 

in the clinic based on data from a cohort of patients from a prior study. While our dataset is 

quite small, the high accuracy, sensitivity, and specificity are promising, and they support 

future investigation on the use of DFA in hypsarrhythmia identification for both diagnosis 

and treatment evaluation.

An assessment of long-range temporal correlations, by definition, analyzes longer temporal 

scales than typical time-frequency analyses. Because human reviewers are only able to 

visualize several seconds of EEG data at a time, a measure of control of the neural network 

over long time frames is a novel way to probe the severity of infantile spasms and 

hypsarrhythmia. Additionally, our quantitative measurement of long-range temporal 

correlations in these patients is unique in that we are assessing the ability of the neural 

network to regulate its own activity. The results of our simulations with pink noise indicate 

that DFA captures more complex characteristics of the EEG with greater clinical relevance 

than amplitude alone: the changes in DFA parameters after treatment are not influenced by 

large decreases in amplitude, but rather are secondary to alteration of the neuronal activity 

that underlies spasms and hypsarrhythmia.

Although there were slight increases in DFA exponents in the other frequency bands 

following successful treatment, the increases were most significant in the beta band. We 

hypothesize this may be the case for several reasons. First, studies show that high amplitude 

beta activity is a predominant EEG feature in healthy infants (Ebersole and Pedley 2003). 

Secondly, paroxysmal fast activity (PFA) and focal or lateralized beta activity are commonly 

seen in infantile spasms and other epileptic syndromes (Hooshmand et al. 1980; Wu et al. 

2008). In addition, some of the medications prescribed for patients with IS, such as 

barbiturates and benzodiazepines, are often associated with an increase in beta activity 

(Ebersole and Pedley 2003). Although beta activity is more prevalent in the spasms cases, 

the lower pre-treatment DFA exponents indicate that the activity is less correlated over long 

time scales. Thus, the stronger correlations seen after successful treatment may indicate that 

the brain has reestablished normal beta amplitude fluctuations associated with this stage of 

development.

There are several important limitations to the current study. Data collection was 

retrospective, which led to a variable amount of time between pre-treatment and post-

treatment EEGs and an inability to precisely control the dataset lengths. The relatively small 

number of patients included in this study is an effect of the rarity of the disease and 

precluded comparative analysis of antiepileptic medication and etiology of spasms. 

Although the diverse etiology of patients is a limitation of the current study, the surprising 

consistency of the strength of temporal correlations across both focal and generalized 

etiologies promotes the use of DFA as a potential widespread diagnostic tool in this disease. 

Additionally, though others have reported differences in the strength of long-range temporal 

correlations as a function of age (Smit et al. 2011), we found no significant correlation 

between age and DFA exponent in the control patients in our study (Supplementary Fig. 2). 
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We believe this is due to the narrow age distribution of the control patients (median age: 7 

months, IQR 5.75–11.25 months). Lastly, we tested only one epileptic syndrome, so it 

remains unknown whether the change in the strength of long-range temporal correlations is 

specific to infantile spasms or is a general marker for differentiating neuropathologies from 

normal cortical function.

In our dataset, there were several outliers that may have impacted our results, and these 

correspond to some of the confounding factors known to affect successful treatment. For 

example, patient 18 responded to treatment, but had a much higher pre-treatment DFA 

exponent than post-treatment, a pattern that was different than all other responders in the 

dataset (see small black arrows in Fig. 7). This patient, as well as three others, had a large 

time delay between spasms onset and the initiation of treatment (Table 1), a factor known to 

be associated with worse developmental outcomes (Riikonen 2010).

These limitations and gaps in knowledge necessitate further investigation into the effects of 

other clinical factors that confound the assessment of long-range temporal correlations in 

patients with infantile spasms. A prospective study with a much larger dataset will be 

required to assess how temporal structure is affected by factors such as therapy type and 

spasms etiology. As this study focused on analyzing the strength of temporal correlations in 

pre- and post-treatment EEG with respect to the presence of hypsarrhythmia and correlation 

with initial treatment response, larger prospective studies may elucidate changes in the EEG 

temporal structure associated with specific epileptic encephalopathies as well as their 

relationship to long-term outcome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Example EEG traces. a Awake EEG from control patient containing no epileptic activity. b 
Awake EEG from an infantile spasms patient with hypsarrhythmia
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Fig. 2. 
Example DFA plot. The DFA exponent, α, is the slope of the linear fit of the average of all 

channels. Each channel’s median fluctuation value (standard deviation of the detrended 

signal) is plotted as a circle for each window size. Window size is measured in data points. 

The intercept is calculated as the theoretical fluctuation value when the logarithm of the 

window size equals zero, represented by the filled dot on the y-axis
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Fig. 3. 
Example amplitude envelope traces used in simulated EEG filtered in the alpha band. The 

red line is the original extracted amplitude envelope from a simulated EEG signal. The green 

and blue lines depict the original envelope scaled with increased amplitude and variance, 

respectively
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Fig. 4. 
EEG data with hypsarrhythmia is associated with decreased temporal correlations in the beta 

frequency band when calculated with autocorrelation. a The median normalized 

autocorrelation function of the amplitude envelope in patients with hypsarrhythmia (red, 

n=25), patients without hypsarrhythmia (blue, n=17), and surrogate data (green, n=42). The 

respective shaded areas represent data between the 25th and 75th quantile of individual 

autocorrelation functions. The black line indicates the 95th quantile of the surrogate data 

used as the threshold of significance for patient data. b Boxplots of the distribution of lag 

times at which individual patient autocorrelation functions were no longer significant, for 

patient data with (red) and without (blue) hypsarrhythmia. Patients with intermittent 

hypsarrhythmia are included in the hypsarrhythmia boxplot
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Fig. 5. 
Hypsarrhythmia is associated with lower values of the DFA exponent (* = p<0.0125, ** = 

p<0.0001). Results are shown for a delta band (z = −2.54), b theta band (z = −3.64), c alpha 

band (z = −3.77), and d beta band (z = −5.03). Z-values report significance between 

hypsarrhythmia and controls. The red box designates hypsarrhythmia (n=25), blue indicates 

no hypsarrhythmia (n=17), and black represents control patients (n=21). Patients with 

intermittent hypsarrhythmia are included in the hypsarrhythmia boxplot
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Fig. 6. 
A plot of DFA exponent versus DFA intercept results in separation of patients with 

hypsarrhythmia from those without, enabling classification. Red open circles designate 

hypsarrhythmia pre-treatment and magenta closed circles indicate intermittent 

hypsarrhythmia pre-treatment. The red and blue stars indicate hypsarrhythmia and no 

hypsarrhythmia post-treatment, respectively. Black open circles represent control subjects. 

Results are shown for the a delta, b theta, c alpha, and d beta frequency bands
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Fig. 7. 
Greater increases in DFA exponent in the beta band are associated with treatment success. 

Data is shown for patients with hypsarrhythmia (red open circles), patients with intermittent 

hypsarrhythmia (magenta closed circles), patients without hypsarrhythmia (blue open 

circles), and control subjects (black open circles). The black lines indicate that the patient 

was a responder who had a resolution of hypsarrhythmia and spasms after treatment. The 

magenta lines represent patients that were non-responders with persistent spasms after 

treatment. The small black arrows indicate outlier patient 18 (see Discussion). Results are 

shown for the a delta, b theta, c alpha, and d beta frequency bands
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Fig. 8. 
Histograms of EEG amplitude. The count in each bin is represented as a fraction of the total 

number of occurrences. Histograms for a pre-treatment, b post-treatment and c control 

patients. Red lines designate patients with hypsarrhythmia, magenta for patients with 

intermittent hypsarrhythmia, blue for patients without hypsarrhythmia, and black indicates 

control patients. d Boxplot of the mode amplitude values for all pre-treatment (red), post-

treatment (blue), and control patients (black). Pre-treatment boxplot includes patients with 

intermittent hypsarrhythmia, and post-treatment boxplot includes patients that had persistent 

hypsarrhythmia and spasms after treatment
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Fig. 9. 
DFA results based on 1/f distributed noise filtered into the alpha band (8–12 Hz). a DFA 

exponent does not vary with increasing amplitude. b DFA intercept does not vary with 

increasing amplitude. c DFA exponent does not vary with increasing envelope variance. d 
DFA intercept varies logarithmically with increasing envelope variance
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Table 1.
Infantile Spasms Patient Clinical Information

Clinical information for 21 infantile spasms patients.

Patient Number Age at 
Treatment 
Initiation 
(months)

Spasms Etiology Medication Time 
between 
Onset of 
Spasms 

and 
Treatment 

(days)

Treatment Response

Hypsarrhythmia
Resolved

Spasms Resolved

1 12.0 Cortical Malformation VGB 35 No No

4 5.5 Neonatal HIE ACTH 7 Yes Yes

5 8.7 Unknown, Prematurity, Diffuse 
Cerebral Atrophy

ACTH 4 Yes Yes

6 6.8 Tuberous Sclerosis VGB 4 Yes Yes

8 4.5 Dysmorphic, likely genetic ACTH 14 Yes No

9 6.0 Neurofibromatosis Type I ACTH 3 Yes No

10 4.5 Unknown ACTH 10 Yes No

11 7.9 Paroxysmal Bifunctional 
Protein Deficiency

ACTH 7 Yes Yes

13 3.7 GBS Ventriculitis and 
hydrocephalus

VGB 7 No No

16 6.6 CDKL5 Mutation ACTH, VGB 23 Yes No

18 18.3 Unknown ACTH 270 Yes Yes

19 4.9 Neonatal HIE ACTH 8 Yes Yes

20 6.3 Unknown ACTH 30 Yes Yes

22 7.7 Unknown ACTH 30 Yes Yes

25 7.7 Tuberous Sclerosis VGB 7 Yes No

28 6.0 Chromosome 8 Abnormality & 
Stroke

ACTH 4 Yes Yes

29 5.8 Lissencephaly & Pachygyria ACTH 5 Yes Yes

30 5.3 Lissencephaly ACTH 90 No No

31 19.4 Bacterial Meningoencephalitis ACTH 90 Yes No

32 9.0 Prematurity and Left-sided 
IVH

ACTH 4 Yes Yes

34 4.9 Unknown ACTH 28 No No

Acronyms are defined as follows: HIE = hypoxic-ischemic encephalopathy, WM = white matter, GBS = Group B streptococcus, ACTH = 
adrenocorticotropic hormone, and VGB = vigabatrin.
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Table 2.

Support Vector Machine Classification of Hypsarrhythmia

Frequency Band Classification Accuracy Sensitivity Specificity

Exponent only Exponent and Intercept Exponent only Exponent and Intercept Exponent only Exponent and Intercept

Delta 69.1% 91.6% 62.95% 91.86% 73.77% 91.06%

Theta 77.6% 86.8% 67.52% 77.30% 85.27% 93.37%

Alpha 78.0% 88.9% 64.11% 74.27% 87.64% 98.99%

Beta 80.9% 82.9% 79.62% 75.90% 80.62% 88.24%
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