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Abstract

We analyzed, in an integrative fashion, the morphometry and structural integrity of the bilateral 

hippocampi and amygdalas in Alzheimer's disease (AD) using T1-weighted images and diffusion 

tensor images (DTIs). We detected significant hippocampal and amygdalar volumetric atrophies in 

AD relative to healthy controls (HCs). Shape analysis revealed significant region-specific 

atrophies with the hippocampal atrophy mainly being concentrated on the CA1 and CA2 while the 

amygdalar atrophy was concentrated on the basolateral and basomedial. In all structures, the 

structural integrity displayed a significantly decreased mean fractional anisotropy (FA) value and 

an increased mean trace value in AD. In addition to the inter-group comparisons, we 

systematically evaluated the discriminative power of our three types of features (volume, shape, 

and DTI), both individually and in their possible combinations, when differentiating between AD 

and HCs. We found the volume features to be redundant when the more sophisticated shape 

features were available. A combination of the shape and DTI features of the right hippocampus, 

with classification automatically performed by support vector machine, yielded the strongest 

classification result (overall accuracy, 94.6%; sensitivity, 95.5%; specificity, 93.3%).
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1. Introduction

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized 

by long-term memory loss, language impairment, and difficulty thinking. AD is the most 

common form of dementia, primarily affecting people over the age of 65 years. For research 

purposes, a probabilistic diagnosis of AD is usually based on neurological examinations and 

psychometric assessments such as the National Institute of Neurological and Communicative 

Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association 

(NINCDS–ADRDA) criteria [1]. However, with the ever-growing development of brain 

imaging techniques, structural abnormalities of the human brain have been identified as 

effective biomarkers for AD, especially for prodromal cases, and have been included in the 

research criteria for the diagnosis of AD [2].

Among the anatomical structures of particular interest to the study of AD are the medial 

temporal lobe (MTL) structures, such as the hippocampus and the amygdala, primarily 

because of their active involvement in memory [3–6]. Morphometric abnormalities, in terms 

of both the global volume and the local shape, induced by the neuropathology of AD in the 

hippocampus and the amygdala have seen considerable investigation. Assessments for such 

abnormalities are usually conducted via the examination of structural magnetic resonance 

images (MRIs) such as the T1-weighted image. Generally, volumetric atrophy of those two 

MTL structures is a consistent observation in studies of AD, something that is particularly 

true for the hippocampus [7–14].

During the past decade, advancements in shape analysis methods have facilitated the 

detailed examination of hippocampal AD shape abnormalities, such as local surface atrophy 

[15–21]. However, studies of the impact of AD upon amygdalar shape have been relatively 

few in number. Only in recent years has the study of local morphometric properties (such as 

the localized surface area, as induced by a surface mesh representing the shape) of the 

amygdala in AD begun to gain momentum, with the detection of significant, region-specific 

atrophy being recorded using advanced computational algorithms [17,20,22–26].

With the advent of diffusion tensor imaging (DTI) technique comes new tools and new 

perspectives with which one can assess AD-related structural abnormality. DTI enables the 

detection of diffusional brain abnormalities at a stage where macrostructural abnormalities 

may not yet be visible. DTI measures the diffusion of water molecules in neural tissue and in 

so doing quantifies structural integrities, such as the white matter (WM) integrity. It is from 

such measurements that we know of significant decreases of WM integrity in subjects with 

mild cognitive impairment (MCI) and AD [27–30].

When quantifying structural integrity, there are two DTI indices which are most often looked 

to. The first, fractional anisotropy (FA), is a scalar value between zero and one that measures 
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anisotropic water diffusion in the brain and reflects the degree to which directional diffusion 

occurs in the cellular structures of fiber tracts. FA provides useful information when 

examining fiber density, axonal diameter, and myelination in WM. A decrease in the FA 

value suggests a loss of fiber tract integrity and thus WM damage [31]. The second index, 

mean diffusivity (MD), measures the average diffusivity in the non-colinear directions of 

free diffusion [31]. An increase in MD indicates a loss of anisotropy and thus represents an 

increase in free water diffusion. Bringing these two DTI indices to bear in the analysis of the 

hippocampus and amygdala under AD is something yet to be fully attempted. There are two 

existing studies that consider the hippocampus [32,33] but none has approached the 

amygdala. This deficit may well be due to these structures lying outside the usual class that 

DTI is applied to; namely, WM structures as opposed to deep gray matter like the 

hippocampus and the amygdala. However, DTI may provide novel and unique angles for 

examining the hippocampal and amygdalar abnormalities induced by AD, especially in 

combination with the morphometric structural measures. Indeed, morphometric properties, 

in terms of volume and shape, and structural integrity, as measured by DTI indices, provide 

compatible and complementary information for understanding hippocampal and amygdalar 

abnormalities in the neuropathology of AD. With that in mind, this paper aims for an 

integrative investigation of both volume and shape alongside microstructural integrity with 

regard to the hippocampus and the amygdala of patients with AD as compared to healthy 

control (HC) subjects.

When examining shape, this study will make use of a well-established statistical shape 

analysis pipeline to explore the local morphometric properties of the hippocampus and the 

amygdala. This shape analysis pipeline lies in the framework of large deformation 

diffeomorphic metric mapping (LDDMM) [34], the key idea of which is to quantify local 

morphometric properties using a diffeomorphism that connects two coordinate systems of 

interest and is itself obtained as the endpoint of a geodesic. This pipeline has been 

successfully applied to various aspects of AD-related investigation, including the detection 

and quantification of subcortical surface area atrophies in MCI and AD [20] as well as 

preclinical AD [23,35], the quantification of rates of change in the localized surface areas of 

the hippocampus, the amygdala, and the ventricle in MCI and AD [24], the analysis of MTL 

shape neurodegeneration networks in preclinical AD [36], the interactive effects of the 

apolipoprotein E genotype and age upon hippocampal and amygdalar shapes in MCI and 

AD [37], and the estimation of the onset time for MTL morphometric abnormalities induced 

by AD [38]. In keeping with our previous studies, we will introduce high-field (7 Tesla) 

subregional divisions of the hippocampus (four subregions: CA1, CA2, CA3 combined with 

dentate gyrus, and subiculum) and the amygdala (four subregions: basolateral, basomedial, 

centromedial, and lateral nucleus) for a more detailed evaluation of the regionally specific 

shape abnormalities in AD.

Going beyond the quantification of AD-induced abnormalities of the hippocampus and the 

amygdala in terms of volume, shape, and DTI indices, for each structure, we will also 

explore the discriminative power of these features' corresponding biomarkers; its 

morphometric biomarkers, its DTI-derived biomarkers, as well as its combined multi-

modality biomarkers will be systematically tested for the capability to differentiate between 

AD and HC. Points of investigation include whether combining different types of features 
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will boost the classification accuracy and thus provide greater structure-specific 

discriminative abilities between AD and HC. Furthermore, we will explore the 

discriminative potential of introducing dimension reduction for the shape features. Guided 

by our previous work [20,37], we will consider principal component analysis (PCA) and 

Student's t-test as candidates for the dimension reduction techniques. For the discrimination 

algorithm, we will first examine the performance of linear discriminant analysis (LDA) 

before turning to support vector machine (SVM), the latter of which we include due to its 

superior performance in the context of high dimensional feature spaces and applicability to 

clinical disease categorization [39–43].

In summary, this study will present results from the following investigations: (1) quantitative 

comparisons of volumetric measurements of the bilateral hippocampi and amygdalas 

between HC and AD; (2) surface maps demonstrating the localized HC vs. AD surface area 

group differences in the bilateral hippocampi and amygdalas as well as their subdivisions 

into four compatible compartments; (3) comparisons between HC and AD in terms of the 

mean FA value and the mean trace value (the trace being three times the MD) within the 

bilateral hippocampi and amygdalas; and (4) structure-specific classification performance 

(overall accuracy, sensitivity, and specificity) in discriminating between AD and HC using 

various combinations of morphometric and microstructural features with two distinct 

machine learning techniques (LDA and SVM).

2. Materials and method

2.1. Participants and MRI dataset

A total of 29 patients with probable AD (M/F = 13/16, mean age = 67.5 ± 9.5 years), as 

assessed by the Alzheimer's criteria of the NINCDS–ADRDA [1], and 23 HC subjects (M/F 

= 11/12, mean age = 63.9 ± 7.5 years) were enrolled in this study at Tongji Hospital, Wuhan, 

China. Subjects with structural abnormalities that could produce dementia, such as cortical 

infarction, tumor, or subdural hematoma, along with those who had undergone treatment or 

had a concurrent illness (other than dementia) that interfered with cognitive function at the 

time of the MRI scan were not included in this study.

Of the total 52 subjects, 28 of the 29 AD subjects and all 23 of the HC subjects were 

scanned for structural data (T1-weighted image) acquisition using a 3D fast spoiled 

gradient-echo (FSPGR) sequence covering the whole brain of each subject with the 

following parameters: repetition time (TR) = 6.5 ms, echo time (TE) = 2.1 ms, inversion 

time (TI) = 400 ms, field of view (FOV) = 256 mm × 256 mm, phase FOV = 1, matrix = 256 

× 256, slice thickness = 1.0 mm, slice gap = 0 mm, number of excitations (NEX) = 1, flip 

angle = 15°, and scan time = 4 min 8 s. For the acquisition of the DTI data, 23 AD and 15 

HC subjects were scanned on a 3 Tesla (3 T) MR system (SignaHDxt, GE Healthcare, USA) 

with TR = 10,000 ms, TE = 83 ms, flip angle = 90°, matrix = 256 × 256, FOV = 240 mm × 

240 mm, phase FOV = 1, slice thickness = 3.0 mm with no space, NEX = 1, total slice = 42, 

and b value = 1000 s/mm2 along 30 directions.

The reader should note that the total number of subjects scanned for both T1-weighted 

image and DTI data was 37 (22 AD and 15 HC subjects). Therefore, when evaluating the 
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group differences in terms of morphometric properties (volume and shape), we used the 51 

subjects who had T1 data; when evaluating the group differences in terms of the DTI 

indices, we used the 38 subjects having DTI data; and when evaluating the discriminative 

power of different combinations of features, we used the 37 subjects who had both T1 and 

DTI data. Details of each subject's demographics as well as the availability of imaging data 

are presented in Table 1.

This study was approved by the internal institutional review board of Tongji Hospital and 

written informed consent was obtained from all participants; in the case of patients with 

dementia, consent was obtained from family members.

2.2. Volumetric segmentation from T1

For each of the 51 T1-weighted images, volumetric segmentations of the bilateral 

hippocampi and amygdalas were automatically obtained from a hierarchical segmentation 

pipeline [44] consisting of two steps; skull-stripping and brain structure segmentation. Built 

upon a two-level diffeomorphic multi-atlas likelihood-fusion algorithm in the framework of 

the random deformable template model [45], this segmentation algorithm has demonstrated 

superior performance when compared to other state-of-the-art methods, especially when 

applied to subcortical structures including the hippocampus and the amygdala. Detailed 

evaluations of the segmentation accuracy of this method can be found in our previous studies 

[44–46]. For the current study, we used 16 atlases (T1-weighted images) belonging to the 

same age range as the participants of this study. The four structures of interest (left and right 

hippocampus and amygdala) were manually delineated in each of the 16 atlases by a 

neuroanatomist with more than 15 years of experience in manual tracing. We visually 

examined the segmentation results and manual correction was employed when necessary to 

ensure a high segmentation quality. The volumetric measurement of each structure was 

calculated as the total number of voxels within that structure multiplied by the voxel 

resolutions (1 mm × 1 mm × 1 mm).

2.3. Shape processing

To extract the localized shape morphometrics, we created a 2-D triangulated surface 

contouring the boundary of each 3-D volumetric segmentation based on an approach similar 

to that which has been detailed and validated in an earlier study [20]. Briefly, for each 3-D 

volumetric segmentation corresponding to a structure of interest, its bounding surface was 

obtained by applying an optimized diffeomorphism to a template surface of that specific 

structure. These template surfaces for our structures of interest were created manually, 

ensuring sufficient smoothness and correct anatomical topology. Each optimized 

diffeomorphism was obtained through using LDDMM with appropriately selected 

parameters [47] to map the template segmentation to the scan-specific segmentation of the 

same structure. This surface-generation methodology was used to create the target shapes 

whose localized surface-based morphometrics, in terms of the surface areas associated to 

vertices of the triangulated mesh, were then extracted.

The localized surface-based morphometrics (the vertex-wise surface areas) of each target 

shape were quantified by a diffeomorphism that connected a common template shape to that 
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target shape. The common template shape of each structure of interest was itself generated 

from the collection of 51 target surfaces using a Bayesian template estimation algorithm [48] 

to ensure “population averaging” by iteratively minimizing the overall metric distance from 

the common template surface to each target surface, in the setting of LDDMM, until 

convergence. Proceeding onwards, we used the LDDMM-surface mapping algorithm [49] to 

map the common template surface to each individual target surface, from which a scalar 

field was subsequently calculated as the log-determinant of the Jacobian of the 

diffeomorphism. This scalar field, indexed at each vertex of the common template surface, 

quantifies the factor by which the diffeomorphism expands or shrinks the localized surface 

area in the target relative to the template in a logarithmic scale; i.e. a positive value 

corresponds to a localized surface area expansion of the subject relative to the template 

while a negative value suggests a localized surface area contraction. This structure-specific 

and subject-specific scalar field, referred to as the deformation marker, is what we ultimately 

compared between the two groups and used as the set of shape features in our subsequent 

discriminant experiments.

2.4. DTI index extraction

All DTI datasets were processed using a fully-automated and web-based DTI data 

processing pipeline (a module implemented at www.mricloud.org) that includes: (1) DTI 

image quality control through the correction of mis-registration between diffusion weighted 

images caused by patient motion and eddy-current-induced distortion [50]; (2) DTI image 

corruption detection and rejection [51]; and (3) tensor calculation, which included providing 

the 3D FA and trace maps.

Instead of co-registering the DTI images and the T1-weighted images in subject-based pairs, 

we opted to perform the morphometric analysis based solely on the T1-weighted images 

while separately analyzing the microstructural qualities of the DTI images. To extract the 

mean FA and mean trace values within the bilateral hippocampi and amygdalas of each 

subject, we automatically segmented those four structures of interest from DTI images using 

a multi-modality extension of the aforementioned T1-based segmentation algorithm — the 

multi-modality diffeomorphic multi-atlas likelihood fusion, with multiple atlases created 

from DTI images. Details about this multi-atlas DTI segmentation algorithm and its 

performance, as well as creation of the multiple DTI atlases, can be found in our previous 

work [52].

2.5. Group comparison analysis

For inter-group comparisons of the localized shape morphometrics of the bilateral 

hippocampi and amygdalas, we employed the same linear regression model as described in 

[20], namely yk(s) = βk, 0 + βk, 1g(s) + ∑covαcovXcov(s) + εk(s), where yk(s) is the deformation 

marker for subject s at vertex k of the structure-specific common template surface, g(s) is a 

binary group variable, Xcov(s) denotes the covariate information of subject s included in the 

analysis (in this study, we co-varied for age, gender, as well as the total intracranial volume 

(TIV) computed from the size of the brain's image after skull-stripping [44,53]), and εk(s) 

denotes a Gaussian noise structure. We tested the null hypothesis Hk
0: βk, 1 = 0 against the 
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general hypothesis Hk
1: βk, 1 ≠ 0 with the complete null hypothesis being Hk

0: βk, 1 = 0

simultaneously for all k. The statistical significance of a group difference is measured by a 

p-value obtained from Fisher's method of randomization; a non-parametric permutation test 

(a total of 40,000 permutations employed) was conducted by randomizing the model's 

residuals, more details on which can be found in Ref. [38]. To correct for multiple 

comparisons being performed simultaneously at all vertices of the template surface, we 

adjusted the p-values to control for familywise error rate (FWER) at a level of 0.05 based on 

the maximum statistic method [54]. For a direct comparison, we also present the statistical 

shape analysis results with the multiple comparison correction having been performed by 

controlling the false discovery rate (FDR) [55] at a level of 0.05. To examine the group 

differences between AD and HC in our global variables, the volumetric measurements and 

the DTI indices (mean FA and mean trace), we used the same linear regression model as that 

for shape, with the slight simplification of needing only one comparison at a time and being 

able to omit the multiple comparison correction. Please note that in the inter-group 

comparisons of DTI indices, we co-varied for age and gender but not TIV.

2.6. Template surface subdivision

With the help of accurate subsegmentations of the hippocampus and the amygdala based on 

high resolution MRI scans obtained from a high field scanner, we divided our common 

template surface for each of the four structures into multiple functionally-distinct anatomical 

subregions using the approach detailed in [20]. This subdivision was accomplished by 

manually sub-dividing the surfaces of high-field segmentations (obtained from a 7 T scanner 

with an image voxel resolution of 0.8 mm) and transferring the boundary definitions of those 

subregions to our population's common template surfaces using the geodesic positioning 

function provided by diffeomorphisms [56]. The geodesic positioning algorithm provides a 

diffeomorphic correspondence between the two atlas coordinate systems X7T
φ−1

φ
Xstudy, 

with the corresponding diffeomorphism φ transporting the label maps defined on the 7 T 

high field atlas to the population template surfaces. Both the left and right hippocampus 

were subdivided into four subregions; CA1, CA2, CA3 combined with the dentate gyrus, 

and the subiculum. The bilateral amygdalas were also subdivided into four subregions; the 

basolateral, the basomedial, the centromedial, and the lateral nucleus.

2.7. Discriminant analysis

For each structure, there are three types of extracted features, the volumetric measurement (a 

scalar), the vertex-based shape deformation marker (a scalar field defined on the vertices of 

the template surface), and the DTI indices (two scalars). Since there are a total of 372 

vertices on the left hippocampal template surface, 507 vertices on the right hippocampal 

template surface, 126 vertices on the left amygdalar template surface, and 200 vertices on 

the right amygdalar template surface, the shape features are of a rather high dimension when 

compared to the sample size (37 subjects). To reduce the dimension of the shape feature 

space for each structure, we performed PCA on the shape deformation markers of all the 

subjects to construct an orthonormal basis of principal components (PCs). This allowed our 

feature space of deformation markers to be linearly projected to the orthogonal directions 
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that carry the greatest shape variance. We selected the first M PCs that account for 95% of 

the total variance and restricted our feature space to this M-dimensional subspace. In 

addition to PCA, we could further reduce the dimension based on the results of Student's t-

tests; in this case, only those from that first M PCs whose projected coefficients differed 

significantly between the two groups at a level of 0.05 were retained.

For the classification problem, LDA and SVM were both investigated as our machine 

learning algorithms to perform automated classification on our reduced feature spaces. To 

estimate the true classification rates, we used leave one out (LOO) as our cross-validation 

strategy; we set aside one subject at the very beginning of the discriminant analysis to be the 

testing subject and then proceeded to use the other 36 subjects as the training datasets. It is 

important to note that the PCA process occurred inside the LOO loop; that is, both the PCA 

and the Student's t-tests were performed upon the 36 training subjects and thus a total of 37 

PCA and t-test based selection processes were performed per structure over the course of the 

experiment. The work flow of our discriminant analysis is illustrated in Fig. 1.

In this study, we first evaluated the discriminating capability of each of the three types of 

features (volume, shape, and DTI) of the left hippocampus, the right hippocampus, the left 

amygdala, and the right amygdala. Probing further, we then assessed the classification power 

yielded by combining different types of features, resulting in a total of four permutations: 

volume combined with shape, volume combined with DTI, shape combined with DTI, and 

shape combined with volume and DTI, for each structure of interest. It is worthy of note that 

in each case, given our initial feature space, we tested three stages of dimension reduction to 

evaluate the efficiency of our techniques; those being the original shape deformation 

markers, the shape deformation markers after PCA reduction, and the shape deformation 

markers after PCA and Student's t-test reductions. The classification accuracies collected 

from the range of settings were compared in terms of the overall classification accuracy (the 

percentage of all 37 subjects who were classified correctly), specificity (the percentage of all 

22 AD subjects who were correctly identified as being AD), and sensitivity (the percentage 

of all 15 HC subjects who were correctly identified as being healthy).

3. Results

3.1. Group comparisons

3.1.1. Volume analysis—The mean and standard deviations of the volumetric 

measurements of the four structures of interest in both AD and HC are presented in Table 2, 

along with the p-values obtained from the inter-group comparisons of these measurements 

for each structure. In this acquired data, we found significant volumetric atrophies of the 

bilateral hippocampi and amygdalas in AD relative to those in HC (all p-values smaller than 

0.05, see Table 2 for detailed values), with the atrophy of each structure in the right 

hemisphere being both stronger and more significant than its left hemisphere counterpart (as 

revealed by the group differences and the p-values). Fig. 2 gives structure-wise scatter plots 

of the volumetric measurements with separation by subject grouping, each having their 

group mean indicated. From these, the volumetric inter-group differences are apparent.
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3.1.2. Shape analysis—According to our vertex-based shape analyses, we detected 

significant group differences for each of the four structures upon rejecting the complete null 

hypothesis, the p-values of which are listed in Table 2. In Figs. 3–6, we present the shape 

analysis results at each vertex of the left hippocampus, the right hippocampus, the left 

amygdala, and the right amygdala respectively. In each of the four figures, panel (a) 

represents the shape difference maps after FWER-correction; that is, only vertices at which 

the significance of shape group differences survived the FWER multiple comparison 

correction are highlighted. Panel (b) represents the shape difference maps after FDR-

correction, and panel (c) represents the subregional divisions of each template surface.

As demonstrated in those four figures, significant regionally specific atrophies were detected 

on all four structures in AD relative to HC, with the magnitudes and the overall significance 

of the structures in the right hemisphere being much larger than those of the corresponding 

structures in the left hemisphere, which is consistent with our volumetric observations. 

Furthermore, the magnitude and significance of the hippocampal shape abnormalities are 

overall more substantial than those detected on the amygdala. The FWER-correction 

procedure was found to be more conservative than the FDR based correction, with the shape 

differences of many fewer vertices being determined to be statistically significant. As 

revealed by the template subdivisions of the left hippocampus in Fig. 3, the primarily 

affected regions of the left hippocampus belonged to CA1 and CA2. According to Fig. 4, the 

surface area atrophies on the right hippocampus were found on vertices belonging to parts of 

each subregion (CA1, CA2, CA3 combined with the dentate gyrus, and the subiculum), with 

the strongest atrophies occurring at vertices belonging to CA1, CA2, and the subiculum. The 

total number of vertices in the left amygdala that exhibited AD-related abnormalities is 

much smaller than those seen in the other three structures, being mainly concentrated on the 

centromedial region (see Fig. 5). For the right amygdala, as illustrated in Fig. 6, the 

significant group differences in terms of shape are strongly concentrated upon the 

basolateral and basomedial subregions.

3.1.3. DTI analysis—The summarizing statistics (mean and standard deviation) and 

group-comparison p-values of the mean FA and mean trace values for the four structures of 

the two groups are listed in Table 2, from which we observed lower FA and higher trace on 

average in HC than in AD. According to the p-values listed in Table 2, all group differences 

in terms of the two DTI indices have reached statistical significance except the left amygdala 

FA. This again corresponds to our morphometric findings that the HC vs. AD group 

differences in both volume and shape of the left amygdala are the weakest to be found 

among the four structures. In Figs. 7 and 8, we give the scatter plots of the subject-specific 

mean FA and mean trace values respectively, within the bilateral hippocampi and amygdalas, 

as well as the mean values computed across each group.

3.2. Discriminant analysis

The structural variability, as revealed by the shape deformation markers, was mainly 

concentrated on the first 12–13 PCs of the bilateral hippocampi and the first 6–7 PCs of the 

bilateral amygdalas. As there were a total of 37 instances of PCA for each structure, upon 

finding the first M PCs accounting for the 95% variability in our data, we saw that for the 
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left hippocampus, M = 12 in 34 instances and M = 13 in the remainder; for the right 

hippocampus, M = 12 in 31 instances and M = 13 in the remainder; for the left amygdala, M 
= 6 in 33 instances and M = 7 in the remainder; and for the right amygdala, M = 6 in 17 

instances and M = 7 in the remainder. The further reduction by Student's t-tests yielded a 

remaining 1–2 PCs for the left hippocampus (1 occurring in 16 cases and 2 in the other 21), 

2–4 PCs for the right hippocampus (2 occurring in 6 cases, 3 in 30 of the others, and a single 

case of 4), 0–1 PC for the left amygdala (0 occurring twice and 1 occurring 35 times), and 

0–1 PC for the right amygdala (0 occurring in 11 cases and 1 in the other 26). Given that it 

was a highly frequent occurrence for the Student's t-tests to exclude all of the amygdalar 

shape features, we concluded that the Student's t-test in addition to PCA was not a suitable 

dimension reduction procedure for the bilateral amygdalar features of this dataset. This issue 

may be resolved if there were more available subjects. Therefore, we will not report 

classification results involving amygdalar shape features after PCA and Student's t-tests.

3.2.1. Single feature analysis—In Table 3, we present the structure-wise classification 

rates, including the overall accuracy, the sensitivity, and the specificity, achieved when 

discriminating between AD and HC subjects using each one of the three feature types in 

isolation and when taking either LDA or SVM to be our classification algorithm. A careful 

examination of these results reveals that the hippocampus on average had a stronger AD-

discriminating capability than the amygdala, regardless of the machine learning algorithm 

and the feature type used. Furthermore, for each of the four structures of interest, SVM 

yielded classification accuracies similar to those of LDA when using the morphometric 

features, either volume or shape. However, SVM was highly superior to LDA when using 

the DTI features to perform the automated classification. Another interesting observation is 

that, for each structure of interest, when using LDA, shape deformation features were able to 

deliver the highest classification accuracy among the feature types whereas DTI features 

yielded the best results when using SVM. In fact, when using only a single type of feature, 

the combination of SVM and the DTI features of the left hippocampus yielded the best 

performance (overall accuracy, 89.2%; sensitivity, 90.9%; specificity, 86.7%). Between the 

two types of morphometric features, volume and shape, we observed that, with appropriate 

dimension reduction technique, the shape features outperformed volumetrics irrespective of 

the classification technique.

SVM was found to be generally superior to LDA in terms of discrimination based on high 

dimensional shape features. As shown in Table 3, the improvements brought about by the 

two dimension-reduction approaches, as applied to the shape features, have benefited LDA 

more than they have SVM. For the shape features of the left hippocampus, performing PCA 

yielded the highest overall accuracy when utilizing LDA for classification whereas SVM 

yielded the same overall classification accuracy based on either the original high 

dimensional shape features (372 dimensions) or the features after PCA (around 12 

dimensions). For the left hippocampal shape features, further dimension reduction via 

Student's t-tests did not help either LDA or SVM. For the right hippocampus, LDA applied 

to the shape features after PCA improved the overall accuracy by roughly 11% compared to 

the original shape features, and a further dimension reduction via Student's t-test improved 

the accuracy by another 13.5%. Applying SVM to the right hippocampal shape features after 
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PCA actually decreased the accuracy by 8% compared to the original shape features, but 

PCA followed by Student's t-test boosted the overall classification accuracy considerably, 

8% more than that obtained from using the original shape features. For the left amygdala, 

both LDA and SVM benefited from the PCA procedure with the improvement for LDA 

being more substantial than that for SVM (33% versus 8% in terms of increased overall 

classification accuracy). For the right amygdala, the LDA classification accuracy was 

improved by 19% when performing PCA whereas there was no difference in the SVM 

classification performance before and after PCA. Collectively, performing dimension 

reduction on the high dimensional shape deformation markers is much more crucial for LDA 

than for SVM.

3.2.2. Combined feature analysis—In our next discriminant experiment, we evaluated 

the discriminative power of using combinations spanning the different types of features. We 

first examined the combination of the two types of morphometric features, volume and 

shape (with shape features again being in three stages), the classification results of which are 

demonstrated in Table 4. Compared with the results obtained from using the two types of 

morphometric features separately, as shown in Table 3, we noticed that there were almost no 

benefits brought about by adding volume features to those of shape and sometimes the 

incorporation of volume served to slightly damage the shape derived results. Therefore, in 

our final experiment, we chose only to evaluate the combinations of shape (in the three 

stages) and DTI features. As shown in Table 5, for each of the four structures of interest, a 

combination of its shape features and its DTI features provided much better results than 

either did alone. The highest classification accuracy was obtained by the combination of the 

shape features, taken after PCA and Student's t-test for dimension reduction, and the DTI 

features of the right hippocampus for both LDA and SVM, with the results of utilizing SVM 

being even better (overall accuracy, 94.6%; sensitivity, 95.5%; specificity, 93.3%). To test 

our conjecture that the volume features are not needed when the more sensitive shape 

features are available, we returned to examine the classification results yielded by a 

combination of volume and DTI features as well as the complete combination of volume, 

shape, and DTI features. The detailed results can be found in Table A.1 and Table A.2 of the 

Appendix, from which it is clear that the volume features did not add discriminative power 

to that of the combined shape and DTI features in any of the four structures.

4. Discussion

In this study, we have investigated the abnormalities that Alzheimer's disease had induced on 

a population's bilateral hippocampi and amygdalas in terms of both morphometry (volume 

and shape) and microstructural DTI indices (FA and trace). In addition, for each structure of 

interest, we examined the discriminative power of each of the morphometric and 

microstructural biomarkers, as well as that of a variety of multi-modality combinations, 

when classifying between AD patients and normal aging people.

In alignment with prior studies, we found significant volumetric atrophies of the 

hippocampus and the amygdala in patients with AD [7–14,57]. According to our vertex-

based shape analysis, we observed significant, regionally specific, surface area atrophies on 

both the bilateral hippocampi and the bilateral amygdalas, which is also consistent with the 
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shape findings obtained from our previous studies [20,23] as well as other studies [15–

19,21,26], although shape analyses of the amygdala are less common than those of the 

hippocampus.

Our vertex-based shape analyses involved testing multiple hypotheses (one per vertex of the 

surface) simultaneously, which in turn necessitated a multiple comparison correction 

procedure. Active research on the multiple-testing problem in the functional neuroimaging 

community has been a feature of the past decade, with the current, most popular solutions 

being controlling the FWER or FDR. In this study, we evaluated both of these correction 

procedures when performing our localized shape analysis. We found FWER-correction to be 

more conservative than FDR-correction; the shape group differences in a much greater 

number of vertices were identified as being statistically significant after FDR-correction than 

after FWER-correction. This finding agrees with the general understanding that FWER-

correction is stricter than FDR-correction and is more likely to make pessimistic estimates. 

As such, FWER-correction is more appropriate when there is an overriding reason to avoid 

any incorrect rejections of the null hypothesis whereas FDR-correction is more appropriate 

when there is a good reason to tolerate an expected proportion (usually 5%) of the FDR-

corrected significance values being incorrectly rejected. It is not the intent of this study to 

rigorously prove which correction procedure should be adopted in vertex-based statistical 

shape analyses, although we will say that FWER-correction seems to be more likely to 

provide a definite detection of the local regions that have been affected by the pathology of 

AD.

As suggested by the template surface subdivisions, in this dataset, the pathology of AD 

mainly affected the CA1 and CA2 compartments of the left hippocampus (see Fig. 3) and a 

portion of each of the four compartments of the right hippocampus (see Fig. 4). This agrees 

partially with our previous work [20] wherein the subiculum of the left hippocampus, in 

addition to CA1 and CA2, has also been identified as having atrophied significantly in that 

dataset. The main differences between these two studies lay in their total numbers of 

subjects involved as well as the sources of their AD patients: firstly, 23 HC and 28 AD 

subjects were included in this study whereas there were a total of 210 HC and 175 AD 

subjects in that study; secondly, participants in this study were recruited in China whereas 

those of the previous study were mainly recruited in the US and Europe. It is also plausible 

that the AD patients in these two studies were at different stages of the disease progression 

trajectory. With that being said, the CA1 compartment was identified as being significantly 

affected on the bilateral hippocampi in both studies. This subregion is recognized as the one 

to be affected the earliest and the most severely by the neuropathology of AD in respect of 

neurofibrillary tangles [58,59], neuronal loss [60,61], in vivo atrophy as measured in manual 

segmentations of each subregion using structural MRI [62,63], as well as localized shape 

deformations [20,24,64–66]. Our observed CA2 atrophy of the hippocampus has also been 

reported in a range of previous publications [15,20,62,65–68].

According to our amygdalar shape analysis results (Figs. 5 and 6), the localized surface area 

atrophy in the right amygdala is more wide spread than that in the left amygdala, with the 

main subregions affected being the basolateral and basomedial components. A thorough 

survey of the AD literature would suggest that there have been very few published 
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amygdalar subfield morphometric analyses, with [69] being the sole example outside of 

previous studies by the current authors' research groups [20,23,24]. A direct comparison 

with the findings reported in [69] is challenging given that the subdivision criteria of the 

amygdalas were rather different. Compared with our previous studies, our amygdalar 

findings for this dataset are highly consistent.

In our DTI dataset, we found a decreased mean FA value and an increased mean trace value 

within each of the four structures of interest (bilateral hippocampi and amygdalas) in the AD 

group compared to the HC group, with all group differences having reached statistical 

significance except for that of the mean FA of the left amygdala. FA and trace (a linear 

variant of MD) are the most commonly used DTI-derived measurements. The lower FA 

values of the four structures in AD compared to HC may suggest a lower degree of 

myelination and imply that AD has induced injury and a loss of structural integrity in the 

corresponding structures. Meanwhile, the higher trace values may again indicate dysfunction 

of the four structures in AD in terms of microstructural degeneration. Similar DTI studies 

focusing on the hippocampus and the amygdala have been extremely rare; most DTI studies, 

in looking to understand AD, focused on white matter tracts such as the corpus callosum and 

structural connectivity between various brain regions. However, DTI statistics, such as the 

mean FA and mean trace values used in our study, applied to structures that have been 

identified as susceptible to the pathology of AD, may provide simple but powerful 

biomarkers for the disease, which can be all too easily overlooked.

In our structure-specific discriminant analysis of the three types of AD biomarkers 

(structural volume, shape deformations, and the DTI indices), we found that the 

hippocampus outperformed the amygdala in all situations. This superior sensitivity of the 

hippocampus, as an AD biomarker, justifies the much greater focus given to it relative to the 

amygdala in the AD research community. As demonstrated in Table 3, on average, the 

volumetric measurement was the least discriminative whereas shape deformations and DTI 

indices were case dependent, depending on the machine learning technique performing the 

classification. The volumetric measurement was found to provide redundant information in 

light of the shape deformation based features when discriminating between HC and AD; a 

combination of shape and volume features did not enhance and sometimes even weakened 

the classification performance of using shape features alone. This may be explained by 

shape deformations providing morphometric information which overlaps with that of 

volumetrics but is more detailed, and thus more sensitive. However, volume aside, a 

combination of the shape deformation features and the DTI indices boosted the 

discriminative capabilities of using either feature separately, yielding the highest accuracy of 

any feature combination tested. This suggests that the localized morphometrics, as 

represented by the shape deformation markers, and the microstructural informatics, as 

represented by the DTI indices, provide complementary information and their combination 

is of great benefit to the automated discrimination of AD and HC subjects. Overall, SVM 

outperformed LDA in the classifications of our experiments. However, LDA with 

appropriate dimension reduction strategies (such as PCA) was shown to be effective for 

shape deformation based classifications, at least in our setting of LDDMM. This agrees with 

observations from previous studies, also in the framework of LDDMM-based shape 

deformations [37,70,71].
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In this study, the best discrimination results came from a combination of the shape 

deformation features and the DTI indices of the right hippocampus, with PCA followed by 

Student's t-test being applied to reduce the shape dimension and SVM serving as the 

classification technique; to be specific, only 1 subject in each group was wrongly classified 

(see Table 5). The right hippocampus was also found to exhibit the strongest and most 

significant abnormalities in all three types of features, among all four structures of interest.

The reader should note that, given the sample size in this study, a difference of 1 subject will 

result in a marked change; that is, 4.5% in sensitivity and 6.7% in specificity. Applying the 

same classification procedures to another dataset with a much larger sample size is a most 

important aspect of future investigation to further validate and support the discriminant 

conclusions drawn from this study.

The primary goal of our discriminant experiments has been to explore the potential of each 

of the four structures in being an efficient AD-detection biomarker through utilizing its 

morphometric and microstructural features. As such, emphasis is not given to identifying a 

single set of biomarkers (some combination of structures and features) which will yield the 

highest classification accuracy. With that being said, our classification results do show 

strength. On the same dataset, using the shape deformation features combined with the two 

DTI indices of a single structure (the right hippocampus) in our study yielded the same 

discriminative capability as that described in [40] in which the most powerful biomarker 

came from a combination of the FA values of 47 white matter tracts and the volumetric 

measurements of 95 whole-brain anatomical regions, which itself reveals the superiority in 

AD-versus-HC discrimination of the shape + DTI multi-modality combinations. Extracting 

the shape and DTI features of other anatomical structures in addition to the hippocampus 

and the amygdala and exploring their intelligent combination across multiple structures will 

be a natural extension of this work in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AD Alzheimer's Disease

HC Healthy Control

DTI Diffusion Tensor Imaging

CA Cornu Ammonis

FA Fractional Anisotropy
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NINCDS–ADRDA National Institute of Neurological and Communicative 

Disorders and Stroke and the Alzheimer's Disease and 

Related Disorders Association

MTL Medial Temporal Lobe

MRI Magnetic Resonance Imaging

MCI Mild Cognitive Impairment

WM White Matter

MD Mean Diffusivity

LDDMM Large Deformation Diffeomorphic Metric Mapping

PCA Principal Component Analysis

LDA Linear Discriminant Analysis

SVM Support Vector Machine

TR Repetition Time

TE Echo Time

TI Inversion Time

FOV Field of View

NEX Number of Excitations

TIV Total Intracranial Volume

FWER Familywise Error Rate

FDR False Discovery Rate

LOO Leave One Out
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Fig. 1. Classification workflow
Work flow of the classification experiments using various combinations of features in a 

leave-one-out fashion.
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Fig. 2. Volumetric measurement of each subject for each structure
Scatterplots of the volumetric measurements (in mm3) for the bilateral hippocampi and 

amygdalas in HC (blue diamonds) and AD (red outlined circles) subjects. Bars denote the 

mean volumetric measurements of each group.
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Fig. 3. Shape analysis results on the left hippocampus
Panel (a) and panel (b) show the statistically significant vertex-wise surface area differences 

of the left hippocampus after FWER-correction and FDR-correction respectively. The color 

bar denotes the proportion of atrophy in AD relative to HC. Panel (c) denotes the four-

compartment subdivisions of the study-specific template surface of the left hippocampus.
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Fig. 4. Shape analysis results on the right hippocampus
Panel (a) and panel (b) show the statistically significant vertex-wise surface area differences 

of the right hippocampus after FWER-correction and FDR-correction respectively. The color 

bar denotes the proportion of atrophy in AD relative to HC. Panel (c) denotes the four-

compartment subdivisions of the study-specific template surface of the right hippocampus.
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Fig. 5. Shape analysis results on the left amygdala
Panel (a) and panel (b) show the statistically significant vertex-wise surface area differences 

of the left amygdala after FWER-correction and FDR-correction respectively. The color bar 

denotes the proportion of atrophy in AD relative to HC. Panel (c) denotes the four-

compartment subdivisions of the study-specific template surface of the left amygdala.
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Fig. 6. Shape analysis results on the right amygdala
Panel (a) and panel (b) show the statistically significant vertex-wise surface area differences 

of the right amygdala after FWER-correction and FDR-correction respectively. The color 

bar denotes the proportion of atrophy in AD relative to HC. Panel (c) denotes the four-

compartment subdivisions of the study-specific template surface of the right amygdala.
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Fig. 7. Mean FA value of each subject within each structure
Scatterplots of the mean FA values within the left and right hippocampus and amygdala in 

HC (blue diamonds) and AD (red open circles) subjects. Bars denote the value of the mean 

FA averaged across each group.
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Fig. 8. Mean trace value of each subject within each structure
Scatterplots of the mean trace values within the left and right hippocampus and amygdala in 

HC (blue diamonds) and AD (red open circles) subjects. Bars denote the value of the mean 

trace averaged across each group.
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