Skip to main content
. Author manuscript; available in PMC: 2018 Jul 25.
Published in final edited form as: Biometrics. 2015 Sep 22;72(1):242–252. doi: 10.1111/biom.12413

Table 5.

Estimation of log-linear model for four categorical variables (collapse categories for medium and high income): 2009 Michigan BRFSS.

Methods
Estimation Variable Level Complete Case Parametric MI
Exclude weights
Parametric MI
Include log(weights)
Synthetic MI
Exclude weights
Synthetic MI
Include log(weights)
Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE
Main effects Low income −0.01 0.12 0.08 0.13 0.04 0.12 0.04 0.13 0.02 0.13
Has insurance 0.61 0.12 0.64 0.12 0.62 0.11 0.69 0.12 0.68 0.12
White −0.94 0.11 −1.0 0.10 −1.0 0.11 −1.1 0.12 −1.1 0.12
Male −0.11 0.12 −0.09 0.10 −0.07 0.10 −0.07 0.11 −0.07 0.11
Two-way
Interactions
Low income x Has
insurance
−0.36 0.12 −0.37 0.12 −0.33 0.13 −0.31 0.11 −0.30 0.11
Low income x White −0.28 0.10 −0.20 0.09 −0.20 0.09 −0.22 0.09 −0.22 0.09
Low income x Male −0.03 0.09 −0.03 0.09 −0.07 0.09 −0.05 0.08 −0.05 0.08
Has insurance x White −0.13 0.12 −0.02 0.12 −0.02 0.12 0.02 0.13 0.03 0.13
Has insurance x Male −0.01 0.13 −0.12 0.10 −0.14 0.10 −0.15 0.10 −0.15 0.10
White x Male −0.08 0.09 −0.11 0.08 −0.11 0.09 −0.11 0.08 −0.10 0.08