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Abstract
Resting-state functional connectivity studies have dramatically improved our understanding of the early human brain
functional development during the past decade. However, one emerging problem that could potentially impede future
progresses in the field is the definition of regions of interest (ROI), since it is well known that functional connectivity
estimation can be seriously contaminated by within-ROI signal heterogeneity. In this study, based on a large-scale rsfMRI
data set in human infants (230 neonates, 143 1-year olds, and 107 2-year olds), we aimed to derive a set of anatomically
constrained, infant-specific functional brain parcellations using functional connectivity-based clustering. Our results
revealed significantly higher levels of signal homogeneity within the newly defined functional parcellations compared with
other schemes. Importantly, the global functional connectivity patterns associated with the newly defined functional
subunits demonstrated significantly increasing levels of differentiation with age, confirming increasing levels of local
specialization. Subsequent whole brain connectivity analysis revealed intriguing patterns of regional-level functional
connectivity developments and system-level hub redistribution during infancy. Overall, the newly derived infant-specific
functional brain parcellations and the associated novel developmental patterns will likely prove valuable for future early
developmental studies using the functional connectivity technique.
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Introduction
Fostering the most dynamic postnatal brain development
(Gilmore et al. 2007, 2012; Gao et al. 2009a, 2011, 2016; Tau and
Peterson 2010), the infancy period represents both great oppor-
tunity and vulnerability (Singer et al. 2001; Phillips et al. 2005;
Karevold et al. 2009). A better understanding of the brain’s func-
tional organization during this period is critical for potential early
identification of risks for developmental problems (e.g., language
delay, learning difficulties) and/or brain disorders (e.g., autism)

(Camfield et al. 1996; Burton et al. 2009; Lee et al. 2011; Braakman
et al. 2013; Dick et al. 2013). During the past decade, great pro-
gress has been made in characterizing the functional organiza-
tion of the developing infant brain based on the resting-state
fMRI (rsfMRI) technique (Biswal et al. 1995; Fransson et al. 2007;
Gao et al. 2009b, 2011, 2013; Smyser et al. 2010; Doria et al. 2011;
Alcauter et al. 2015). These studies revealed significant, sequen-
tial, and patterned growth of different functional networks dur-
ing infancy with significant behavioral correlations, supporting

© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

http://www.oxfordjournals.org


the great potential of deriving brain-based biomarkers of risks
using rsfMRI-based functional connectivity measures.

However, one difficulty that has been frequently encountered
is the lack of infant-specific functional brain parcellations, which
are urgently needed for both the definition of infant-specific
regions of interests (ROIs) and the interpretation of infant func-
tional connectivity patterns. We have previously propagated the
automated anatomical labeling (AAL) brain parcellations from
adult to infant space based on structural similarity using a non-
linear registration method (Shi et al. 2011), providing a set of struc-
tural brain parcellations for infants. However, there are major
limitations in the application of structural brain parcellations in
rsfMRI-based functional connectivity studies due to the potential
cancellation effects by averaging across heterogeneous BOLD
signals within a given ROI (Smith et al. 2011). Recognizing this,
different functional brain parcellation schemes have been pro-
posed for adult brain (Bellec et al. 2010; Kim et al. 2010; Lashkari
et al. 2010; Mumford et al. 2010; Power et al. 2011; Zhang et al.
2011) but infant-specific functional brain parcellations are yet to
be determined.

In this study, we aimed to define a set of normative func-
tional brain parcellations for neonate, 1-, and 2-year olds to
facilitate future studies of infant functional development. As the
first attempt, we opted to apply the AAL boundary as a spatial
constraint given its wide use in functional connectivity studies
and the interest to delineate local specialization patterns during
infancy within well-defined AAL regions. To achieve this, we
modified the original normalized cut (NCUT) approach (Shi and
Malik 2000) and incorporated a consistent similarity-based stop-
ping criterion during an iterative process to objectively deter-
mine the number of functional subunits within each AAL region
across different age groups. Our second aim was to characterize
novel functional brain developmental changes in local functional
specialization, global functional pattern differentiation, regional
connectivity, and whole brain hub distribution based on the
newly derived parcellations. Overall, we expect a nonlinear trend
featuring more developmental changes during the first year of
life (Gao et al. 2009b, 2016). Regionally, we hypothesize increasing
levels of local specialization with age within individual AAL
regions, especially among primary functional areas. Globally, we
expect to see a general “local to distributed” pattern featuring
decrease in short-range connections but increase in long-range
integrations (Fair et al. 2009; Gao et al. 2011). Particularly, we
hypothesize connectivity decrease among bilateral primary sen-
sorimotor regions (Gao et al. 2015) but increase between fronto-
parietal association regions in the anterior-posterior direction
(Gao et al. 2009b, 2015). Finally, regarding hub distribution, we
expect to replicate previous findings of a dominance in primary
functional areas during infancy (Fransson et al. 2011; Gao et al.
2011) but we also expect novel findings given the difference
between the current functional parcellation-based study and
previous investigations based on either original AAL region (Gao
et al. 2011) or voxel-wise search (Fransson et al. 2011). By deriving
a set of normative functional brain parcellations during infancy
and delineating the associated novel developmental patterns, we
hope our results will facilitate future studies of the normal and
abnormal functional brain development (Grewen et al. 2015;
Salzwedel et al. 2015, 2016).

Materials and Methods
Subjects and Data Acquisition

An adult data set was first used to test the effectiveness of
our functional parcellation methods, which were subsequently

applied to our infant data set to derive infant-specific func-
tional parcellations.

Adults
The adult data set was from FCON-1000 project (https://www.
nitrc.org/projects/fcon_1000, also see Biswal et al. (2010)). It
includes 198 healthy subjects with no brain lesions or mental
disorders (Buckner, R.L.; n = 198 [75M]; ages: 18–30 years).
Images were acquired at multiple centers using 3T scanners
with below parameters: for rsfMRI, 3 × 3mm3, TR = 3 s, 119
volumes, and for T1, 1–1.2mm isotropic resolution.

Infants
The infant data set was part of a large study of early brain
development in normal children (Gilmore et al. 2007; Gao et al.
2016); Neonates (n = 230 [106M]; scan age: 272–348 days); 1-year
olds (n = 143 [74M]; scan ages: 605–738 days); 2-year olds (n =
107 [64M]; scan ages: 973–1144 days). Inclusion criteria were
birth between gestational age of 35 and 42 weeks, appropriate
weight for gestational age, and the absence of major pregnancy
and delivery complications, as defined in the exclusion criteria.
Exclusion criteria included maternal pre-eclampsia, placental
abruption, neonatal hypoxia, any neonatal illness requiring
greater than 24 h stay at a neonatal intensive care unit, mother
with HIV, mother using illegal drugs/narcotics during preg-
nancy, and any chromosomal or major congenital abnormality.
This study was approved by the Institutional Review Board
(IRB) of the University of North Carolina at Chapel Hill.

Infant images were acquired using 2 scanners: 1) 3T head-
only Siemens Allegra with circular polarization head coil, and
2) 3T Siemens Tim Trio with 32-channel head coil. Functional
images were acquired using a T2*-weighted EPI sequence: TR =
2 s, TE = 32ms, 33 slices, and 4mm isotropic resolution. A total
of 150 volumes were acquired in 5min. Structural images were
acquired using a 3D MPRAGE sequence: TR = 1820ms, TE =
4.38ms, and 1mm isotropic resolution.

Preprocessing

Functional data were preprocessed using a common pipeline in
the FMRIB (for Functional MRI of the Brain) Software Library
(FSL; version 5.0.9) (Jenkinson et al. 2012). Steps included dis-
carding the first 10 volumes (20 s), slice-timing correction, rigid-
body motion correction, bandpass filtering (0.01–0.08 Hz), and
regression of white matter, CSF, and the 6 motion parameters.
Data scrubbing was also implemented; scrubbing criteria, 0.5%
signal change and 0.5mm framewise displacement (Power
et al. 2012). Subjects with less than 3min of functional data
after scrubbing were excluded. Structural image skull stripping
was doing using FSL and the Analysis of Functional
NeuroImages software suite (AFNI version 16.0.19; Cox, 1996).
The AFNI script @NoisySkullStrip was used to bolster skull-
striping in neonates, which on average demonstrate lower
tissue/skull contrast. For each subject and session, after an ini-
tial rigid alignment between functional data and T1-weighted,
high-resolution structural images, a nonlinear transformation
field was obtained from individual T1-weighted images to age-
specific T1-template images (Shi et al. 2011). Adult data were
aligned to MNI N27 (Holmes et al. 1998; Eickhoff et al. 2007).
Finally, the combined transformation field was used to warp
the preprocessed rsfMRI data to the template images.

Since the number of voxels can potentially influence the
parcellation process, we normalized the total number of brain
voxels across age groups, using 2-year old data as a reference.
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Specifically, the neonate and 1-year old data were upsampled
to 3.751mm and 2.928mm isotropic resolution, respectively,
resulting in approximately 16 000 total voxels in brain area for
each age group.

Method

Proposed Hybrid Iterative Normalized Cut (HI-NCUT) Approach
Flow chart of the proposed iterative NCUT method was pro-
vided in Supplementary Figure S1. We formulated the func-
tional parcellation of the brain into a graph-based partitioning
problem. Considering the whole brain is composed of tens of
thousands of voxels, the goal was to cluster these voxels into
structural and functional coherent regions.

Denote = ( )G V W, as a weighted graph consisting of a set of
vertices = { … }V v v v, , , N1 1 and edges = { ( ) ∈ }W w i j v v V, , ,i j . N is
the number of total vertices. ( )w i j, is the weight between verti-
ces vi and vj, and ( ) =w i j, 0 means they are not connected. In
fMRI data scenario, each brain voxel serves as a vertex, and
each voxel has a time series. We assigned the weight

( ) = ( )w i j s v v, ,i j to the edge between voxel vi and voxel vj,
where the ( )s v v,i j is their functional connectivity, computed by
nonnegative correlation coefficient between their time series.
The graph G can be cut into 2 disjoint sets, A and B, with

∪ =A B V and ∩ = ∅A B . The cut cost was defined as the sum
of the weights on edges connecting voxels in A to voxels in B:

∑( ) = ( )
∈ ∈

A B wcut , . 1
v A v B i j, ,

i j

Ideally, an optimal graph partition scheme would minimize the
cut cost. However, since cutting small sets of isolated nodes in
the graph will also satisfy low cut cost, a normalized cost was
proposed to avoid this bias. The NCUT was defined as a fraction
of the total edge connections to all the nodes in the graph:

( ) = ( )
( )

+ ( )
( )

( )A B
A B
A V

A B
B V

Ncut ,
cut ,

assoc ,
cut ,

assoc ,
, 2

where ( ) = ∑ ∈ ∈A V wassoc , v A v V i k, ,
i k

is the sum of weights on
edges connecting voxels in A to all the voxels in the graph.
Similarly, ( ) = ∑ ∈ ∈B V wassoc , v B v V j k, ,

j k
is the sum of weights on

edges connecting voxels in B to all the voxels in the graph. The
advantage of NCUT lies in its ability of minimizing the disasso-
ciation between the groups, as well as maximizing the associ-
ation within the groups.

Since NCUT only partitions the graph into 2 parts, one must
perform it multiple times to further cut the resulting parts into
more small parts to reach the final partition scheme. Previous
studies often predefined the final number of clusters, so that
NCUT would stop when total cluster reaches that number. In
this study, we defined a novel similarity-based stopping criter-
ion to objectively determine the number of functional parcella-
tions. As a data-driven approach, this is especially beneficial
when comparing the results from data with multiple age
groups, where the change of the whole brain’s functional
organization could be objectively delineated. Here we defined
the stopping criterion as within−between ratio:

( ) = −
( + )

WB A B,
within between

within between / 2

and

where

= ( ) + ( )
( − ) + ( − )

= ( )

( )

A A B B
N N N N

A B
N N

within
cut , cut ,

1 1
, between

cut ,
,

3
A A B B A B

where NA and NB are the number of voxels in partition A and B.
This within−between ratio was checked each time a NCUT

was performed. If it was larger than a given threshold, the par-
tition continued for each of the subparts. The program iterated
until the stopping criterion was reached on all partitions. The
resulting collection of partitions was considered as the final
brain parcellation map.

This method was applied to group correlation matrices based
on either the group average (averaging individual correlation
matrices) and group aggregate (concatenating times series from
individual subjects and calculate one group-representative cor-
relation matrix) approaches and the results were compared.

Structural Constraint Integration
In the last section, we introduced the brain parcellation method
based on voxel-wise functional connectivity measures. Recall, we
previously developed age-specific structural parcellations for
infants (Shi et al. 2011) and here our idea was to incorporate these
prior knowledge as structural constraints such that the final par-
cellation contained structural and functional coherent regions.

Denote a structural graph = ( )H V F, to represent the rela-
tionship of vertices and edges in our previously proposed struc-
tural infant parcellation at a given age. In this case, each brain
voxel serves as a vertex and belongs to a structural ROI. The
edges F stands for the voxel relationship, where ( ) =f i j, 1 if
voxel vi and voxel vj belong to the same ROI, and ( ) =f i j, 0 if
not. Since the fMRI data have been normalized into the struc-
tural space, this graph shares the same voxels V with the previ-
ous functional graph. To integrate this structural information
into the iterative NCUT in rsfMRI data, we redefined the weight
as follows:

⎪

⎪⎧⎨
⎩

( )=
( ) =
( ) =

( )w
s v v f i j

f i j
,

0

, 1

, 0
, 4i j

i j
,

where the weight is set to 0 if 2 voxels are not in the same
structural region. This constrained resulting clusters to follow
the structural borders, where voxels in the same structural ROI
were parcellated into more functional homogenous regions.

As pointed out by Shen et al., although minimizing NCUT is
an NP-complete problem, an approximate discrete solution
could solve this problem efficiently (Shen et al. 2010).

Experimental Design

Performance Measures
The lack of ground truth makes it difficult to evaluate the
resulting parcellation as well as select parcellation parameters.
Here, considering the goal was that the ideal parcellation would
have both inter-subject consistency in spatial topology and
individual homogeneity in the defined functional units, we
evaluated both structural consistency and functional homogen-
eity within the obtained parcellations.

First, Dice Similarity was used to evaluate the structural con-
sistency between different parcellation results obtained from
different subgroups of the original population. The conventional
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Dice Similarity compares 2 regions, = | ∩ | (| | + | |)DS A B A B2 / .
Since each parcellation map contains multiple regions and these
regions are not necessarily corresponding to the regions in
another parcellation map, we defined an Overall Dice Similarity
(ODS):

( ) ( )
=

∑ + ∑

+
( )

∈ ∈ ∈ ∈
DS A B DS A B

K K
ODS

max , max ,
, 5

i P j P
i j j P i P

i j

A B

A B B A

where KA and KB are the total number of partitions in parcella-
tion maps A and B, respectively. Specifically, each region in
map A will find a best overlapped region in map B, and simi-
larly each region in map B will find a best overlapped region in
map A. The Dice Similarity of all the regions in maps A and B
are then averaged into the Overall Dice Similarity. ODS ranges
from 0 to 1, with one representing perfect overlap.

Second, we employed the Silhouette Width (SI) to quantify
the functional homogeneity within defined parcellations. Given a
parcellation map contains K regions, where for the k-th region:

( ) = −
{ }

SI k
a b

a bmax ,
,k k

k k

where

∑=
( − )
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∈ ≠
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( )
∈
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b
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1
, ,k

k k i c
j c i j

k
k

where ck is a ROI, nk is the number of voxels in that ROI, ( )s v v,i j

is the functional connectivity between vertex vi and vj. Negative
SI values indicate incorrect clustering, and values near 1
represent a superior solution.

Comparisons Across Different Parcellation Methods in Adult Data
To evaluate the consistency of our proposed functional parcella-
tion methods, we randomly separated the 198 adult images into
5 groups with roughly equal numbers. Subsequently, the pro-
posed method was applied on the Group 5 data only to generate
a parcellation scheme, referred to as Proposed-Group5 (# of
regions = 192, objectively determined by our WB threshold of 50,
details on parameter setting in Supplementary Figs S2–S5). The
remaining 4 groups served as unseen images to evaluate the rep-
resentativeness of each parcellation in terms of within-unit func-
tional homogeneity. The proposed parcellation scheme was
compared with 3 other brain parcellations: 1) CC et al. (Craddock
et al. 2012); a hybrid brain parcellation scheme using rsfMRI func-
tional data and strict local spatial constraints (i.e., each voxel
only connects to its 27 nearest neighbors, # of regions = 200); 2)
CC-Group5; another parcellation generated by applying CC
et al.’s clustering method to our Group 5 data (# of regions = 200),
using the pyClusterROI software (http://ccraddock.github.io/
cluster_roi/); and 3) YJ et al. (Jin et al. 2015); a structural-based
parcellation by subdividing the original AAL template into sub-
regions with similar sizes using seeds from cubic parcellation
and region growing (# of regions = 203).

Control Analyses for Functional Parcellation of the Infant Brain
A series of testing/control analyses were carried out to better
stratify the resulting infant-specific functional parcellations.

First, similar as in adult, we evaluated the consistency of
group-level parcellations by separating the infant data at each
age into 2 groups. One group was used to generate the parcella-
tion scheme and the other group was used for evaluation of the
functional homogeneity. The proposed method and 3 other
comparison parcellations were all evaluated, including 1) CC
et al.; obtained by aligning their original parcellation to each of
the infant groups using nonlinear registration method ANTS
(Avants et al. 2011), 2) CC-Group2; generated by applying CC
et al.’s clustering method to the Group 2 data with the
pyClusterROI software within their mask, and 3) YJ et al.; gener-
ated by applying their anatomical parcellation method on the
age-specific AAL templates. Second, since the infant data were
acquired from 2 MR scanners, we limited our data to those
acquired using the same scanner to rule out the effect of 2
scanners on the resulting parcellation. Third, the subjects had
different number of time points after the data scrubbing
approach in image preprocessing. To evaluate that effect, we
matched the number of remaining number of rsfMRI volumes
across the 3 age groups and compared the resulting parcella-
tion to test the potential effects of differential motion contam-
ination. Finally, we assessed parcellations derived directly from
individual subjects to demonstrate the individual variability in
functional parcellation.

Characterization of Developmental Changes
The newly defined parcellations could serve as age-specific tem-
plates for cross-sectional functional connectivity investigations.
Moreover, they could be used to delineate longitudinal changes
in functional connectivity if such data are available. In this study,
we sought to characterize several domains of novel longitudinal
changes based on our newly derived parcellation schemes. First,
3 representative areas (including both primary areas of bilateral
pre/postcentral gyrus and higher-order areas of the insula) were
selected to demonstrate the developmental changes of local sub-
divisions across age groups. Second, a functional specialization
index (FSI) was derived to quantify the changes in local func-
tional specialization as indicated by the associated global func-
tional connectivity patterns. Specially, the 2-year final subunit
division map within each AAL area was used as a template and
warped back to neonates and 1-year olds to calculate the mean
cross-correlations of their whole brain functional connectivity
patterns. Subsequently, 1 minus the mean correlation was cal-
culated as the FSI which ranged from 0 to 1, with higher value
indicating higher levels of functional specializations across
different functional subunits. Then, we performed statistical
analysis on the FSI values to detect significant increases or
decreases for all AAL regions. Third, longitudinal changes (i.e.,
increase/decrease) of pair-wise functional connectivity changes
were detected and their associated topological features were
characterized. Specifically, a linear mixed effect (LME) model
was applied to each pair-wise connection to measure its
change associated with age. The fixed-effect model is: ~ +FCz 1

+ + + + +FD Glog Age Gender BirthWeight Scanner Age, where
FCz is the functional correlation strength, FD is residual fra-
mewise displacement, Scanner is the index of scanner used,
and GAge is gestational age at birth. Random effects for inter-
cept and log Age term were also added. A stringent threshold
of P < 0.001 after FDR correction was defined to feature the
most robust developmental changes in regional connectivity
(results with P < 0.05 after FDR correction were included in
Supplementary Material). Finally, we characterized the devel-
opmental changes in whole brain functional topography in
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terms of hub distributions based on betweeness-centrality
measures through graph-theoretical analyses (Rubinov and
Sporns 2010). Specifically, the parcellations were used as nodes
and functional connectivity from the data were used as edges
to form the brain network. Betweeness-centrality was defined
as the fraction of the shortest paths between any pairs of
nodes that travel through the node, and the nodes with value
larger than the mean plus standard deviation were classified
as the hub nodes. The derived distributions were also com-
pared across different brain parcellation schemes.

Experimental Results
Adult Data

Figure 1A shows the 2D and 3D views of the proposed parcella-
tion (based on WB = 50, details on parameter setting in

Supplementary Figs S2–S5) together with 3 comparison schemes.
Qualitatively, the proposed solution was distinct in appearance
featuring irregular ROI shapes and sizes compared with other
schemes (i.e., more sphere-like in shape with similar sizes).
Indeed, ROI size in the proposed parcellation showed a much
greater range (Fig. 1B) compared with the other parcellations.
The effectiveness of all 4 parcellation schemes were com-
pared by evaluating the functional homogeneity (SI) of each
defined functional subunit based on the 4 testing data sets
(Groups 1–4). Figure 1C demonstrates that the proposed par-
cellation scheme achieved the highest SI values, effectively
outperforming other comparison parcellations in each subset
(P < 0.001 for all 3 comparisons between the proposed scheme
and other schemes). Overall, a 2-way ANOVA with SI as the
observation, and group and method as the 2 factors confirmed
that the sum of square differences across testing groups (1–4)

Figure 1. Illustration of the brain parcellation maps in the proposed and comparison parcellations. (A) Shows 6 axial 2D slices, and 3D rendering results with the right,

left, top, and bottom views are provided. Note that random colors were used for visualizing different regions. (B) Shows the boxplot of the number of voxels in the

ROIs for different parcellations, and (C) Shows the boxplot of SI values for different brain parcellations in subject Groups 1–4. The circles in boxplots represent parcel-

lated functional regions. Denoted by *, the proposed scheme demonstrates statistically higher SI when compared with each of the 3 other schemes (P = 8.2e−74/4.2e
−75/2.3e−38, respectively).
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was small (i.e., 0.00075, P = 1.4e−11) but across methods was
drastic (i.e., 0.11, P = 2.2e−21).

Infant Data

Next, we applied the proposed iterative NCUT algorithm (WB =
50) on the Group 2 data of neonate, 1 year, and 2 years. Figure 2A
shows the 2D and 3D views of the resulting parcellations, and
Figure 2B shows the 3D views of the comparison parcellations. In
the Group 1 evaluation data (Fig. 2C), our analyses showed high
levels of within-unit homogeneity (SI: mean 0.82/0.79/0.78 for
0, 1, and 2-year olds) for parcellations derived from each subunit,
which were significantly higher than all 3 other comparison
schemes (P < 0.001). The Group 2 solution also demonstrated
high levels of similarity with the whole-group representations
(ODS: mean 0.89/0.87/0.83 for 0, 1, and 2-year olds).

Control Analysis

First, given that the number of subjects was heavily biased for
scanner-1 (Trio; 186 out of 230 in neonates (81%), 124 out of 143
in 1 year (87%), and 93 out of 107 in 2 years (87%)), we repeated
our analysis based on scanner-1 data alone. Our results showed
slightly higher levels of SI (0.84/0.80/0.80 for 0/1/2-year olds,

compared with 0.83/0.80/0.80 for 0/1/2-year olds) but 2 sample
t-tests confirmed that such differences did not reach statistical
significance (P values of 0.65, 0.73, 0.97 for 0/1/2-year olds).
Moreover, the structural consistency between the scanner-1
solution and the whole-group solution was also high (ODS =
0.89/0.90/0.87 for 0/1/2-year olds). Second, given that the num-
ber of remaining rsfMRI volumes after preprocessing was sig-
nificantly lower in neonates (130) than that of 1-year and
2-year olds (137 for both groups), we removed neonatal subjects
with the lowest number of remaining rsfMRI volumes untill the
mean time points equalled 137 to match that in 1 and 2-year
olds. The resulting neonatal parcellation was highly consistent
with our primary results (ODS 0.88) and the mean SI also did
not change (mean SI 0.83), suggesting robustness of our
results against slight differences in number of volumes post-
scrubbing. Finally, to evaluate the variability of parcellations
from individual subjects, we randomly selected 20 subjects
for each age group. Results show much lower function homo-
geneity (SI: 0.57/0.55/0.53 for 0/1/2-year olds) and anatomical
overlapping with the whole-group parcellations (ODS: 0.42/
0.41/0.37 for 0/1/2-year olds). This indicates the variability is
relative large between individual subjects while the group
average is more stable and preferred strategy to extract popu-
lation patterns.

Figure 2. Illustration of the brain parcellation maps in neonates, 1-year olds, and 2-year olds. (A) Shows 6 axial 2D slices, and 3D rendering results, where the right,

left, top, and bottom views are provided for the parcellations based on infant Group 2 data. Note that since the parcellations of 3 age groups have different sizes,

roughly similar 2D slices are selected to be shown and the size difference could be observed in 3D view. (B) Shows the 3D views of 2 comparison methods, and (C) is

the boxplot of functional homogeneity, evaluated on the Group 1 infant data. The circles in boxplots represent parcellated functional regions. Denoted by *, the pro-

posed scheme demonstrates statistically higher SI when compared with each of the 3 other schemes (P = 8.3e−113/8.5e−129/5.1e−11, respectively).
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Developmental Changes

Overall, the total number of functional subunits increased as a
function of age: 223 in neonates, 258 in 1-year olds, and 278 in
2-year olds, supporting our hypothesis of a general trend of
increasing levels of local specialization. The ODS between neo-
nates’ functional parcellation and 1-year olds’ was lower (0.51)
than that between 1 and 2-year olds (0.56) suggesting more
developmental changes in local subdivision during the first
year of life. Indeed, the FSI, quantifying the level of local spe-
cialization based on the associated global functional connectiv-
ity patterns, progressively increased at whole brain level
(mean: 0.47/0.56/0.60 for 0/1/2-year olds). Regionally, 60 out of
76 AAL regions (i.e., those showing local subdivisions after the
proposed functional clustering in 2-year olds) demonstrated
significantly enhanced differentiation with respect to global
functional connectivity patterns (i.e., FSI) when comparing neo-
nates with 1-year old (3 showing no changes while 13 regions
showing decrease). When comparing 1-year with 2-year olds,
46 out of 76 regions showed enhanced differentiation (5 regions
showing no significant changes and 25 showing decrease),
again supporting the nonlinear development of local specializa-
tion featuring more changes during the first year (see
Supplementary Fig. S6 for all regions).

Examples of age-dependent changes in local subdivisions
are presented in Figure 3A. As hypothesized, the bilateral pre-
and postcentral gyrus became more differentiated along the
medial-lateral axis, which is highly consistent with the sensori-
motor homunculus layout (number of subunits in left/right pre-
central gyrus: 2/3, 3/4, 8/5; in left/right postcentral gyrus: 1/1,
3/3, 3/3; for neonates, 1-year, and 2-year olds, respectively).
Intriguingly, the left precentral gyrus demonstrated consider-
ably more fine separations than the right during the second
year of life (i.e., from 3 to 8 for left precentral versus from 4 to 5

for the right precentral gyrus). In contrast, the higher-order
functional area of the insula maintained consistent anterior-
posterior segregation that is highly in line with adult findings
and our previous reports on infants (Alcauter et al. 2015). All
precentral and postcentral regions demonstrated significantly
enhanced FSI with age (Fig. 3B), which is highly consistent with
the increasingly differential global functional connectivity pat-
terns with age for all subdivisions (Fig. 3C). Interestingly, asym-
metry is found in insula where increasing FSI is observed in the
left side over time but not in the right side, suggesting that the
functional specialization of right insula reaches a similar level
in neonates compared with 1 year and 2 years of age (Biduła
and Króliczak 2015).

When assessing whole brain functional connectivity changes,
the expected local to distributed pattern was evident (Fig. 4A)
and the anatomical distances associated with increasing con-
nections were significantly longer than those associated with
decreasing connections (Fig. 4B). Moreover, increasing connec-
tions largely focused on bilateral occipital connections (28%),
frontal-parietal connections (20%), parietal-temporal connec-
tions (13%), and subcortical-cortical connections (17% for com-
bined subcortical-occipital/parietal/frontal connections, Fig. 4C).
In contrast, age-related decreases concentrated on within-lobe
connections (i.e., within subcortical 25%, within central 14%,
within temporal 7%). Finally, when evaluating whole brain hub
distribution using betweenness centrality measures, interest-
ing developmental patterns were also observed (Fig. 4D): 1)
consistent with our expectation, all 3 infant groups possessed
hubs in primary sensorimotor (e.g., PreCG. L, PCL. R, SMA. L in
neonates; PreCG. L, PCL. R, in 1-year olds; and PreCG. L/R,
PoCG. L/R, SMA. R in 2-year olds), visual (e.g., MOG. R, CAL. L in
neonates; IOG. R in 1-year olds; and MOG. R in 2-year olds),
and auditory cortices (e.g., MTG. R in neonates; MTG. R in
1-year olds; and MTG. L/R in 2-year olds); and 2) a novel

Figure 3. Demonstration of age-dependent subunit changes. (A) Subunit topologies in 5 representative areas in the 3 infant groups. (B) Boxplot of the mean

correlations of whole brain connectivity map between each pair of subunits in the representative areas. The circles in boxplots represent FSI in individual subjects;

*’s indicate significant differences (P < 0.001) between 2 age groups. (C) Illustration of the whole brain connectivity maps using the subunits in 2 years as seed regions.

In each panel, from left to right are for different subunits, and from top to bottom are for neonate, 1 year, and 2 years.
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pattern of orbital frontal areas as hubs was consistently
observed for all 3 age groups (e.g., ORBmid. L, ORBmid. R,
ORBmed. L in neonates; ORBmid. R in 1-year olds; and ORBsup.
L, ORBinf. R in 2-year olds).

Discussion
In this paper, we derived a set of normative functional brain
parcellations for infants aged between 3 weeks and 2 years of
age. Through functional connectivity-based clustering with
AAL boundary constraint, our parcellations ensured the defin-
ition of local subunits with homogenous functional representa-
tions. Indeed, our results in both adults and infants showed
higher levels of within-unit functional homogeneity than that
of other comparison parcellations. Developmentally, nonlinear,
local to distributed functional connectivity developmental
trends were revealed using the newly derived functional par-
cellations featuring both expected and novel findings.

Brain parcellations are widely used in functional connectivity-
based studies of the brain’s functional mechanisms. Two major
applications include: 1) the definition of seed regions for seed-
based functional connectivity analyses; and 2) the application of
the entire parcellation to segment the whole brain into a prede-
fined number of regions for graph theory-based analyses. In both
cases, the underlying assumption is functional homogeneity
within each ROI. However, this assumption is rarely fulfilled
when using structurally defined brain parcellations. In fact,
Smith et al. have elegantly conducted simulations demonstrating
that even with a moderate mixing of time series (20%) from dif-
ferent ROIs, the resulting sensitivity of detecting correlations
with the target ROI drop from 90% to 20% for many correlation
estimation methods (Smith et al. 2011). Empirically, Wang et al.
also showed significant differences in multiple brain functional

connectome properties when using different structural parcella-
tions on fMRI images, underscoring the effects of parcellation
selection on resulting functional brain investigations (Anand
et al. 2009). In light of this, different functional parcellations are
derived for adults. However, functional-based brain parcellations
specifically designed for infants are lacking. The dramatic func-
tional development process prohibits direct translation of adult
functional parcellations to infants thus the currently derived
infant-specific parcellations could be of high importance for
future studies of early functional brain development. To the
best of our knowledge, this is the first set of normative func-
tional brain parcellations derived specifically for infant popula-
tions. The proposed parcellations could serve as a common
coordinate space and thus better facilitate comparisons across
studies.

There are 3 major advantages of the currently derived infant-
specific functional brain parcellations. The first one is the higher
level of functional homogeneity compared with other established
functional brain parcellations as shown in Figure 2. Carddock
et al. defined a strict structural constraint (i.e., each voxel only
connects with its 26 nearest neighbors) (Craddock et al. 2012),
which likely explains the similarly sized sphere-like ROIs in their
parcellations (Fig. 2) with relatively lower functional homogeneity.
Indeed, Craddock et al. have shown that their approach yields
similar results after introducing random functional relationships
(i.e., discarding the inherent correlation relationships). The pro-
posed approach, although constrained by AAL boundaries, defines
sub-regions purely based on their functional similarity, resulting
in higher in-unit functional homogeneity compared with CC et al./
YJ et al. This represents important improvements since, again, a
small mix of signals can have devastating effects on the resulting
correlation estimation (Smith et al. 2011). Given the wide usage of
AAL, one added benefit of following AAL boundaries is that each

Figure 4. Demonstration of developmental changes. (A) Increased (left panel) and decreased (right panel) functional connections with age in LME model. Most robust

changes are highlighted here with P < 0.001 FDR corrected (see Supplementary Fig. S8 for P < 0.05 with FDR corrected). (B) Boxplot of the interregional distance (mm)

for the increased and decreased connections. The circles in boxplot represent different connections; *indicates the increased connections have significant longer dis-

tance than that of decreased connections (P < 0.001). (C) Pie plot shows the percentage of changes between major brain lobes where the regions are labeled when no

less than 5%. (D) Hub distributions for all age groups from the parcellations of the proposed method and a ranked list of hubs in all age groups. The node size reflects

the relative strength of betweenness centrality.
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resulting functional unit can be readily linked with an anatomical
annotation from the AAL parcellation. Second, we incorporated a
novel similarity-based stopping criterion to objectively define the
number of regions, which can be consistently applied across dif-
ferent age groups. Therefore, developmental changes in the num-
ber of local functional specialization can be studied in a more
objective way. Finally, our large sample sizes (N = 230, 143, and
107 for neonates, 1 year, and 2-year olds, respectively) allowed us
to do reproducibility analyses, effectively demonstrating high
levels of functional subunit definition consistency across different
subsamples for the proposed method (>80%). Such robustness is
critical for the resulting functional brain parcellations to be repre-
sentative and applicable for independent studies. In the future,
the generalizability of our parcellations to infants associated with
different risk factors (e.g., prenatal drug exposures) (Grewen et al.
2015; Salzwedel et al. 2015, 2016) will be tested.

Developmentally, there is an increasing trend for the total
number of brain parcellations from neonate to 2 years (i.e.,
223 in neonates, 258 in 1-year olds, and 278 in 2-year olds for
WB = 50; other WB thresholds produce similar trends too, see
Supplementary Fig. S5), confirming our hypothesis of increasing
levels of local specialization. This is especially true among pri-
mary areas as shown in Supplementary Figure S7; areas show-
ing increasing numbers of subunits concentrate more on
precentral and postcentral gyrus from neonates to 1-year olds
but shift to frontal and temporal regions from 1-year to 2-year
olds. This pattern of local specialization from primary to higher-
order areas is highly consistent with our previous delineation of
the sequential maturation of associated functional networks
(Gao et al. 2015), suggesting potential parallel development of
local specialization and global integration. More specifically, the
left precentral gyrus develops considerably more fine subdivi-
sions during the second year than the right (Fig. 3A). This may
indicate lateralized development reflecting better fine motor
functions of the right hand, which is consistent with the early
emergence of handedness, given the predominance (~90%) of
right-handedness in the general population (Scharoun and
Bryden 2014). For the insula, we replicated our previous finding
of functional segregation along the anteroposterior direction in
all 3 age groups starting from neonates (Alcauter et al. 2015).
However, when we quantified developmental changes in local
specialization based on global connectivity patterns, the left
insula demonstrated age-dependent increase in specialization
while the right failed, again implying certain level of left-right
asymmetry in development. The reported findings that the left
insula relates more to parasympathetic effects while the right
insula is more involved in sympathetic effects (Caspi et al. 2005;
Chiarello et al. 2013) may underlie such asymmetry. Detailed
interpretations of each AAL region’s fine subdivisions is beyond
the scope of this paper and deserves further study.

When examining global functional connectivity changes,
our results confirmed the local to distributed trend (Fig. 4B) dur-
ing early brain development (Gao et al. 2011). Importantly,
although the increasing long-range connections cover all 3
major directions of white matter fibers, including commissural
(especially within the occipital lobe), association (especially
frontal-parietal and parietal-temporal), and projection (subcor-
tical-cortical) directions, as in line with our previously reported
major white matter tracts development trend during this peri-
od (Gao et al. 2009a), the large contribution of frontoparietal
connections (i.e., 20%, second highest next to bilateral occipital
connections of 28%) is consistent with our previous delineation
of the fast synchronization of the default-mode network during
this period (Gao et al. 2009b, 2013). In contrast to long-distance

integrations, local specialization occurs more within lobes
and almost never occur in association direction (e.g., frontal-
parietal and parietal-temporal), suggesting drastic differences
in the topological distribution between integration and special-
ization. Specifically, as expected, decrease in connectivity focus
particularly on primary sensorimotor and subcortical areas,
which is in line with our previous reports of sensorimotor net-
work specialization (Gao et al. 2015) and thalamic functional
differentiation during early brain development (Alcauter et al.
2014). Finally, the distribution patterns of whole brain connec-
tion hugs based on the newly derived functional parcellations
confirmed major contributions from primary functional regions
(Fransson et al. 2011; Gao et al. 2011) but also revealed a novel
pattern of orbital frontal hubs during infancy, likely reflecting
the important role of attachment during early brain and behav-
ioral development (Minagawa-Kawai et al. 2009).

Several limitations deserve further discussion. The first one
relates to thresholding; although we designed a novel data-
driven stopping criterion which enabled the selection of a
finite number of total areas in an objective and consistent
fashion across different age groups our results are still depend-
ent on the selection of the WB threshold. We chose to present
a WB threshold of 50 yielding around 200 regions in adult data
for fair comparison with other methods (Supplementary Fig.
S2). Moreover, our simulations also suggest it is a balance
point for the reproducibility between functional homogeneity
and structural consistency (Supplementary Fig. S4). However,
we recognize that it is still an open question as to what is an
optimal representation of the brain’s functional organization.
Therefore, we provide different sets of parcellations at differ-
ent thresholds such as WB of 30, 40, 50, and 60 (results are
shown in Supplementary Fig. S5), and will make them avail-
able to the public via the NITRC repository (https://www.nitrc.
org/projects/functionalatlas). Another limitation relates to the
application of AAL boundaries as the spatial constraint. This
constraint was chosen mainly because of 2 considerations: 1)
the wide application of AAL in functional connectivity studies
in both adult and infant studies, and 2) the added spatial
constraint reduces computational complexity and helped
maintain the local contiguity of the resulting functional parcel-
lations. However, future efforts without this spatial constraint,
or possibly using different spatial constraints, are needed to
compare and/or expand the current parcellations. We also
note that there is a recently developed multi-modal adult brain
parcellation (Glasser et al. 2016) but priors obtained from this
adult parcellation could not be directly translated to infant
parcellation construction given the known dramatic develop-
mental changes. However, future explorations using similar
gradient-based parcellation approaches are deserved to com-
pare with the current parcellations. Nevertheless, given the
goal of deriving the most functionally homogenous ROIs to
facilitate rsfMRI studies of the developing brain, the benefits
of incorporating multi-modal MRI data sets to this specific
aim remains to be determined. Finally, the potential of deriv-
ing and applying individual-specific functional parcellations
deserves further investigation.

In conclusion, based on a novel iterative NCUT method
combining a spatial constraint and a data-driven stopping cri-
terion, we derived the first set of normative functional brain
parcellations for infants aged between 3 weeks and 2 years of
age. Novel developmental patterns associated with this set of
functional parcellations were also delineated. With improved
in-unit functional homogeneity and high levels of specificity to
infant data we hope the derived functional parcellations will
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facilitate future functional characterization of the developing
brain.
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