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Patients with acute severe traumatic brain injury may recover consciousness before self-expression. Without behavioural evidence

of consciousness at the bedside, clinicians may render an inaccurate prognosis, increasing the likelihood of withholding life-sus-

taining therapies or denying rehabilitative services. Task-based functional magnetic resonance imaging and electroencephalography

techniques have revealed covert consciousness in the chronic setting, but these techniques have not been tested in the intensive care

unit. We prospectively enrolled 16 patients admitted to the intensive care unit for acute severe traumatic brain injury to test two

hypotheses: (i) in patients who lack behavioural evidence of language expression and comprehension, functional magnetic reson-

ance imaging and electroencephalography detect command-following during a motor imagery task (i.e. cognitive motor dissoci-

ation) and association cortex responses during language and music stimuli (i.e. higher-order cortex motor dissociation); and

(ii) early responses to these paradigms are associated with better 6-month outcomes on the Glasgow Outcome Scale-Extended.

Patients underwent functional magnetic resonance imaging on post-injury Day 9.2 � 5.0 and electroencephalography on Day

9.8 � 4.6. At the time of imaging, behavioural evaluation with the Coma Recovery Scale-Revised indicated coma (n = 2), vegetative

state (n = 3), minimally conscious state without language (n = 3), minimally conscious state with language (n = 4) or post-traumatic

confusional state (n = 4). Cognitive motor dissociation was identified in four patients, including three whose behavioural diagnosis

suggested a vegetative state. Higher-order cortex motor dissociation was identified in two additional patients. Complete absence of

responses to language, music and motor imagery was only observed in coma patients. In patients with behavioural evidence of

language function, responses to language and music were more frequently observed than responses to motor imagery (62.5–80%

versus 33.3–42.9%). Similarly, in 16 matched healthy subjects, responses to language and music were more frequently observed

than responses to motor imagery (87.5–100% versus 68.8–75.0%). Except for one patient who died in the intensive care unit, all

patients with cognitive motor dissociation and higher-order cortex motor dissociation recovered beyond a confusional state by

6 months. However, 6-month outcomes were not associated with early functional magnetic resonance imaging and electroenceph-

alography responses for the entire cohort. These observations suggest that functional magnetic resonance imaging and electroen-

cephalography can detect command-following and higher-order cortical function in patients with acute severe traumatic brain

injury. Early detection of covert consciousness and cortical responses in the intensive care unit could alter time-sensitive decisions

about withholding life-sustaining therapies.
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Introduction
Current clinical tools are not reliable for detecting con-

sciousness or predicting recovery in patients with severe

traumatic brain injury (TBI). Bedside behavioural examin-

ation, the gold standard for clinical assessment of con-

sciousness, may be limited by a patient’s neurological

deficits (e.g. aphasia, quadriparesis), fluctuating state (e.g.

related to arousal, pain, medical complications) or an

examiner’s subjective interpretation of ambiguous re-

sponses (Gill-Thwaites, 2006). These limitations lead to

an approximately 40% rate of misclassifying conscious pa-

tients as unconscious (Childs et al., 1993; Andrews et al.,

1996; Schnakers et al., 2009). Given that early recovery of

consciousness is associated with better long-term functional

outcomes (Giacino and Kalmar, 1997; Whyte et al., 2001),

the absence of a reliable diagnostic tool for detecting con-

sciousness in the intensive care unit (ICU) creates uncer-

tainty for families facing decisions about continuation of

life-sustaining treatments and limits access to rehabilitative

care for patients who are given inaccurate poor prognoses.

Since a landmark study in 2006 demonstrated that func-

tional MRI can detect evidence of consciousness in a pa-

tient whose chronic behavioural examination suggested a

vegetative state (also referred to as unresponsive wakeful-

ness syndrome) (Owen et al., 2006), there has been grow-

ing interest in using functional imaging techniques to

identify covert consciousness, or cognitive motor dissoci-

ation (CMD) (Schiff, 2015). Recent functional MRI and

EEG studies using active motor imagery tasks have demon-

strated that a small but important minority of patients with

chronic post-traumatic disorders of consciousness shows

signs of CMD, as evidenced by command-following

during the task (Monti et al., 2010; Cruse et al., 2011).

In addition, studies using passive language and music

stimuli have shown that some patients with chronic

post-traumatic disorders of consciousness demonstrate

association cortex responses despite absent behavioural

evidence of language expression and comprehension

(Coleman et al., 2009; Okumura et al., 2014), a state

defined here as higher-order cortex motor dissociation

(HMD). Yet, despite emerging evidence that functional

MRI and EEG can detect CMD and HMD in patients

with chronic post-traumatic disorders of consciousness,

no studies have focused on ICU patients with acute

severe TBI. Early detection of consciousness and higher-

order cortical function in this population could not only

inform the diagnosis of level of consciousness but could

also predict subsequent recovery of meaningful neuro-

logical function (Giacino and Kalmar, 1997; Whyte

et al., 2001; Coleman et al., 2009; Stender et al., 2014).

Furthermore, early, reliable, and objective information

about a patient’s level of consciousness may assist care-

giver and family decision-making in the ICU.

In this prospective observational study, we hypothesized

that: (i) stimulus-based functional MRI and EEG detect

CMD and HMD in ICU patients with acute severe TBI;

and (ii) better 6-month outcomes on the Glasgow

Outcome Scale-Extended (GOSE) are associated with

early functional MRI and EEG responses.

Materials and methods

Experimental design

We prospectively screened all patients with TBI admitted to
the Neurosciences ICU, Multidisciplinary ICU, and Surgical
ICU at a single academic hospital between June 2012 and
November 2014. Inclusion criteria were: (i) age 18 to 65
years; and (ii) head trauma with Glasgow Coma Scale score
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of 3–8 with no eye opening for at least 24 h. Exclusion criteria
were: (i) life expectancy 56 months, as estimated by a treating
physician; (ii) prior severe brain injury or neurodegenerative
disease; (iii) penetrating TBI with intracranial metal or other
body metal precluding MRI; and (iv) no fluency in English
prior to the injury (because the functional MRI and EEG para-
digms were administered in English).

Surrogate decision-makers were approached for consent
524 h after injury, and written informed consent was obtained
in accordance with a research protocol approved by our
Institutional Review Board. Functional MRI was performed
as soon as the patient was clinically stable for transport to
the MRI scanner, as determined by the treating ICU physicians
and nurses. Whenever possible, the EEG was scheduled within
24 h of the functional MRI scan to enable comparison of the
functional MRI and EEG data. Administration of sedative,
anxiolytic, and/or analgesic medications was allowed for pa-
tient safety or comfort during the functional MRI and/or the
EEG.

A cohort of age- and sex-matched healthy subjects was en-
rolled to compare their functional MRI and EEG responses to
those of the patient sample. Healthy subjects had no history of
neurological, psychiatric, cardiovascular, pulmonary, renal or
endocrinological disease. They provided written informed con-
sent and underwent the same functional MRI and EEG proto-
cols as the patients. All patient and healthy subject MRI scans
were performed on the same scanner, and EEGs were per-
formed using the same equipment.

Neurobehavioural and outcome
assessments

Demographic and clinical data were collected at the time of
enrolment in accordance with the National Institutes of Health
Common Data Element Guidelines for TBI (Maas et al., 2010).
Immediately prior to functional MRI and EEG, each patient’s
level of consciousness was characterized via behavioural evalu-
ation with the Coma Recovery Scale-Revised (CRS-R) (Giacino
et al., 2004) as coma, vegetative state, minimally conscious
state without language function (MCS�; i.e. at least one of
the following: visual fixation, visual pursuit, object localiza-
tion, localization to noxious stimulation, object manipulation,
automatic motor responses, or non-functional communica-
tion), minimally conscious state with language function
(MCS+ ; i.e. at least one of the following: command-following,
object recognition, or intelligible verbalization) (Giacino et al.,
2002; Bruno et al., 2012b; Schnakers et al., 2015a), or emer-
gence from the MCS (i.e. functional object use and/or func-
tional communication). If a patient emerged from MCS, the
diagnosis of post-traumatic confusional state (PTCS; Stuss
et al., 1999) was confirmed based on criteria derived from
the Confusion Assessment Protocol (CAP) (Sherer et al., 2005).

Functional outcome at 6 months was measured with the
GOSE (Wilson et al., 1998). Patients and their surrogates
were assessed either in-person at the study site or, if this was
not feasible, through a validated GOSE phone questionnaire
(Pettigrew et al., 2003). Six-month level of consciousness was
also recorded for patients who returned for in-person CRS-R
and CAP evaluation and for patients whose medical records
from an affiliated rehabilitation hospital included clinical as-
sessments with the CRS-R and CAP. All behavioural

evaluations and outcome assessments were conducted by a
single investigator (B.L.E). Additional details regarding charac-
teristics of the CRS-R, CAP, and GOSE are provided in the
Supplementary material.

Functional MRI data acquisition

MRI data were acquired with a 32-channel head coil on a 3 T
Skyra MRI scanner (Siemens Medical Solutions) located in the
Neurosciences ICU. Auditory stimuli were presented to all
subjects via MRI-compatible earphones (Newmatic Medical)
connected to the scanner’s sound system. The blood oxygen
level-dependent (BOLD) functional MRI sequence used the fol-
lowing parameters: echo time = 30 ms, repetition time = 4000 ms,
in-plane resolution = 2.0 � 2.0 mm, slice thickness = 2 mm, inter-
slice gap = 2.5 mm, matrix = 94 � 94, field of view = 192�
192 mm2, 49 slices, 2� GRAPPA acceleration. High-spatial
resolution 3D T1-weighted multi-echo magnetization prepared
gradient echo (MEMPRAGE) anatomical images were acquired
for registration purposes (van der Kouwe et al., 2008): field of
view = 256 � 256 mm2, acquisition matrix = 256 � 256, 176 sa-
gittal slices (thickness 1 mm), 3� GRAPPA acceleration, echo
time = 1.69, 3.55, 5.41, and 7.27 ms, repetition time = 2530 ms,
inversion time = 1200–1300 ms, 1.0 mm3 isotropic resolution,
flip angle = 7�.

Stimulus-based functional MRI
paradigms

Each functional MRI paradigm utilized a block design and
was comprised of two runs, with each run containing three
24-s rest blocks and two 24-s stimulation blocks
(Supplementary Fig. 1). In total, 144 s of rest data and 96 s
of stimulation data were analysed for each paradigm. Prior to
the first rest block, 36 s of data were acquired to obtain a
stable baseline BOLD signal. These data were excluded from
analysis.

The language paradigm consisted of alternating 24-s blocks
of rest, forwards language, rest, backwards language, and rest.
The forwards language stimulus was a clip from John F.
Kennedy’s Inaugural Address. This 24-s clip was time-reversed
to create the backwards language stimulus. Backwards lan-
guage functional MRI data were acquired as part of a pre-
planned secondary analysis, based on findings from a
previous study showing that differential cortical activation pat-
terns during forwards versus backwards language may reveal
linguistic processing as compared with non-linguistic process-
ing (Fernandez-Espejo et al., 2008). The backwards language
acoustically matched the forwards language but violated sev-
eral phonological properties of language. These characteristics
make backwards language a potential control condition for
non-linguistic aspects of speech (Fernandez-Espejo et al.,
2008).

The music paradigm used the same block design as the lan-
guage paradigm. The music stimulus was a 24-s clip from
Aaron Copland’s ‘Rodeo – Four Dance Episodes’ with fre-
quent changes in tempo, to increase the probability of obser-
ving a brain response to music (Danielsen et al., 2014), and no
lyrics, to investigate cortical processing of prosody and rhythm
without processing linguistic content (Danielsen et al., 2014).
This paradigm was included based on prior studies suggesting
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that music alters cortical activity and connectivity in healthy
subjects (Kovacs et al., 2006; Brattico et al., 2011; Wu et al.,
2013) and patients with impaired consciousness (O’Kelly et al.,
2013; Okumura et al., 2014).

The motor imagery paradigm involved a right hand squeeze
imagery task previously used in patients with chronic
disorders of consciousness (Cruse et al., 2011, 2012). This
paradigm used the same block design as the language and
music paradigms, except that instructions were repeated at
6-s intervals (e.g. ‘keep squeezing’ or ‘keep resting’).
Instructions administered before and during the functional
MRI scan are detailed in the Supplementary material and
in Supplementary Table 1.

Functional MRI data analysis

In a first-level analysis of the individual runs, functional MRI
data processing was performed using the FMRI Expert
Analysis Tool (FEAT) version 6.00 in FSL 5.0.7 (FMRIB’s
Software Library, www.fmrib.ox.ac.uk/fsl). Forwards lan-
guage, music and motor imagery stimuli were contrasted
against rest and forwards language was also contrasted against
backwards language. Z-statistic images were thresholded
(Z4 3.1) and a corrected cluster significance threshold of
P = 0.05 was used. Higher-level analysis was carried out
using a fixed effects model (FLAME in FSL) (Beckmann
et al., 2003; Woolrich et al., 2004). The statistical threshold
for cluster significance (Z43.1) and the size of the Gaussian
kernel (full-width at half-maximum = 10 mm) were both se-
lected to decrease false positive cluster activations (Eklund
et al., 2016). Additional details on analysis are provided in
the Supplementary material.

We then used FEATQuery in FSL to quantify the percentage
of voxels activated within each stimulus-specific region of
interest. For healthy subjects, we defined a positive response
by the criterion that 40% of region of interest voxels met the
aforementioned statistical threshold. For patients, we defined a
positive response by two criteria: (i) 40% of region of interest
voxels met the statistical threshold; and (ii) the percentage of
activated region of interest voxels was above the 2.5th percent-
ile of a normal range (2.5th to 97.5th percentile) derived from
the age- and sex-matched healthy subjects’ data for each
region of interest in each paradigm. Although a single investi-
gator performed the behavioural assessments and the func-
tional MRI analyses (B.L.E.), the acute behavioural
evaluation always preceded the functional MRI analysis, and
our quantitative approach to functional MRI analysis reduced
the likelihood that bias was inadvertently introduced due to
knowledge of a patient’s behavioural diagnosis.

Functional MRI regions of interest

We selected a priori regions of interest based upon functional
MRI studies of language, music and motor imagery in patients
with chronic traumatic disorders of consciousness and healthy
subjects. For the language and music stimuli, we used the bi-
lateral Heschl’s gyrus and superior temporal gyrus regions of
interest distributed by the Harvard-Oxford Cortical Structural
Atlas (Makris et al., 2006) (Fig. 1). To reduce the false positive
rate (FPR), we only considered superior temporal gyrus acti-
vation in subjects who also demonstrated activation within
Heschl’s gyrus primary auditory cortex. For the motor imagery

task, the bilateral supplementary motor areas from the
Harvard-Oxford Cortical Structural Atlas and premotor cor-
tices from the Juelich Histological Atlas (Eickhoff et al., 2005)
were combined as a single region of interest (Fig. 1 and
Supplementary Fig. 2). All regions of interest were transformed
from standard atlas space into patient native functional MRI
space for analysis, consistent with prior functional MRI studies
of patients with disorders of consciousness (Fernandez-Espejo
et al., 2008; Coleman et al., 2009; Monti et al., 2010; Bardin
et al., 2011). See Supplementary material for additional details.

EEG data acquisition and
preprocessing

EEG data were acquired using a 19-electrode clinical XLTEK
EEG system (Natus Medical Inc.) at a 200- or 256-Hz sam-
pling rate and analysed using EEGlab (Delorme and Makeig,
2004) and customized MATLAB code (MathWorks, Natick,
MA). All recordings were filtered (third-order Butterworth,
zero-phase shift digital filter, 1–30 Hz) and re-referenced
using the Hjorth Laplacian transform to optimize spatial lo-
calization and avoid contaminating activity at the reference
(Lepage et al., 2014). Artefact rejection was performed with
EEGlab using independent component analysis by a research

Figure 1 Regions of interest for functional MRI analysis.

(A) Anterior view of the supplementary motor area (SMA) and

premotor cortex (PMC) region of interest (blue) used to assess

motor imagery fMRI responses, as well as the Heschl’s gyrus (HG,

yellow) and superior temporal gyrus (STG, red) regions of interest

used to assess language and music functional MRI responses. All

regions of interest are rendered in MNI152 space and superimposed

upon a coronal image at the level of the mid-thalamus and an axial

image at the level of the STG. (B) Sagittal (left), coronal (middle), and

axial (right) images of the supplementary motor areas/premotor

cortices, Heschl’s gyrus, and superior temporal gyrus regions of

interest.
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neuropsychologist (C.C.). For patients, trials with large arte-
facts were discarded by consensus review with a fellowship-
trained clinical neurophysiologist/epileptologist (E.S.R., C.C.).
EEG recordings were also reviewed post hoc for evidence of
epileptiform activity (E.S.R.) using the American Clinical
Neurophysiology Society criteria (Hirsch et al., 2013). Both
EEG analysts were blind to the behavioural diagnosis and
functional MRI results.

Stimulus-based EEG paradigms

Auditory stimuli were administered via a portable speaker
system (Scosche Inc.) placed on a table next to the subject’s
bed. The EEG language, music, and motor imagery paradigms
were the same as the functional MRI paradigms, except that
the EEG paradigms used 12 24-s blocks of stimulus and rest
(Supplementary Fig. 3). Also, the backwards language stimulus
was not administered during EEG.

EEG classification using power
spectral density

Following artefact rejection, we estimated the power spectral
density of the voltage activity recorded at each electrode.
Absolute power estimates were averaged within four frequency
bands [delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta
(14–30 Hz)], resulting in a matrix (76 features � 576 s for
music and language or 388 s for motor imagery) that was
used for classifier analysis. Any segments where data had
been removed following artefact rejection were padded to pre-
serve indexing between trials.

For each patient and paradigm (language, music, and motor
imagery), we used a support vector machine with a linear
kernel to classify the data matrices as corresponding to
either stimulation blocks (on) or rest blocks (off) (Burges,
1998). We used a 20-fold cross-validation procedure repeated
10 times to ensure a stable classifier accuracy estimate and
used the average accuracy of these 10 iterations for analysis.
We chose 20-fold as it provided the most stable results in our
healthy subject cohort. For each iteration of the cross-valid-
ation, we randomly generated 20 disjoint partitions of each
subject’s data matrix such that 19 folds were used for training
and the last fold was used for evaluation. This process was
repeated 20 times for a given partition. To test for significance,
we performed a permutation test (Good, 2004) based on 500
permutations (Ojala and Garriga, 2010). To do so, we ran-
domly exchanged the labels for the data (on or off) and used
the shuffled labels to train and evaluate a classifier following
the same procedure we used on the original data. The P-value
was calculated as the sum of all accuracies obtained from the
permuted data that were equal to or higher than the accuracies
obtained from the original (i.e. non-permuted) data, divided by
the number of permutations (Noirhomme et al., 2014). We
considered a patient to have a positive EEG response if
P50.05 (see Supplementary material for additional details).

Definitions of cognitive and higher-
order cortex motor dissociation

We applied Schiff’s definition of CMD (Schiff, 2015) to ICU
patients with acute severe TBI. Specifically, a patient with a

behavioural diagnosis of coma, vegetative state, or MCS� who
demonstrates command-following on functional MRI or EEG
meets criteria for CMD. However, based on unique ICU chal-
lenges (e.g. pharmacological sedation and arousal fluctuations
due to metabolic abnormalities, infections, endocrinological
derangements, and/or medication effects) (Posner et al.,
2007), and based on prior functional MRI and EEG studies
suggesting that responses to passive stimuli have prognostic
relevance in patients with subacute (Fischer et al., 2004) and
chronic disorders of consciousness (Di et al., 2007; Coleman
et al., 2009), we also aimed to identify patients with acute
disorders of consciousness who demonstrated concordant
EEG and association cortex functional MRI responses during
passive stimulation, despite absent language function on
behavioural evaluation. Importantly, association cortex re-
sponses to passive stimuli are not interpreted as evidence of
covert consciousness, or CMD (see ‘Discussion’ section).
Nevertheless, an association cortex response to language or
music stimuli in a patient whose CRS-R exam indicates
coma, vegetative state, or MCS� still represents a dissociation
between the functional MRI/EEG findings and behavioural
findings. Thus, we classify these patients as having HMD.
See Fig. 2 for a schematic overview of the prespecified criteria
for CMD and HMD.

We implemented several procedures to reduce the FPR of
CMD and HMD detection. First, the binary categorization
of functional MRI responses was based on an objective
marker (i.e. presence or absence of suprathreshold voxels)
rather than subjective visual inspection of the data. Likewise,
EEG responses were categorized using an objective, data-
driven classifier method. Second, for the diagnosis of HMD,
we required that a functional MRI response occur within as-
sociation cortices (e.g. Wernicke’s area), not just primary sen-
sory cortices (Heschl’s gyrus). Third, for a diagnosis of HMD
we required the presence of both functional MRI and EEG
responses to language or music. Collectively, these methods
ensured that patients who met the prespecified criteria have
a high likelihood of consciousness (i.e. CMD) or higher-
order cortical responses to environmental stimuli (i.e. HMD).

Statistical analyses

To assess the reliability of each paradigm to detect behavioural
evidence of language function, we calculated the true positive
rate (TPR; i.e. sensitivity), true negative rate (TNR; i.e. speci-
ficity), false negative rate (FNR) and the FPR in the patient
cohort. The CRS-R-derived behavioural diagnosis was the ref-
erence standard for language function and the stimulus-based
functional MRI or EEG responses were the test criterion.
Notably, the FPR may include both false positives (i.e. patients
wrongly diagnosed by the functional MRI/EEG tests) and cases
of dissociation between behavioural responses and functional
MRI/EEG responses (i.e. CMD or HMD). We also calculated
the TPR and FNR in the healthy subject cohort. TNR and FPR
values were not calculated because all healthy subjects ex-
hibited behavioural evidence of language function.

To test our hypothesis pertaining to the association between
6-month ordinal GOSE scores and early functional MRI and
EEG responses, Mann-Whitney statistics were calculated to
investigate the difference between GOSE scores of patients
with and without responses to each paradigm and considered
significant at P50.05 (two-sided). Several post hoc analyses
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were conducted to assess for potential confounding. To test the
relationship between time from injury to functional MRI/EEG

and responses to the paradigms, we calculated Mann-Whitney

statistics with time post-injury as a continuous predictor and

response as a dichotomous outcome. We assessed the impact
of sedation on functional MRI and EEG responses by classify-

ing sedation in four categories: (i) no sedation; (ii) intermittent

doses of non-anaesthetic sedatives; (iii) continuous infusion of
low-dose anaesthetic sedatives (e.g. propofol drip rate
5150 mg/h); and (iv) continuous infusion of high-dose anaes-
thetic sedatives (e.g. propofol drip rate 5150 mg/h). We tested
for an association between sedation category and functional
MRI/EEG responses, as well as between sedation category
and level of consciousness at the time of functional MRI/
EEG (dichotomized as presence or absence of language func-
tion), using a 4 � 2 Fisher’s exact test (one-sided). Statistical
analyses were performed in SPSS v24.0.

Results

Demographics and clinical
characteristics

Of 399 patients consecutively screened for eligibility, 28

patients with severe TBI met all eligibility criteria and 16

[12 males, mean � standard deviation (SD) age = 28.9 �

9.2 years] were enrolled (Table 1 and Supplementary Fig.

4). At the time of functional MRI (mean � SD post-injury

Day 9.2 � 5.0), behavioural examination indicated coma

(n = 2), vegetative state (n = 3), MCS� (n = 3), MCS +

(n = 4) or PTCS (n = 4). EEG was performed within 24 h

of functional MRI in 11 patients. However, scheduling and

ICU issues (e.g. urgent therapeutic interventions) led to an

increased time between the two assessments for five pa-

tients (range: �7 to + 3 days between functional MRI

and EEG). There was no association between functional

MRI/EEG responses and time post-injury (U = 10–11.5,

P = 0.08–0.88). Sedation category was not associated with

functional MRI/EEG responses or level of consciousness at

the time of functional MRI/EEG (Fisher’s exact test, df = 3;

P = 0.30–0.99 for both analyses). The types and doses of

sedative, anxiolytic, and analgesic medications administered

at the time of functional MRI and EEG are reported in

Supplementary Table 4. Patient-specific data regarding epi-

leptiform activity are reported in the Supplementary mater-

ial and Supplementary Table 5. There were no adverse

events. The healthy subject cohort was composed of 16

healthy subjects (12 males, mean � SD age 28.5 � 7.8

years).

Stimulus-based functional MRI
assessment of brain responses

Functional MRI was completed in 93.7% (music and

motor imagery) to 100% (language) of patients. The

normal range (2.5th to 97.5th percentile) in the healthy

subject cohort for the percentage of activated voxels

within each region of interest for each paradigm is reported

in Supplementary Table 3 and subject-specific functional

MRI responses are shown in Supplementary Fig. 5.

Patients’ individual functional MRI responses are reported

in Table 2 and Supplementary Table 6, and shown in

Supplementary Fig. 6. For all patients with region of

Figure 2 Schematic of the three dimensions of detecting

consciousness. Patients were assessed for motor function and

overt cognitive function via bedside behavioural evaluation with the

CRS-R and CAP. Covert cognition that evades detection by behav-

ioural evaluation was assessed with functional MRI (fMRI) and EEG.

Levels of consciousness indicated by overt cognition are defined as

coma, vegetative state (VS), minimally conscious state without lan-

guage function (MCS�), minimally conscious state with language

function (MCS + ), post-traumatic confusional state (PTCS), com-

plete locked-in syndrome (CLIS), locked-in syndrome with preser-

vation of minimal motor function (LIS), and full recovery. Cognitive

motor dissociation (CMD) is defined by functional MRI or EEG

responses demonstrating command-following on an active motor

imagery task despite absence of behavioural evidence of language

function. Higher-order cortex motor dissociation (HMD) is defined

as functional MRI and EEG responses within association cortex (e.g.

Wernicke’s area) during passive language or music stimuli despite

absence of behavioural evidence of language. Using the behavioural

diagnosis as the reference standard, patients without behavioural

evidence of language (coma, vegetative state, and MCS�) are clas-

sified as true negatives (TN) if there are no functional MRI or EEG

responses. Patients with behavioural evidence of language [MCS + ,

PTCS, CLIS (with assistive communication devices), LIS, and full

recovery] are classified as false negatives (FN) if there are no

functional MRI or EEG responses, and true positives (TP) if there

are functional MRI and EEG responses.
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interest-specific functional MRI activation, the percentage

of activated voxels was above the lower limit of the

normal range in controls.

Language

All 16 healthy subjects [100% (95% exact confidence inter-

val (CI): 79.4–100%)] demonstrated responses within

Heschl’s gyrus and superior temporal gyrus. Of the eight

patients with behavioural evidence of language function,

five had a functional MRI response to language (TPR = 5/8;

FNR = 3/8). Of the eight patients without behavioural signs

of language, three had no functional MRI response to lan-

guage (TNR = 3/8; FPR = 5/8). The sensitivity and specificity

of language functional MRI for behavioural evidence of lan-

guage in patients was thus 62.5% (95% CI: 24.5–91.5%)

and 37.5% (95% CI: 8.5–75.5%), respectively. In the ana-

lysis of forwards versus backwards language responses, 9 of

16 healthy subjects and 6 of 16 patients demonstrated more

superior temporal gyrus activation to forwards language (see

Supplementary Tables 3 and 6 for subject-specific data).

Greater superior temporal gyrus activation to forwards lan-

guage was 50% (95% CI: 15.7–84.3%) sensitive and 62.5%

(95% CI: 24.5–91.5%) specific for behavioural evidence of

language in patients.

Music

Fifteen of 16 healthy subjects [93.8% (95% CI: 69.8–

99.8%)] demonstrated responses within Heschl’s gyrus

and superior temporal gyrus. Of the seven patients with

behavioural evidence of language function, five displayed a

functional MRI response to music (TPR = 5/7; FNR = 2/7).

Of the eight patients without behavioural evidence of lan-

guage, three responded to music (TNR = 5/8; FPR = 3/8). In

patients, functional MRI response to music was thus 71.4%

(95% CI: 29.0–96.3%) sensitive and 62.5% (95% CI:

24.5–91.5%) specific for behavioural evidence of language.

Motor imagery

Eleven of 16 healthy subjects [68.8% (95% CI: 41.3–

89.0%)] demonstrated responses within supplementary

motor areas/premotor cortices. Of the seven patients with

behavioural evidence of language, three showed functional

MRI evidence of command-following (TPR = 3/7; FNR = 4/

7). Of the eight patients without behavioural evidence of

language, four showed functional MRI evidence of com-

mand-following (TNR = 4/8; FPR = 4/8). Functional MRI

responses to motor imagery were thus 42.9% (95% CI:

9.9–81.6%) sensitive and 50% (95% CI: 15.7–84.3%) spe-

cific for behavioural evidence of language in patients.

Stimulus-based EEG assessment of
brain responses

EEG was completed in 86.6% (music and motor imagery)

to 93.3% (language) of patients. The percentage of EEG

data discarded due to artefact was 1.2 � 1.7% for healthy

subjects and 1.7 � 3.8% for patients. Patient and healthy

Table 1 Patient demographics and clinical characteristics

ID Age

(years)

Sex TBI

mechanism

iGCS Day

of

fMRI

CRS-R

at

fMRI

CRS-R subscale

scores at fMRI

LoC at

fMRI

Day

of

EEG

CRS-R

at

EEG

CRS-R subscale

scores at EEG

LoC

at

EEG

P1 27 M MVA 5 T 16 23 A4V5M6O3C2Ar3 PTCS 17 23 A4V5M6O3C2Ar3 PTCS

P2 21 M Ped versus car 4–8 T 1 4 A0V0M3O1C0Ar0 MCS� 2 4 A0V0M3O1C0Ar0 MCS�

P3 19 F MVA 5 T 3 1 A0V0M1O0C0Ar0 Coma 4 1 A0V0M1O0C0Ar0 Coma

P4 19 M Fall 3–7 T 17 23 A4V5M6O3C2Ar3 PTCS 10 22 A4V5M6O3C2Ar2 PTCS

P5 34 M Fall 5 T 15 3 A0V0M0O2C0Ar1 VS 16 3 A0V0M0O2C0Ar1 VS

P6 28 F MVA 3 7 6 A0V1M2O1C0Ar2 VS 10 11 A3V2M3O1C0Ar2 MCS +

P7 45 M MVA 5 T 13 18 A3V5M5O3C1Ar1 MCS + 14 18 A3V5M5O3C1Ar1 MCS +

P8 33 M Fall 5–7 T 8 20 A4V5M5O2C2Ar2 PTCS 8 20 A4V5M5O2C2Ar2 PTCS

P9 32 M Ped versus car 5–7 T 11 9 A3V2M2O1C0Ar1 MCS + 13 15 A3V3M5O1C1Ar2 MCS +

P10 24 M Assault 3–7 T 12 10 A1V1M5O1C0Ar2 MCS� 13 10 A1V1M5O1C0Ar2 MCS�

P11 22 F Ped versus car 6 T 14 22 A4V5M6O3C1Ar3 PTCS 14 22 A4V5M6O3C1Ar3 PTCS

P12 27 F Fall 3 8 1 A0V0M1O0C0Ar0 Coma 8 1 A0V0M1O0C0Ar0 Coma

P13 18 M Fall 3–7 4 12 A3V2M5O1C0Ar1 MCS + 6 21 A4V5M6O3C2Ar1 PTCS

P14 51 M Ped versus car 3 8 3 A0V0M1O0C1Ar1 VS N/Aa N/Aa N/Aa N/Aa

P15 29 M Ped versus car 4–7 7 3 A0V0M3O0C0Ar0 MCS� 8 7 A3V0M3O0C0Ar1 MCS +

P16 33 M Fall 3–4 3 12 A4V2M5O0C0Ar1 MCS + 4 14 A4V2M6O0C0Ar2 PTCS

The initial Glasgow Coma Scale (iGCS) is defined as the best (i.e. highest) and worst (i.e. lowest) post-resuscitation GCS score assessed by a qualified clinician who performed a

reliable examination (not confounded by sedation and/or paralytics) prior to ICU admission. Level of consciousness (LoC) is assessed via behavioural evaluation with the CRS-R as

coma, vegetative state (VS), MCS�, MCS + , or PTCS (emerged from MCS but disoriented). The subscales for the CRS-R are Auditory Function (A), Visual Function (V), Motor

Function (M), Oromotor Function (O), Communication (C), and Arousal (Ar).

F = female; fMRI = functional MRI; M = male; MVA = motor vehicle accident; N/A = not applicable; Ped = pedestrian.
aPatient died before EEG due to withholding of life-sustaining treatment.
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subject group-level EEG responses are summarized below.

Single-subject EEG responses are reported in Table 2 and

Supplementary Table 6 for patients and Supplementary

Table 3 for healthy subjects.

Language

Fourteen of 16 healthy subjects had EEG responses to lan-

guage [87.5% (95% CI: 61.7–98.4%)]. Of the 10 patients

with behavioural evidence of language function, eight had

EEG responses to language (TPR = 8/10; FNR = 2/10). Of

the four patients without behavioural signs of language,

three had no EEG response to language (TNR = 3/4;

FPR = 1/4). EEG response to language was thus 80% (95%

CI: 44.4–97.5%) sensitive and 75% (95% CI: 19.4–99.4%)

specific for detecting behavioural signs of language in patients.

Music

Fourteen of 16 healthy subjects had EEG responses to music

[87.5% (95% CI: 61.7–98.4%)]. Of the nine patients with

behavioural evidence of language function, six had EEG re-

sponses to music (TPR = 6/9; FNR = 3/9). Of the four pa-

tients without behavioural evidence of language, two had no

EEG response to music (TNR = 2/4; FPR = 2/4). EEG re-

sponse to music was thus 66.7% (95% CI: 29.9–92.5%)

sensitive and 50% (95% CI: 6.8–93.2%) specific for detect-

ing behavioural evidence of language in patients.

Motor imagery

Twelve of 16 healthy subjects had EEG responses to motor im-

agery [75.0% (95% CI: 47.6–92.7%)]. Of the nine patients with

behavioural evidence of language function, three had EEG re-

sponses to motor imagery (TPR = 3/9; FNR = 6/9). Of the four

patientswithoutbehaviouralevidenceoflanguage,nonehadEEG

response to motor imagery (TNR = 4/4; FPR = 0/4). EEG re-

sponse to motor imagery was thus 33.3% (95% CI: 7.5–

70.1%) sensitive and 100% (95% CI: 39.8–100%) specific for

detecting behavioural signs of language in patients.

Detection of covert command-
following and higher-order cortical
responses

CMD was identified by functional MRI in four of eight

patients who did not have behavioural evidence of lan-

guage function (three vegetative state, one MCS�). HMD

was identified in two additional patients who had both

functional MRI and EEG responses to passive stimuli

(both MCS�). Figure 3 shows representative functional

MRI and EEG responses for a healthy subject, a patient

with behavioural and functional MRI/EEG evidence of lan-

guage function, a patient with CMD, a patient with HMD,

and a patient without behavioural or functional MRI/EEG

evidence of language function. Figure 4 shows an EEG

Table 2 Patient functional MRI and EEG responses to language, music, and motor imagery

ID LoC at

fMRI/EEG

Language Music Motor imagery CMD or

HMD

GOSE at

follow-up
fMRI EEG fMRI EEG fMRI EEG

P1 PTCS/PTCS + + + + + + N/A 3

P2 MCS�/MCS� + + + + � � HMD 7

P3 Coma/Coma � � � � � � No 7

P4 PTCS/PTCS � + N/Aa N/Ab N/Aa N/Ab N/A 7

P5 VS/VS � � � � + � CMD 3

P6 VS/MCS + + + + + + � CMD 3

P7 MCS + /MCS + + � + � � � N/A 5

P8 PTCS/PTCS � + � � � � N/A 3

P9 MCS + /MCS + + + + + � + N/A 4

P10 MCS�/MCS� + � � + + � CMD 5

P11 PTCS/PTCS � � � + � + N/A 7

P12 Coma/Coma � N/Ac
� N/Ac

� N/Ac No 1e

P13 MCS + /PTCS + + + + + � N/A 7

P14 VS/N/Ae
�

d N/Ae + N/Ae + N/Ae CMD 1e

P15 MCS�/MCS + + + � + � � HMD 5

P16 MCS + /PTCS + + + � + � N/A 5

CMD is defined by functional MRI or EEG evidence of command-following on the active motor imagery task despite absence of language function on behavioural evaluation. HMD is

defined as functional MRI and EEG evidence of cortical responses to passive language or music stimuli despite behavioural absence of language.
aUnable to complete functional MRI due to severe agitation.
bEEG data unusable due to motion artefacts.
cEEG data unusable due to myogenic artefacts.
dPatient 14 had functional MRI activation within the superior temporal gyrus, but because there was no activation in primary auditory cortex (i.e. Heschl’s gyrus), Patient 14 did not

meet the prespecified criteria for a positive response to language.
ePatient died due to withholding of life-sustaining treatment.

fMRI = functional MRI; LoC = level of consciousness; N/A = not applicable; VS = vegetative state.
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spectral topography plot for an HMD patient, with stimu-

lus-based frequency changes at individual electrodes.

Figure 5 shows functional MRI responses for a CMD pa-

tient whose behavioural evaluation indicated vegetative

state, but whose functional MRI responses revealed evi-

dence of command-following. Figure 6 shows the percen-

tage of functional MRI and EEG responders in patients

with and without behavioural evidence of language func-

tion, as well as in healthy subjects.

Stimulus-based functional MRI and
EEG response correlations with
functional outcome

Two patients died in the ICU (GOSE = 1) after withholding

life-sustaining therapy. One patient (Patient P12) died 5

days after functional MRI and EEG. One patient (Patient

P14) died 2 days after functional MRI, before EEG data

could be acquired. For the 14 patients who survived,

follow-up GOSE evaluation was performed in-person

(n = 11) or via phone interview (n = 3) at mean � SD

6.2 � 0.9 months post-injury. GOSE scores ranged from

1 (death) to 7 (lower good recovery) (median 5.0; see

Table 2). Follow-up level of consciousness data were avail-

able for all 14 survivors (eight via in-person CRS-R/CAP

assessment and six via CRS-R/CAP data obtained from

clinical records). All survivors, including the three survivors

of acute CMD and both patients with acute HMD, re-

covered beyond PTCS by 6 months. Highest acute level

of consciousness based on the CRS-R score at the time of

functional MRI or EEG was 64% (95% CI: 35.1–87.2%)

sensitive for detecting recovery beyond PTCS by 6 months.

In contrast, adding CMD and HMD to acute level of

Figure 3 Stimulus-based functional MRI responses and EEG topographic plots. Functional MRI (fMRI) and EEG results are shown for

the language, music and motor imagery paradigms for representative subjects: a healthy subject (C2), a patient with behavioural and functional

MRI/EEG evidence of language function (Patient P9), a patient with no behavioural evidence of language but functional MRI evidence of command-

following (CMD; Patient P6), a patient with no behavioural evidence of language but functional MRI/EEG evidence of cortical activation to passive

stimuli (HMD; Patient P2), and a patient without behavioural or functional MRI/EEG evidence of language (Patient P3). Functional MRI data are

shown as Z-statistic images to demonstrate stimulus-specific responses. Z-statistic images are thresholded at cluster-corrected Z scores of 3.1

(inset colour bar) and superimposed on T1-weighted axial images. All EEG data are shown as topographic plots illustrating the averaged weights

attributed to each electrode by the classifier, based on their ability to differentiate between the two conditions for each paradigm (e.g. language

versus rest). Red colours show coefficient values4 0. Blue colours show values5 0 (inset colour bar). The larger the absolute value of a feature

weight (either positive or negative), the more important it was for discriminating between stimulus and rest conditions. Functional MRI data are in

radiological convention; EEG data are in anatomical convention.
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consciousness improves sensitivity to 93% (95% CI: 66.1–

99.8%) for detecting recovery beyond PTCS by 6 months.

GOSE scores were not associated with acute functional

MRI responses to language (Mann-Whitney U = 28.5,

P = 0.87), music (U = 27.5, P = 0.95), or motor imagery

(U = 13.0, P = 0.37), or with acute EEG responses to lan-

guage (U = 18.5, P = 0.61), music (U = 23.5, P = 0.62) or

motor imagery (U = 13.0, P = 0.81). Similarly, GOSE

scores were not higher for patients who had more func-

tional MRI activation to forwards language versus back-

wards language (U = 27.0, P = 0.68).

Discussion
In this prospective study of patients with acute severe TBI,

we demonstrate that it is feasible to use stimulus-based

functional MRI and EEG in the ICU to identify covert

consciousness that evades detection on bedside behavioural

examination. We identified a substantial proportion of ICU

patients whose functional MRI and EEG responses revealed

either command-following (CMD) or higher-order cortical

responses to passive stimuli (HMD) despite a behavioural

diagnosis of vegetative state or MCS�. Of the eight pa-

tients who lacked behavioural evidence of language func-

tion (two coma, three vegetative state, and three MCS�),

four demonstrated functional MRI responses consistent

with command following (three vegetative state, one

MCS�) and two patients without evidence of command

following showed higher-order cortical responses to lan-

guage and/or music on both functional MRI and EEG

(two MCS�).

Our observations in ICU patients with acute severe TBI

are consistent with and build upon those of prior functional

MRI and EEG studies in patients with chronic disorders of

consciousness that reported CMD rates ranging from 8%

(Lule et al., 2013) to 45% (Hauger et al., 2015). Similarly,

the proportion of ICU patients in this study that met cri-

teria for HMD is consistent with proportions of patients

with chronic disorders of consciousness who respond to

passive event-related potential paradigms (14–33%)

(Faugeras et al., 2011; King et al., 2013; Sitt et al.,

2014). Yet while all three acute CMD survivors and both

acute HMD patients in our study recovered beyond PTCS

Figure 4 EEG classifier results in HMD. For a patient who met the prespecified criteria for HMD (P2), we show spectral power changes

during the language paradigm for the eight electrodes with the largest weights (i.e. the electrodes that best discriminated between language and

rest; see inset colour bar). A decrement in delta power was observed at each electrode [units = 10log(mV2/Hz)], with a more pronounced change

in the left hemisphere in the temporal region known to be involved in language processing (electrode T3). For electrode F7, the decrement in

delta power was 11.7 microvolts. d = delta; t = theta; a = alpha; b = beta. The overall P-value in this analysis was P = 0.01.
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by 6 months post-injury, we did not detect an association

between 6-month functional outcomes on the GOSE and

early functional MRI and EEG responses.

Collectively, these findings suggest that (i) stimulus-based

functional MRI can detect CMD in the ICU when an active

motor imagery task is used; and (ii) functional MRI and

EEG techniques using passive language and music stimuli

enable detection of higher-order cortex responses in pa-

tients without behavioural evidence of language function.

Confirmation of the clinical relevance of a response to a

passive stimulus awaits corroborating diagnostic and/or

prognostic evidence. Below we discuss our findings in

terms of their clinical, scientific, and ethical significance

for the ICU population.

Rationale for stimulus-based
functional MRI and EEG in the ICU

The motivation to develop quantitative, stimulus-based

functional MRI and EEG biomarkers in the ICU is based

on several challenges that currently limit the accuracy of

diagnosis and prognosis in patients with acute brain inju-

ries. First, the alarmingly high rate of misdiagnosis

observed in the vegetative state population (�40%) when

using clinical consensus rather than a CRS-R evaluation

(Schnakers et al., 2009) is particularly concerning in the

ICU, because patients often cannot tolerate being off

pharmacological sedation for the 15–35 min required to

perform the CRS-R. Additionally, the CRS-R behavioural

examination can be limited by motor deficits, aphasia

(Majerus et al., 2009), fluctuating vigilance (Piarulli et al.,

2016), or sensory impairment that may be unrecognized

during the acute stage of injury in the ICU. Examiner

bias inherent to interpreting behavioural responses further

contributes to the potential failure to detect consciousness.

Given prior evidence that conscious patients (i.e. MCS)

have a better prognosis than unconscious patients (i.e.

coma and vegetative state) (Giacino and Kalmar, 1997;

Katz et al., 2009; Luaute et al., 2010; Bruno et al.,

2012a; Whyte et al., 2013), early diagnosis (and its corres-

ponding prognosis) can drive decisions regarding discon-

tinuation of life-sustaining treatment (Truog et al., 2008;

Turgeon et al., 2011). Challenges in detecting conscious-

ness in the ICU can potentially lead to early withdrawal

of care in patients who retain sufficient cortical function to

support recovery. Even for patients who are provided

chronic life-sustaining treatment, an inaccurate poor prog-

nosis may limit a patient’s access to intensive rehabilitative

care, leading to a self-fulfilling prophecy whereby the early

prognosis contributes to a patient’s poor outcome.

Defining covert consciousness in ICU
patients

There is ongoing debate about how to define consciousness

in patients who cannot express themselves at the bedside

but who show signs of covert consciousness with functional

MRI or EEG (Ropper, 2010). This debate is underscored

by the many terms, including ‘covert cognition’ (Schnakers

et al., 2015b), ‘functional locked-in syndrome’ (Bruno

et al., 2011), ‘minimally conscious star (*)’ (Gosseries

et al., 2014), and ‘CMD’ (Schiff, 2015) that have been

used to classify these patients. It is now accepted that pa-

tients with CMD should be distinguished from vegetative

state patients, as covert consciousness may carry a more

favourable prognosis (Di et al., 2008; Stender et al.,

2014; Wang et al., 2015). However, consensus criteria

Figure 5 Functional MRI evidence of command-following

in CMD. Functional MRI data are shown as Z-statistic images to

demonstrate stimulus-specific responses in a patient whose behav-

ioural evaluation suggested a vegetative state (Patient P14). Z-stat-

istic images are thresholded at cluster-corrected Z scores of 3.1

(inset colour bar) and superimposed on T1-weighted axial images.

There is functional MRI evidence of command-following on the

motor imagery task (arrow), indicating CMD. In the bottom panel, a

3D rendering of the functional MRI response to the motor imagery

task is shown (arrow). This response is located within the prespe-

cified supplementary motor area/premotor cortex region of inter-

est. Specifically, the response is located within the premotor cortex

(PMC) in close neuroanatomic proximity to a right frontal contu-

sion. The images in the top row are shown in radiological conven-

tion. Notably, despite functional MRI activation within the superior

temporal gyrus during the language stimulus (top left), the patient

was classified as having an absent response to language because of

the absence of a response within Heschl’s gyrus. Ins = insula;

LV = lateral ventricle.
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for defining consciousness based upon the integrated results

of behavioural, functional MRI and EEG data currently do

not exist.

Recently, it was proposed that a diagnosis of CMD re-

quires functional MRI or EEG-based evidence of com-

mand-following during a motor imagery task (Schiff,

2015). Here, we implemented Schiff’s CMD definition in

the ICU population and used a motor imagery task that

was previously used to detect CMD in patients with

chronic disorders of consciousness (Cruse et al., 2011). In

addition to detecting CMD patients in the ICU, we also

identified a separate group of patients whose responses to

passive stimuli on functional MRI and EEG are greater

than those expected based on behavioural evaluation.

Our motivation for classifying this group as HMD is

based upon diagnostic and prognostic considerations that

are unique to the ICU environment. First, command-follow-

ing may not be the only type of brain activity that is rele-

vant to the diagnosis and prognosis of ICU patients with

acute severe TBI. Rather, higher-order cortex responses to

language and music suggest a residual capacity to process

environmental stimuli and, if corroborated, might also

inform diagnosis and prognosis. Second, requiring com-

mand-following during a motor imagery task may be too

high a bar for defining a clinically meaningful functional

MRI/EEG response in patients with acute severe TBI.

Compared to patients with subacute or chronic disorders

of consciousness, patients with acute disorders of con-

sciousness are more likely to have poor or fluctuating arou-

sal, which decreases the likelihood that a patient can

perform a functional MRI- or EEG-based command-follow-

ing task. This concern about the poor reliability of

functional MRI- and EEG-based command-following

tasks is highlighted by their limited sensitivity in healthy

populations (Hauger et al., 2015), which ranges from

71% to 100% in prior studies (Boly et al., 2007; Bardin

et al., 2012; Hauger et al., 2017). In our sample of 16

healthy subjects, the rates of functional MRI- and EEG-

based command-following during the motor imagery task

were 69% and 75%, respectively. These findings under-

score the need for caution in interpreting negative findings

on functional MRI and EEG motor imagery tasks.

Importantly, we do not to assert that HMD is indicative of

covert consciousness. Current conceptual models of con-

sciousness, such as the global neuronal workspace theory

(Dehaene et al., 2006) and the information integration

theory (Tononi, 2004), propose that consciousness requires

the integrated activity of association cortices. However, such

activation is likely necessary but not sufficient for conscious-

ness. Indeed, prior functional MRI studies have shown that

association cortices respond to passive language stimuli in

healthy humans who are sleeping (Portas et al., 2000) or

undergoing propofol sedation (Davis et al., 2007; Liu et al.,

2012). Moreover, one could argue that an association cortex

response is not only insufficient for consciousness, but also

insufficient proof of a potential for consciousness. A previous

study identified focal regions of association cortex activity

that could represent isolated ‘islands of cortex’ in a patient

with vegetative state (Schiff et al., 1999). This intriguing pos-

sibility of ‘words without mind’ suggests that association

cortex responses may not be a proxy for higher-level cortical

function but rather may be associated with reflexive, non-

purposeful behaviour (Fischer and Truog, 2015).

Nevertheless, the potential clinical relevance of identifying

Figure 6 Percentage of functional MRI and EEG responders in patients and healthy subjects. Results for patients without behav-

ioural evidence of language function (Language�; i.e. CRS-R/CAP-based behavioural diagnosis indicates coma, vegetative state, or MCS�) are

represented as red bars. Results for patients with behavioural evidence of language function (Language + ; i.e. CRS-R/CAP-based behavioural

diagnosis indicates MCS+ or post-traumatic confusional state) are represented as blue bars. Results for healthy subjects (Control) are repre-

sented as purple bars.
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ICU patients with HMD is supported by previous studies

reporting recovery of consciousness in patients with chronic

disorders of consciousness who had higher-order cortex re-

sponses (e.g. Coleman et al., 2009). Ultimately, we expect

that the HMD criteria proposed here will be refined in

future studies. While our multimodal functional MRI and

EEG-based approach strengthens the reliability of an HMD

diagnosis, demonstration of its clinical validity will require

larger longitudinal studies that test its diagnostic and prog-

nostic relevance.

Accuracy of stimulus-based
functional MRI and EEG in the ICU

We observed variable responses to language, music, and

motor imagery stimuli in healthy subjects and in patients

with behavioural evidence of language function (i.e. MCS +

and PTCS). In healthy subjects, functional MRI and EEG

sensitivity was highest for the language paradigm, lower for

music, and lowest for motor imagery. Similar results were

observed in patients, with the highest functional MRI and

EEG sensitivity observed for language, followed by music

and motor imagery. The low sensitivity of our right-hand

squeeze motor imagery paradigm for detecting behavioural

evidence of language supports the need for development of

motor imagery tasks that have lower cognitive demands

and/or tasks whose responses are more robustly detected

by functional MRI and EEG. Passive paradigms that iden-

tify HMD also require further investigation, as they may

provide valuable information when responses to active

tasks are not evident.

Importantly, it is difficult to identify false positive func-

tional MRI and EEG results in this population of patients

for whom there is no definitive gold standard diagnostic

test to define the level of consciousness. Future studies are

needed to develop robust methods for identification of false

positive results, as well as false negative results in patients

receiving sedation. The optimal timing for functional MRI

and EEG data acquisition also remains to be determined, as

the level of consciousness and corresponding cortical func-

tion may fluctuate substantially in acutely brain-injured pa-

tients due to dynamic pathophysiological processes such as

intracranial hypertension, cerebral oedema, and mass effect.

Prognostic value of stimulus-based
functional MRI and EEG in the ICU

GOSE scores did not differ between patients with or with-

out functional MRI and EEG responses in the ICU. This

result does not support findings from previous studies

showing that patients with subacute or chronic disorders

of consciousness who have functional MRI evidence of

covert consciousness had better long-term recovery (Di

et al., 2008; Coleman et al., 2009). Although recovery

from PTCS was evident in all 14 survivors at 6 months

post-injury, it is notable that this group included three

patients with acute CMD and two with HMD. Many fac-

tors influence recovery in patients with acute severe TBI,

but it is possible that early cortical responses detected by

functional MRI and EEG in these five patients contributed

to the emergence of behavioural signs of consciousness.

Even if cortical responses to passive stimuli in HMD pa-

tients are conservatively interpreted as disconnected islands

of cortex, the subsequent recovery of self-expression and

comprehension suggests that part of the neuronal architec-

ture capable of supporting consciousness may have been

present acutely. On the other hand, the observation that

one comatose subject with no evidence of CMD or HMD

also recovered from PTCS supports the notion that prog-

nosis should not be based upon negative findings from

these techniques.

Limitations and methodological
considerations

Although our 16-patient sample was the largest to date that

has been studied with stimulus-based functional MRI and

EEG in the ICU (Edlow et al., 2013), because our study

was designed to determine the feasibility of detecting CMD

and HMD in an ICU population, the sample size was likely

too small to demonstrate the prognostic utility of these

techniques. In addition, our findings were likely con-

founded by variables inherent to the ICU environment.

First, individual patient responses may have been affected

by sedation, even if there was no statistically significant

association between level of sedation (analysed as an or-

dinal variable) and functional MRI or EEG responses for

the entire cohort. It was not possible to use a more granu-

lar approach to assess the effect of sedatives on cortical

responses (i.e. analysing sedation as a continuous variable),

because many patients received multiple sedatives for which

equivalencies have not been established, the effect of seda-

tives on cortical responses may vary with hepatic and renal

metabolism, and standardized sedation rating scales that

have been validated in non-brain injured ICU patients

(Sessler et al., 2002) are not necessarily applicable to

brain-injured patients (Roberts et al., 2011). Second,

acute fluctuations in arousal that are common in the ICU

may have caused inconsistent responses (Piarulli et al.,

2016). For example, functional MRI responses to the

active motor imagery task but not the passive language

stimulus were observed in Patients P5 and P14. Third,

while we chose the GOSE score as our outcome measure

based on its widespread use in severe TBI studies (Bagiella

et al., 2010), the GOSE lacks sensitivity for targeting brain

injury-related impairments. In addition, all surviving pa-

tients recovered beyond PTCS, making specificity analysis

of functional MRI/EEG combined with CRS-R/CAP for

predicting 6-month level of consciousness not possible in

this study. Future studies investigating the prognostic utility

of functional MRI and EEG in the ICU will therefore
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require larger sample sizes and will need to consider alter-

native functional outcomes measures.

It should also be noted that because of feasibility consid-

erations, the early behavioural evaluations, follow-up as-

sessments, and functional MRI analyses were not

performed by independent investigators in this study.

Nevertheless, our implementation of quantitative, unbiased

methods for functional MRI analysis and CMD/HMD de-

tection mitigates this limitation. To reduce the FPR, we also

required that positive functional MRI responses in patients

were above the lower limit of a normal range of functional

MRI activation derived from matched healthy subjects, and

that both functional MRI and EEG evidence of higher-

order cortical processing were evident for HMD classifica-

tion. With regard to generalizability, our EEG classifier is

built on single-subject data, making it ideally suited for

severe TBI patients with variable types and locations of

brain lesions, but potentially limiting its generalizability

across subjects.

Ethical considerations

Diagnostic studies of consciousness that use advanced, in-

vestigational techniques in the acute disorders of conscious-

ness population raise challenging ethical questions. First,

the field has not developed a systematic way to interpret

negative findings. The absence of functional MRI and EEG

responses does not necessarily indicate absence of con-

sciousness, especially considering that �25% of healthy

subjects do not demonstrate responses in the expected

brain regions when performing motor imagery tasks.

Second, despite extensive efforts to reduce false positives,

functional MRI and EEG may suggest preserved conscious-

ness in patients who are actually unconscious. Should these

advanced methods be incorporated into clinical practice,

clinicians will require training on how to interpret negative

and positive findings in the context of the limited sensitivity

and specificity of these methods.

Ultimately, we anticipate that this study and others like it

will encourage open dialogue between clinicians and

families about the uncertainty of prognostication and the

limitations of different assessment tools (Fins, 2015). We

further emphasize that the methods described here are in-

vestigational and will need to be tested across multiple sites

and settings before becoming integrated into clinical care.

Finally, we acknowledge that access to advanced tech-

niques, such as those presented here, is currently limited

to hospitals with specific technical expertise and infrastruc-

ture. However, we are confident that, if these tools are

validated, their potential benefit to patients and families

will encourage dissemination of standardized acquisition

protocols and analysis pipelines that meet the needs of

community medical centres. Stimulus-based functional

MRI and EEG methods should be refined to produce

streamlined, timely, and intuitive outputs that can be inter-

preted by a clinician.

Conclusions
Stimulus-based functional MRI can provide evidence of

consciousness that evades detection by bedside examination

in ICU patients with acute severe TBI. In addition, a subset

of ICU patients exists whose higher-order cortex responses

on functional MRI and EEG are greater than those sug-

gested by the bedside examination. Multimodal assessment

with the CRS-R, stimulus-based functional MRI and EEG

may provide a more robust evaluation of consciousness and

higher-order cortical function than bedside examination

alone. If these findings are validated in future studies,

stimulus-based functional MRI and EEG may enable ICU

clinicians to render more accurate prognoses and help

families make informed decisions about continuation of

life-sustaining therapies.
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