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Abstract
Unaccounted temporal dynamics of resting-state functional connectivity (FC) metrics challenges their potential as
biomarkers for clinical applications in neuroscience. Here we studied the scan time required to reach stable values for
various FC metrics including seed-voxel correlations and spatial independent component analyses (sICA), and for the local
functional connectivity density (lFCD), a graph theory metric. By increasing the number of time points included in the
analysis, we assessed the effects of scan time on convergence of accuracy, sensitivity, specificity, reproducibility, and
reliability of these FC metrics. The necessary scan time to attenuate the effects of the temporal dynamics by 80% varied
across connectivity metrics and was shorter for lFCD (7min) than for FC (11min) or for sICA (10min). Findings suggest that
the scan time required to achieve stable FC is metric-dependent, with lFCD being the most resilient metric to the effects of
temporal dynamics. Thus, the lFCD metric could be particularly useful for pediatric and patient populations who may not
tolerate long scans.
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Introduction
“Resting-state” functional magnetic resonance imaging (rfMRI)
provides the opportunity to study brain functional connectivity
(FC) over periods of several minutes, in the presence of temporal
changes in the degree of vigilance, arousal and attention, func-
tional states supported by different brain networks (Mason et al.
2007; Doucet et al. 2012; Shirer et al. 2012; Liu and Duyn 2013). In
recent years, rfMRI has attracted the attention of the neuroima-
ging community because it is a simple yet innovative noninvasive
technique that allows data sharing, does not require explicit task
performance, and holds potential as a biomarker for clinical
applications in neurology and psychiatry (Biswal et al. 2010).

A large majority of the published rfMRI studies assume sta-
tionary conditions over the scan length (Van Dijk et al. 2010)
and are based on relatively short (5–10min) acquisition (Biswal
et al. 2010). However, there is emerging evidence that signifi-
cant temporal variability in rfMRI metrics (Chang and Glover

2010; Handwerker et al. 2012; Hutchison et al. 2013b; Allen et al.
2014) undermines the reliability of the static rfMRI metrics.
This temporal variability suggests a dynamic rather than a sta-
tionary nature for rfMRI metrics (Hutchison et al. 2013a) and
could in part reflect dynamic properties of the brain network
topology necessary for context-dependent coordination of
neuronal populations (Zalesky et al. 2014). For example, signifi-
cant temporal variability was detected in lateral parietal and
cingulate cortices and in the default-mode network (DMN)
using the popular sliding-window approach (Chang and Glover
2010; Kiviniemi et al. 2011; Allen et al. 2014). Moreover, time-
varying rfMRI signals have been correlated with dynamic elec-
trophysiological signals in the brain (Magri et al. 2012;
Tagliazucchi et al. 2012; Chang et al. 2013). Despite the pro-
found impact of rfMRI on neuroscience, its temporal dynamics
creates significant within-subject variability that limits the
potential of rfMRI metrics as clinical biomarkers in psychiatry/
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neurology (Hutchison et al. 2013a). Thus, the need to character-
ize both the static and the dynamic components of rfMRI
metrics and the required scan time length to achieve stable sta-
tic measures (Birn et al. 2013) is urgent.

The reliability of brain FC measures as a function of scan
time ranges from moderate to high (Shehzad et al. 2009;
Thomason et al. 2011; Braun et al. 2012; Guo et al. 2012; Li et al.
2012; Wang et al. 2013; Tomasi and Volkow 2014) and could
benefit from longer scanning times. Specifically, the reproduci-
bility and reliability of the correlation between fMRI signals in
different regions-of-interest (ROIs) was shown to increase as a
function of scan length, reaching a plateau after 13min of
rfMRI data (Birn et al. 2013; Gonzalez-Castillo et al. 2014).
Nonetheless, the optimal scan time might be metric-
dependent. For instance, an automated machine-learning clas-
sifier required 15min of rfMRI data to differentiate individual
patterns from a group of subjects (Anderson et al. 2011).
Though longer scanning sessions might reduce the impact of
temporal variability, the resulting rfMRI patterns could be
prone to motion artifacts (Power et al. 2012; Van Dijk et al.
2012), and could increase the likelihood of sleep during the
scan, which is a serious confound for rfMRI measures (Horovitz
et al. 2009; Gonzalez-Castillo et al. 2014).

Although the influence of scan time has been properly
quantified for ROI measures of FC (Birn et al. 2013; Gonzalez-
Castillo et al. 2014), the influence of scan time has not been
studied for graph theory metrics of brain connectivity such as
the local functional connectivity density (lFCD) (Tomasi and
Volkow 2010), or other rfMRI measures such as those resulting
from spatial independent component analysis (sICA). Since
various metrics are being used to assess brain FC, it is import-
ant to quantify the impact of scan time for different metrics
with different benchmark criteria.

The relatively long rfMRI sessions (14.4min) from the open
access Human Connectome Project (HCP) database have high
spatiotemporal resolution (2-mm isotropic, 0.72 s) and are ideal
for studying the effect of scan length on rfMRI measures. Based
on the saturating exponential increases in test–retest reliability
with scan length observed in prior studies (Birn et al. 2013;
Gonzalez-Castillo et al. 2014), we hypothesized that longer
rfMRI scanning would increase the accuracy, reproducibility,
and reliability of FC metrics as well as their gray matter (GM)
sensitivity and specificity. Specifically, these increases would
follow different saturating exponential curves with scan time
for different rfMRI metrics, which would reach their respective
plateaus at different scan times.

We mapped the temporal evolution of 3 different rfMRI
metrics over a 14.4-min time interval on the fMRI data sets
from 40 healthy adults using an expanding-window approach
with fixed expanding steps of 36 s (50 time points), increasing
in total length from 72 to 864 s (23 steps). Specifically, we
assessed the effect of scan time on brain-wide lFCD (Tomasi
and Volkow 2010) measures, on the connectivity of the DMN
extracted by sICA (McKeown and Sejnowski 1998), and seed-
voxel correlations from an important rfMRI hub at the
occipito-parietal junction (Biswal et al. 1995). For all metrics,
we quantified reproducibility, accuracy, and reliability as well
as GM sensitivity and specificity. An exponential saturation
model was used to assess the optimal scanning time for lFCD,
sICA, and seed-voxel correlations. Since lFCD, sICA, and seed-
voxel correlations reflect different underlying phenomena, we
hypothesized that accuracy, sensitivity, specificity, reproduci-
bility, and reliability will reach their asymptotic values at dif-
ferent time scales for lFCD, sICA, and seed-voxel correlations.

Materials and Methods
Subjects

No experimental activity with any involvement of human sub-
jects took place at the author’s institutions. High spatio-
temporal resolution data sets were drawn from the publicly
available repository of the WU-Minn HCP Q1 data release
(http://www.humanconnectome.org/). The HCP participants
(n = 40; age: 31 ± 3 years; 31 females) provided written informed
consent and were scanned on a 3.0 T Siemens Skyra (Siemens)
unit with a 32-channel head coil according to procedures
approved by the IRB at Washington University in St. Louis’s.
Additional data sets with conventional spatiotemporal reso-
lution were drawn from the 1000 Functional Connectome
Project (FCP; http://fcon_1000.projects.nitrc.org/)(Biswal et al.
2010), and from the Consortium for Reliability and
Reproducibility (CoRR; http://fcon_1000.projects.nitrc.org/indi/
CoRR/html/)(Zuo et al. 2014). The FCP participants (n = 40; age:
22 ± 3 years; 31 females) were randomly selected from the
Cambridge sample. They provided written informed consent
and were scanned on a 3.0 T Siemens Trio unit with a 12-
channel head coil according to procedures approved by the IRB
at Harvard University or Partners Healthcare. The CoRR partici-
pants (n = 30; age: 24 ± 3 years; 15 females) were those in the
HNU1 sample (Chen et al. 2015). They provided written
informed consent and were scanned on a GE MR750 3.0 Tesla
scanner (GE Medical Systems) with an 8-channel head coil
according to procedures approved by the IRB of the Center for
Cognition and Brain Disorders (CCBD) at Hangzhou Normal
University (HNU).

Data Sets

Human Connectome Project
A gradient-echo-planar (EPI) sequence with multiband factor 8,
repetition time (TR) 720ms, echo time (TE) 33.1ms, flip angle
(FA) 52°, 104 × 90 matrix size, 72 slices and 2mm isotropic vox-
els (Smith et al. 2013; Uğurbil et al. 2013) was used to acquire
rfMRI time series with 1200 time points while the participant
relaxed with their eyes open. A fixation cross was presented
through a projector on a dark screen in a darkened room. Scans
were repeated twice, using different phase encoding directions
(LR and RL) in each of the two sessions (REST1 and REST2). One
hundred and sixty “resting-state” time series with 1200 time
points collected over 864 s and 2 -mm-isotropic voxels covering
the whole brain were used in this study. The “minimal prepro-
cessing” data sets (rfMRI_REST*_hp2000_clean.nii) were used,
which included gradient distortion correction, rigid-body
realignment, field-map processing, spatial normalization to the
stereotactic space of the Montreal Neurological Institute (MNI),
high pass filtering (1/2000 Hz frequency cutoff) (Glasser et al.
2013), independent component analysis-based de-noising
(Salimi-Khorshidi et al. 2014), and brain masking. In addition,
the HCP’s gray and white matter parcellations of each subject’s
brain structural scans (wmparc.2.nii.gz) were used to assess the
GM specificity and sensitivity of the rfMRI metrics.

FCP-Cambridge
An EPI sequence with TR/TE = 3000/30ms, FA 85°, 72 × 72
matrix size, 47 slices (interleaved acquisition; no gap between
slices) and 3-mm isotropic voxels was used to acquire rfMRI
time series with 119 time points while the participants relaxed
with their eyes open during the 6min rfMRI scan. A multiecho
T1-weighted magnetization-prepared gradient-echo image
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(multiecho MP-RAGE) pulse sequence (TR = 2200ms, inversion
time (TI) = 1100ms, TE = 1.54ms for image 1 to 7.01ms for image
4, FA = 7°, 1.2 × 1.2 × 1.2mm3, and field of view [FOV] = 230) was
used to acquire high-resolution anatomical brain images.

Consortium for Reliability and Reproducibility-HNU
An EPI sequence with TR/TE = 2000/30ms, FA 90°, 64 × 64
matrix size, 43 slices (interleaved acquisition; no gap between
slices), and 3.4-mm isotropic voxels was used to acquire rfMRI
time series with 300 time points while the participant relaxed
with their eyes open during the 10min rfMRI scans. A T1-
weighted Fast Spoiled Gradient echo (FSPGR: TR = 8.1ms,
TE = 3.1ms, TI = 450ms, FA = 8°, FOV = 256 × 256mm,
matrix = 256 × 256, voxel size = 1.0 × 1.0 × 1.0mm3, 176 sagittal
slices) was used to acquire high-resolution anatomical brain
images.

Image Preprocessing for FCP and HNU Data Sets

The FreeSurfer (version 5.3.0) software package (http://surfer.
nmr.mgh.harvard.edu) was used to automatically segment the
anatomical MRI scans into cortical and subcortical GM struc-
tures (Fischl et al. 2002). The first 4 time points of the rfMRI
time series were removed to avoid nonequilibrium effects in
the blood-oxygenation-level-dependent (BOLD) signal. Then,
the University of Oxford’s Center for Functional Magnetic
Resonance Imaging of the Brain (FMRIB) Software Library (FSL
version 5.0; http://www.fmrib.ox.ac.uk/fsl) was used for image
realignment (to correct for head motion with MCFLIRT, Motion
Correction using FMRIB’s Linear Image Registration Tool), and
for spatial normalization to the MNI152 template with 3-mm
isotropic voxels (using FLIRT, the FMRIB’s Linear Image
Registration Tool) (Jenkinson et al. 2002; Smith et al. 2004). The
interactive data language (IDL, ITT Visual Information Solutions)
was used for 0.01Hz frequency cutoff high pass filtering.

Head Motion

Framewise displacements, FD, were computed for every time
point from head translations and rotations, using a 50mm
radius to convert angle rotations to displacements. The mean FD
was not different for the REST1 (0.17 ± 0.05mm; mean ± standard
deviation) and REST2 (0.18 ± 0.05mm) sessions or for the LR
(0.17 ± 0.05mm) and RL (0.18 ± 0.05mm) phase encoding direc-
tions (P > 0.24; paired t-test). Scrubbing was implemented in IDL
to remove time points excessively contaminated with motion.
Specifically, time points were excluded if the temporal derivative
root means squared variance (DVARS) of the BOLD signal,
DVARS > 0.5% and FD > 0.5 (Power et al. 2012). The number of
time points removed per time series by scrubbing was not sig-
nificantly different for REST1 (0.5 ± 1.1; mean ± SD) and REST2
(0.8 ± 1.1) or for LR (0.5 ± 1.2) and RL (0.8 ± 1.1) (P > 0.12, t-test).

Expanding Window

To quantify the effect of scan time on lFCD, seed-voxel correla-
tions, and sICA, we constructed a set of rfMRI data sets with
increasing scan length from the original rfMRI data. lFCD, seed-
voxel correlations, and sICA were computed independently for
each scan length. In order to limit the effect of spurious con-
nectivity fluctuations, the shortest time window had 100 image
time points (72 s) (Leonardi and Van De Ville 2015; Zalesky and
Breakspear 2015). Note that according to Zalesky and
Breakspear, nonstationary fluctuations in FC can be detected

with short temporal windows (>40 s) while maintaining nom-
inal control of false positives (Zalesky and Breakspear 2015). In
the subsequent steps, the window was expanded 50 image
time points (36 s) compared with that of the previous one and
the metrics were recalculated. This was repeated until the tem-
poral window covered the full time series. Thus, a total of 23
(HCP), 15 (CoRR-HNU), or 8 (FCP-Cambridge) temporal windows
with Ni = 72s/TR + 36s/TR × i time points were extracted from
each rfMRI timeseries. lFCD, seed-voxel correlations, and sICA
were computed for each window length, subject, session, and
phase encoding direction.

Local Functional Connectivity Density

The lFCD at every voxel in the brain was computed as the num-
ber of elements in the local FC cluster using a “growing” algo-
rithm (Tomasi and Volkow 2010). The Pearson correlation was
used to assess the strength of the FC, Rij, between voxels i and j
in the brain, and a high correlation threshold Rij > 0.5, was
selected to ensure significant correlations between time-
varying signal fluctuations at PFWE < 0.05, corrected, for all tem-
poral windows (lFCDHT). A voxel (xj) was added to the list of
voxels functionally connected with x0 only if it was adjacent to
a voxel that was linked to x0 by a continuous path of function-
ally connected voxels and R0j > 0.5. This calculation was
repeated for all brain voxels that were adjacent to those that
belonged to the list of voxels functionally connected to x0 in an
iterative manner until no new voxels could be added to the list.
lFCD was additionally computed using a less conservative cor-
relation threshold R0j > 0.3 (lFCDLT; P < 0.003, uncorrected, for
all temporal windows) to address potential effects of threshold
selection in the performance of the lFCD metric.

Seed-voxel Correlation

The local maximum of the lFCD at the occipito-parietal junction,
which is the location of the strongest lFCD hub in the brain, was
used as cubic seed (125 voxels; 1mL) for seed-voxel correlations.
Specifically, Pearson correlation was used to compute the
strength of the FCmax between time-varying signals at the seed
location and those in other brain voxels, and the Fisher’s
z-transformation was used to normalize the step-distributed
correlation coefficients. The FC patterns corresponding to four
additional bilateral seed regions (cubic; volume 125 voxels) were
computed in a similar way for each rfMRI data set to assess
potential effects of seed location on the performance of the FC
metric. Specifically, the MNI coordinates of the bilateral dorsolat-
eral prefrontal cortex (PFC; left: −50, 20, 34mm; right: 46, 14,
43mm) and inferior parietal cortex (IPC; left: −52, −49, 47mm;
right: 52, −46, 46mm) seeds were extracted from literature
(Vincent et al. 2008). To represent subcortical regions we used
seeds in the dorsolateral caudal putamen (DCP; left: −28, 1,
3mm; right: 28, 1, 3mm) (Di Martino et al. 2008) and the thal-
amus (THA; −12, −19, 8mm; right: 12, −19, 8mm) (Tomasi and
Volkow 2011a).

Spatial Independent Component Analyses

The sICA maps (melodic_IC.nii) provided with the HCP data set
(Salimi-Khorshidi et al. 2014) were used to extract a reference
DMN template for the group (Fig. 1). Specifically, a sICA compo-
nent map that best fitted the pattern classically associated with
the DMN was identified upon visual inspection for 10 random
subjects (Biswal et al. 2010). These maps were averaged to
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create a preliminary DMN template. Then, an automated DMN
identification approach was used to identify the DMN in the
“melodic_IC.nii” maps in 260 randomly selected subjects from
the HCP database. Specifically, the Pearson product-moment
correlation between the preliminary DMN template and
“melodic_IC.nii” maps was computed in MATLAB (MathWorks,
Inc.) and the sICA component with the highest correlation (i.e.
highest spatial overlap) with the DMN template was selected as
the component representing the DMN. These 260 DMN maps
were then averaged to create the final DMN template.

In order to examine the effect of length of resting-state
scans on the DMN, we segmented the data for each run and
phase encoding direction using our expanding-window
approach and extracted the DMN using sICA as implemented
in FSL by restricting the maximum number of independent
components (IC#) to 250 (sICA250). Specifically, in each iteration,
the data were low-pass filtered (~0.08 Hz) and the multivariate
exploratory linear decomposition into independent compo-
nents (MELODIC) toolbox of the FSL package was used to extract
sICA components (Salimi-Khorshidi et al. 2014). The spatial
loading map for each sICA component was compared against
the predefined DMN template using an algorithm for

automated component identification (Fig. 1). Specifically, the
Pearson product-moment correlation between the DMN tem-
plate and component loadings maps was computed in MATLAB
and the sICA component with the highest correlation with the
DMN template was selected as the component representing the
DMN for a given temporal window, for each subject, each ses-
sion, and each phase encoding direction. In addition, a similar
approach with a maximum IC# of 50 was used to assess poten-
tial effects of MELODIC parameters on the performance of the
sICA-DMN metric (sICA50).

Pipelines

Three pipelines were implemented (Fig. 1). Multilinear regres-
sion was used to minimize motion-related fluctuations in the
MRI signals (Tomasi and Volkow 2010), and standard 0.08 Hz
low-pass filtering was used to remove magnetic field drifts and
minimize physiologic noise of high-frequency components.
Then the dynamic rfMRI metrics (lFCD, sICA, and seed-voxel
correlation) were computed using the expanding-window
approach as described above. Spatial smoothing was not used
in order to preserve the high spatial resolution of the original
data sets. All dynamic metrics were computed in the whole
brain.

Accuracy, Sensitivity, Specificity, Reproducibility, and
Reliability

We used five benchmarks to quantify the effect of scan time on
a given connectivity metric, X(t) (strength of lFCD, sICA, or FC):

“Accuracy,” the similarity between patterns from time series
of different lengths, assesses the Pearson correlation across
subjects between spatial map of X(tfull), computed from the
full-length time series, and spatial map X(t) computed from a
given temporal window:
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The FreeSurfer’s gray and white matter parcellations were used
for these purposes:

“Reproducibility” estimates the similarity of the X(t) patterns
from two independent sessions for each subject at a given time
point.

Figure 1. Image processing pipelines. Dynamic lFCD, sICA, and FC maps with

2-mm isotropic resolution and 91 × 109 × 91 voxels were computed for each

subject, session, and phase encoding direction using 160 HCP data sets

with low-pass filtered “minimally preprocessed” data (Glasser et al. 2013) from

the Q1 release and an expanding-window approach (see text). The DMN tem-

plate (bottom) used for automated DMN identification reflects the average of

260 DMN maps and shows the standard DMN pattern (red) and its anticorre-

lated network (blue) superimposed on the human brain (black).
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“Reliability” was determined for each temporal window and
each voxel using two-way mixed single measures intraclass
correlation (Shrout and Fleiss 1979),
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Specifically, each subject’s measurement (X at each voxel) is
assumed to be a random sample from a population of measure-
ments. Case 3 (fixed effects) was selected because the measures
were obtained in two different sessions (k = 2, REST1 and at
REST2; “the raters”), which are the only sessions of interest.
Previous test–retest reliability studies on FC have also used
Case 3. In this work, ICC was based on single measurements in
order to be consistent with previous test–retest reliability stud-
ies. Thus, ICC(3,1) was mapped in the brain in terms of
between-subjects (BMS) and residuals (EMS) mean square
values computed for each voxel using the IPN MATLAB toolbox
(www.mathworks.com/matlabcentral/fileexchange/22122-ipn-
tools-for-test-retest-reliability-analysis) and the X maps corre-
sponding to REST1 and REST2 sessions (k = 2). Note that ICC
(3,1) coefficients range from 0 (no reliability) to 1 (perfect
reliability).
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Statistical Methods

The exponential model ( ) = + ( − )−Y t Y A 1 e t t
0

/ 0 with 3 free
adjustable constants: time constant (t0), which captures the
time of convergence of a given benchmark (accuracy, sensitiv-
ity, specificity, reproducibility, or reliability) to its equilibrium,
the static amplitude (Y0), which represents the minimum
value of the benchmark (i.e. at 72 s, the length of the first
temporal window), and the dynamic amplitude (A), which
represents the potential benchmark gain (i.e. for t = ∞), was
used to assess the asymptotic behavior of the benchmarks of
X(t). The fitting constant t0 was used to test the hypothesis
“sensitivity, specificity, reproducibility, accuracy, and reliabil-
ity will achieve their asymptotic values faster for lFCD pat-
terns than for sICA or FC patterns” at P < 0.05 using two
sample t-tests.

Results
Figure 2 shows exemplary patterns of the 3 metrics for an indi-
vidual (Fig. 2A) and for the group average (Fig. 2B). As expected,
all three connectivity metrics delineated more precisely their
final patterns as the length of the windows increased. Whereas
the lFCDHT pattern had high signal-to-noise and fitted tightly
the GM in all subjects (Tomasi et al. 2015), the FCmax and

sICA250 patterns of the DMN were noisier and overlapped sig-
nificantly both gray and white matter (Fig. 2A). The group aver-
age patterns for FCmax and sICA250, however, did not overlap
significantly with white matter regions (Fig. 2B). Note this work
does not focus on the similarities and differences between
these patterns. Instead, we quantified the evolution of the
individual patterns with scan time in terms of five different
time-varying benchmarks. Overall, these whole-brain average
benchmarks did not differ for LR and RL phase encoding direc-
tions for any of the rfMRI metrics, and increased exponentially
with the length of the temporal window (goodness of exponen-
tial fit: χν

2 < 0.001; see Supplementary Figures).

Figure 2. (A) Exemplary FC patterns from full-length time series from a ran-

domly chosen individual superimposed on the subjects’ T1-weighted MRI for

lFCD, FC (seed: lFCD hub at the occipito-parietal junction; arrow) and DMN from

sICA. (B) Average patterns across 40 subjects, 2 sessions, and 2 phase encoding

directions, superimposed on three orthogonal views of a GM template of the

human brain.
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Accuracy

The whole-brain average accuracy converged faster to its max-
imum value for lFCD and FC from cortical seeds (t0 < 5.2min)
than for sICA (t0 > 7.4min; P < 0.005; Fig. 3B, Table 1).
Differences in convergence time between lFCDLT and lFCDHT, or
between FC from different seed regions, or between sICA250 and
sICA50 were not statistically significant (Fig. 3C–E). Y0 was larger
for lFCD than for FC or for sICA and for FC than for sICA
(P < 0.0002). A was larger for sICA than for FC or for lFCD, and
for FC than for lFCD (P < 0.0001). In addition, A was larger for
the FCDCP than for FCmax, FCIPC, and FCPFC (P < 0.05).

Sensitivity

The whole-brain average sensitivity approached its maximum
value at similar rate for lFCD, FC, and sICA (t0 ~5min; Fig. 4B,
Table 1). t0 was longer for lFCDLT than for lFCDHT (Fig. 4C), but
did not differ across seed regions (for FC) or between sICA250

and sICA50 (Fig. 4D,E). Sensitivity was predominately static for
all metrics (Y0 ≫ A; P < 10–4). Y0 was larger for lFCD than for FC
or for sICA (P < 10–5), and for FC than for sICA (P < 0.05).

Specificity

The convergence of the whole-brain average specificity was
faster for lFCD (t0 ~1.8min) than for FC or for sICA (t0 > 6.4min,
P < 0.0001; Fig. 5B and Table 1). t0 did not differ significantly
between lFCDHT and lFCDLT, between different seed regions (for
FC), or between sICA250 and sICA50 (Fig. 5C–E). Specificity was
predominately static for all metrics (Y0 ≫ A; P < 10–4). Y0 was
larger for lFCD than for FC or for sICA (P < 10–6) and for FC than
for sICA (P < 0.05). A was larger for FC than for lFCD or for sICA
(P < 0.001) and for lFCD than for sICA (P < 0.015).

Reproducibility

The convergence of the whole-brain average reproducibility
was faster for lFCD (t0 ~2min) than for sICA (t0 ~4min,
P < 0.009; Fig. 6B and Table 1); t0 was shorter for lFCD and sICA
than for FC. Particularly, this effect was statistically significant
for the THA, IPC, and PFC seeds (P > 0.01). t0 was longer for
lFCDLT than for lFCDHT (Fig. 6C). t0 did not differ significantly
across seed regions (for FC) or between sICA250 and sICA50

(Fig. 6D,E). Y0 and A were larger for lFCD than for FC or for sICA
(P < 10–6).

Reliability

The convergence of the whole-brain average reliability did not
differ significantly for lFCD than for sICA or for FC (P > 0.07; t0
~6min; Fig. 7B and Table 1). Similarly, t0 did not differ between
lFCDLT and lFCDHT, across seed regions (for FC), or between
sICA250 and sICA50 (Fig. 7C–E). Y0 was larger for lFCD than for FC
or for sICA (P > 0.01; Fig. 7B and Table 1).

Effect of scan length

We aimed to assess potential effects of scan length on the
benchmarks. Thus, using the same methodology we estimated
sensitivity and specificity for shorter and longer scans.
Specifically, lFCDHT

short and FCmax
short were computed from the

first 7min of each rfMRI data sets, and lFCDHT
long and FCmax

long

were derived from 56.6min long time series obtained from tem-
poral concatenation of the BOLD signal maps corresponding to

the 4 rfMRI (LR, RL, sessions 1 and 2) HCP data sets, as well as
from 60 min long time series obtained from temporal concaten-
ation of the BOLD signal maps corresponding to the first 6 (out
of 10) rfMRI CoRR-HNU data sets. For lFCD convergence time
did not differ significantly (2.3 ± 0.8 and 1.7 ± 0.3min; t0 for sen-
sitivity and specificity, respectively) for the short than for the
full length (14.4min) rfMRI data sets. However, for lFCDlong the
exponential model for sensitivity and specificity did not fit
accurately the sensitivity and specificity benchmarks (see
Supplementary Figures), suggesting detrimental effects of tem-
poral concatenation in the computation of lFCDlong. Similarly
for FCmax, convergence time did not differ significantly
(3.6 ± 0.5 and 10 ± 2min; t0 for sensitivity and specificity,
respectively) for short than for the 14.4min rfMRI data sets.
However, for FCmax from long rfMRI data sets the time-varying
sensitivity and specificity exhibited artifacts and had low
dynamic range (see Supplementary Figures).

Figure 3. (A) Spatial distribution of the accuracy computed across subjects at

t = 6min, independently for each metric (lFCD, FC, sICA). Whole-brain average

accuracy as a function of time for: lFCD, FC, and sICA (B); lFCDHT (R > 0.5) and

lFCDLT (R > 0.3) (C); seed-voxel correlations for seed regions in THA, DCP, IPC,

and dorsolateral PFC (D); and for sICA-DMN maps computed using 50 and 250

maximum independent components (E). Average values computed across two

rfMRI sessions (REST1 and REST2) and two phase encoding directions (LR and

RL). Bars reflect standard errors.
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Effect of Spatiotemporal Resolution

Since multiband EPI is still a novel technique and many groups
use different MRI acquisition parameters, we studied the
impact of MRI data acquisition parameters on t0 for specificity
and sensitivity using two different rfMRI data sets collected
with conventional EPI: FCP-Cambridge (3mm spatial and 3 s
temporal resolution; 6min acquisition time) and CoRR-HNU
(3.4mm spatial and 2 s temporal resolution; 10min acquisition
time). Overall, sensitivity and specificity for lFCD and FC were
significantly higher for multiband EPI (HCP) than for standard
EPI (FCP-Cambridge or CoRR-HNU) data sets (P < 0.0001). For
lFCD, t0 was not significantly different for the HCP than for FCP-
Cambridge (2.5 ± 1.6 and 0.6 ± 0.4min; t0 for sensitivity and spe-
cificity, respectively) or CoRR-HNU (1.9 ± 1.9 and 2.2 ± 0.6min)
data sets (Fig. 8). For FC, however, t0 was poorly quantified for
the FCP-Cambridge (125 ± 177 and 87 ± 157min; t0 for sensitiv-
ity and specificity, respectively) and CoRR-HNU (320 ± 446 and
15 ± 2min; specificity) data sets.

Discussion
FC metrics are highly dynamic (Chang and Glover 2010; Tomasi
et al. 2016) and have a neurophysiological origin (Tagliazucchi
et al. 2012). Image acquisition protocols that minimize the tem-
poral variability of the connectivity patterns could facilitate the
development of imaging biomarkers of healthy brain function
and their disruption by brain diseases. This is the first study to
contrast the effect of scan time on 3 different rfMRI metrics:
lFCD, sICA, and FC, as assessed by ICC(3,1) test–retest reliability
and four understudied additional performance benchmarks:
accuracy, reproducibility, sensitivity, and specificity. We found
that the necessary rfMRI scan time to attenuate the overall
effects of the temporal dynamics on these five parameters by
80% or more varied across connectivity metrics and was shorter
for lFCD (4.5 ± 1.5min) than for FC or sICA (13.2 ± 4.2min).

Static (or minimal) accuracy was significantly higher for
lFCD (>51%) than for FC or sICA (<37%). Short time windows
(<7min) attenuated the temporal variability of the lFCD

Table 1 Average parameters of the exponential model, ( ) = + ( − )−Y t Y A 1 e t t
0

/ 0 , for accuracy, sensitivity, specificity, reproducibility, and reli-
ability of lFCD, seed-voxel correlations (FC), and sICA with scan time

Metric Accuracy Sensitivity Specificity Reproducibility Reliability

t0 (min)
lFCDHT 4.9 ± 0.3a 4.0 ± 1.6 1.9 ± 0.2 1.8 ± 0.1 2.8 ± 0.2
lFCDLT 4.7 ± 0.2a 2.5 ± 0.2 1.7 ± 0.1 2.6 ± 0.2b 3.1 ± 0.3
lFCDshort 3.5 ± 0.2 2.3 ± 0.8 1.7 ± 0.3 1.7 ± 0.1 2.2 ± 0.4
FCmax 5.2 ± 0.3 4.9 ± 0.5 8.1 ± 1.8 10.8 ± 7.9 7.5 ± 2.4
FCTHA 6.0 ± 0.6 6.5 ± 2.3 9.3 ± 2.8 12.3 ± 3.8 9.5 ± 2.6
FCDCP 6.8 ± 0.4 6.6 ± 1.5 21.7 ± 12.5 15.9 ± 8.1 13 ± 8
FCIPC 4.9 ± 0.9 4.7 ± 1.2 7.8 ± 2.6 7.6 ± 0.6 5.6 ± 0.6
FCPFC 4.8 ± 0.4 4.8 ± 0.9 6.4 ± 1.6 8.6 ± 2.1 6.0 ± 1.2
sICA250 7.4 ± 0.9 3.9 ± 0.9 25 ± 9 3.1 ± 0.5 4.1 ± 1.0
sICA50 7.0 ± 0.6 3.5 ± 0.4 17 ± 12 3.1 ± 0.1 3.9 ± 0.3
Y0

lFCDHT 0.52 ± 0.02 0.63 ± 0.02 0.90 ± 0.02 0.46 ± 0.01 0.12 ± 0.04
lFCDLT 0.51 ± 0.03 0.58 ± 0.02 0.86 ± 0.02 0.38 ± 0.01 0.10 ± 0.04
lFCDshort 0.51 ± 0.03 0.62 ± 0.03 0.89 ± 0.02 0.45 ± 0.01 0.10 ± 0.02
FCmax 0.31 ± 0.04 0.43 ± 0.01 0.66 ± 0.01 0.28 ± 0.01 0.01 ± 0.01
FCTHA 0.29 ± 0.04 0.42 ± 0.01 0.64 ± 0.01 0.29 ± 0.01 0.00 ± 0.01
FCDCP 0.26 ± 0.03 0.42 ± 0.01 0.63 ± 0.01 0.28 ± 0.01 0.00 ± 0.03
FCIPC 0.34 ± 0.04 0.43 ± 0.01 0.67 ± 0.01 0.29 ± 0.01 0.01 ± 0.01
FCPFC 0.37 ± 0.04 0.43 ± 0.01 0.67 ± 0.01 0.30 ± 0.01 0.02 ± 0.01
sICA250 0.0 ± 0.1 0.42 ± 0.01 0.65 ± 0.01 0.25 ± 0.01 0.00 ± 0.01
sICA50 0.10 ± 0.04 0.42 ± 0.01 0.65 ± 0.07 0.25 ± 0.01 0.00 ± 0.03
A
lFCDHT 0.50 ± 0.03 0.09 ± 0.01 0.08 ± 0.01 0.43 ± 0.01 0.34 ± 0.08
lFCDLT 0.55 ± 0.03 0.09 ± 0.01 0.09 ± 0.01 0.43 ± 0.01 0.34 ± 0.08
lFCDshort 0.51 ± 0.03 0.23 ± 0.01 0.12 ± 0.02 0.30 ± 0.04 0.34 ± 0.09
FCmax 0.74 ± 0.05a 0.09 ± 0.01 0.15 ± 0.01 0.08 ± 0.04 0.31 ± 0.07
FCTHA 0.79 ± 0.06 0.09 ± 0.01 0.18 ± 0.04 0.13 ± 0.03 0.43 ± 0.07
FCDCP 0.85 ± 0.05 0.06 ± 0.01 0.21 ± 0.09 0.10 ± 0.04 0.45 ± 0.25
FCIPC 0.70 ± 0.03a 0.08 ± 0.01 0.16 ± 0.03 0.10 ± 0.01 0.41 ± 0.01
FCPFC 0.67 ± 0.04a 0.09 ± 0.01 0.16 ± 0.01 0.11 ± 0.01 0.42 ± 0.01
sICA250 1.0 ± 0.1 0.05 ± 0.01 0.10 ± 0.02 0.06 ± 0.01 0.20 ± 0.01
sICA50 0.99 ± 0.03 0.05 ± 0.01 0.07 ± 0.03 0.06 ± 0.01 0.23 ± 0.01

Note: The high (HT) and low (LT) correlation thresholds used for the computation of the lFCD maps were 0.5 and 0.3, respectively. The lFCD was computed for the full

length (14.4min) as well as for first 7min (short) of the rfMRI data sets. Seed-voxel correlation maps (FC) were computed for the 5 different seed regions: the strongest

lFCD hub at the occipito-parietal junction (max); THA [MNI coordinates: left (−12, −19, 8) mm; right (12, −19, 8) mm]; DCP [MNI coordinates: left (−28, 1, 3) mm; right

(28, 1, 3) mm]; IPC [MNI coordinates: left (−52, −49, 47) mm; right (52, −46, 46) mm]; dorsolateral PFC [MNI coordinates: left (−50, 20, 34) mm; right (46, 14, 43) mm].

Seed volume: 1mL (125 voxels). Two different sICA were performed using 250 and using 50 independent components.
aFC < FCDCP (P < 0.05).
blFCD > lFCDshort (P < 0.05).
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patterns by 80% (i.e. achieved 80% dynamic accuracy) but less
so for FC (70%) or for sICA (60%). Thus, longer scan windows
were necessary for FC (9 ± 1min) and for sICA (12 ± 1min) to
achieve 80% dynamic accuracy. This finding is consistent with
prior studies on the stabilization of graph theory metrics after
5min of BOLD signal acquisition (Whitlow et al. 2011). Our find-
ings are also consistent with the exponential attenuation of the
average root-mean-square deviations (RMSD) of temporal cor-
relations as a function of scan length (Birn et al. 2013).
Specifically, Birn et al. studied the effect of scan length on the
strength of the correlations between rfMRI signals from 18
spherical ROIs. They found that RMSD decreased with scan
time and suggested that 8min of scan time is necessary to suf-
ficiently reduce RMSD. When we fitted a mono exponential
decay model to their data we found that a scan length of
8.5min was needed to attenuate the RMSD by 80%. Our findings
are also consistent with the exponential saturation of the

similarity between FC matrices as a function of scan length
(Gonzalez-Castillo et al. 2014). Specifically, they found that
similarity increased with scan time and suggested that 10min
of scan time is necessary to optimize within-subject reproduci-
bility of whole-brain connectivity patterns. When we fitted the
exponential model to their data, we found that a scan length of
6.8min was needed to attenuate the temporal variability of the
similarity index by 80%.

This is the first study to assess the effect of scan length on
the sensitivity and the specificity of connectivity metrics.
Short time windows efficiently attenuated the temporal vari-
ability of the sensitivity index by 80% for lFCD (5 ± 1min) and
sICA (5 ± 1min), but longer windows were necessary for FC
(9 ± 1min). For lFCD, short scanning (<3min) can efficiently
attenuate the temporal variability of the specificity index by
80%, but much longer scanning (>17min) may be necessary to
achieve similar attenuations for FC and sICA. Overall, the high

Figure 4. (A) Spatial distribution of the GM sensitivity of the FC metrics (lFCD,

FC, and sICA) computed across subjects at t = 6min. Whole-brain average sen-

sitivity as a function of time for: lFCD, FC, and sICA (B); lFCDHT (R > 0.5) and

lFCDLT (R > 0.3) (C); seed-voxel correlations for seed regions in THA, DCP, IPC,

and dorsolateral PFC (D); and for sICA-DMN maps computed using 50 and 250

maximum independent components (E). Average values computed across two

rfMRI sessions (REST1 and REST2) and two phase encoding directions (LR and

RL). Bars reflect standard errors.

Figure 5. (A) Spatial distribution of the GM specificity computed across subjects

at t = 6min for each of the metrics (lFCD, FC, and sICA). Whole-brain average

specificity as a function of time for: lFCD, FC, and sICA (B); lFCDHT (R > 0.5) and

lFCDLT (R > 0.3) (C); seed-voxel correlations for seed regions in THA, DCP, IPC,

and dorsolateral PFC (D); and for sICA-DMN maps computed using 50 and 250

maximum independent components (E). Average values computed across two

rfMRI sessions (REST1 and REST2) and two phase encoding directions (LR and

RL). Bars reflect standard errors.
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specificity and sensitivity of the lFCD reflect its precise GM
localization (Tomasi et al. 2015).

Between-session reproducibility was also significantly high-
er for lFCD than for FC and sICA, and the temporal variability in
the reproducibility of the patterns decreased faster for lFCD
than for FC and SICA. To attenuate the temporal variability of
the reproducibility index by 80% relatively short temporal win-
dows (3 ± 1min) were necessary for lFCD, but longer windows
were required for FC (18 ± 3min) and sICA-DMN (5 ± 1min).
The slower convergence of the reproducibility index for FC is
consistent with the exponential attenuation of the mean differ-
ence between ROI-based FC measures as a function of scan
length (Anderson et al. 2011). Specifically, when we fitted a
mono exponential decay model to the single-subject data by
Anderson et al., we found that a scan length of 15min was
needed to attenuate the dynamic differences in FC by 80%. Our
reproducibility data suggest that graph theory metrics may be

less prone to temporal dynamics than other connectivity
metrics (FC and SICA) (Chang and Glover 2010; Van Dijk et al.
2010).

The average ICC(3,1) in cortical GM was significantly higher
for lFCD than for FC and sICA. Overall, our findings are consist-
ent with moderate to high reliability of the FC indices (Shehzad
et al. 2009; Thomason et al. 2011; Braun et al. 2012; Faria et al.
2012). Whereas short time windows (<5min) effectively attenu-
ated the temporal variability of the reliability by 80% for lFCD,
longer windows were necessary for FC (>9min) and sICA
(>6min). The slower convergence of the reliability of the FC is
consistent with previous reports (Birn et al. 2013) as estimated
from the authors’ data (t0 = 8 ± 2min).

Resting-state fMRI has a potential as a biomarker of brain
function that can be applied in medical diagnosis (Buckner
et al. 2013; Castellanos et al. 2013). Whereas the nonstationarity
of the connectivity patterns (Chang and Glover 2010) appears to

Figure 6. (A) Spatial distribution of the reproducibility across subjects at

t = 6min for each of the metrics (lFCD, FC, and sICA). Whole-brain average

reproducibility as a function of time for: lFCD, FC, and sICA (B); lFCDHT (R > 0.5)

and lFCDLT (R > 0.3) (C); seed-voxel correlations for seed regions in THA, DCP,

IPC, and dorsolateral PFC (D); and for sICA-DMN maps computed using 50 and

250 maximum independent components (E). Average values computed across

two rfMRI sessions (REST1 and REST2) and two phase encoding directions (LR

and RL). Bars reflect standard errors.

Figure 7. (A) Spatial distribution of the ICC(3,1) computed at t = 6min for each

of the functional connectivity metrics (lFCD, FC, and sICA) Whole-brain average

reliability as a function of time for: lFCD, FC, and sICA (B); lFCDHT (R > 0.5) and

lFCDLT (R > 0.3) (C); seed-voxel correlations for seed regions in THA, DCP, IPC,

and dorsolateral PFC (D); and for sICA-DMN maps computed using 50 and 250

maximum independent components (E). Average values computed across two

rfMRI sessions (REST1 and REST2) and two phase encoding directions (LR and

RL). Bars reflect standard errors.
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have biological significance (Handwerker et al. 2012; Hutchison
et al. 2013a, 2013b; Allen et al. 2014; Calhoun et al. 2014), the
temporal dynamics should be critically considered in the devel-
opment of biomarkers for neuropsychiatric disorders, particu-
larly for protocols that use short imaging times (<6 min).
Convergence time is metric-dependent and a function of the
benchmark used to characterize convergence (e.g. sensitivity,
reproducibility, etc.).

Overall the present study suggests that lFCD, a graph theory
metric that gauges the local degree of connectivity, is more
resilient to the effects of temporal dynamics than standard FC
metrics such as FC and sICA, which could explain the high sen-
sitivity of lFCD to brain disorders. We and others have shown
that lFCD hubs in posterior parietal and occipital cortices
(Tomasi and Volkow 2010, 2011b) are influenced by age (Tomasi
and Volkow 2012b), gender (Tomasi and Volkow 2011c), stimu-
lant drugs (Konova et al. 2015), fluid reasoning capacity (Lang
et al. 2015), brain development (Tomasi and Volkow 2014), and
dopamine signaling (Tian et al. 2013; Li et al. 2016). Thus, FCD
mapping is being increasingly utilized to assess brain function
at rest in neuropsychiatric populations. For instance, recent
studies showed that lFCD hubs are disrupted in attention deficit
hyperactivity disorder (Tomasi and Volkow 2012a), cocaine
addiction (Konova et al. 2015), alcohol intoxication and abuse
(Zhang et al. 2015; Shokri-Kojori et al. 2016), Alzheimer’s dis-
ease (Sui et al. 2015), nonepileptic seizures (Ding et al. 2014),
schizophrenia (Tomasi and Volkow 2014; Zhuo et al. 2014; Chen
et al. 2015; Liu et al. 2015), post-traumatic stress disorder
(Zhang et al. 2016), major depression (Zhang et al. 2016; Zou
et al. 2016), congenital blindness (Qin et al. 2015), myopia (Zhai
et al. 2016), amblyopia (Wang et al. 2014), traumatic axonal

injury (Caeyenberghs et al. 2015), hepatic encephalopathy (Qi
et al. 2015), tinnitus (Han et al. 2015), and other brain disorders.

Because fatigue, drowsiness, sleepiness, and movement all
increase with scan time, it is unknown whether metrics com-
puted from 14.4min rfMRI data sets equals ground truth. This
study does not identify significant t0-differences between
lFCDshort (7min) and lFCDHT (14.4min) for any of the bench-
marks. Similarly, findings were not driven by the parameters
used in the computation of the metrics. Specifically, t0-estima-
tions were not significantly different for lFCDHT (R > 0.5) and
lFCDLT (R > 0.3), or for seed-voxel correlations computed from
different seed regions (FCTHA, FCDCP, FCIPC, FCPFC, and FCmax), or
for sICA-DMN patterns computed using different maximum
numbers of components (sICA50 and sICA250). The decreased
sensitivity for lFCDlong (57.6min) and the longer t0 of the sensi-
tivity and specificity benchmarks for FClong suggest that there
may be limitations in our approach for modeling temporal evo-
lution of connectivity metrics in concatenated rfMRI data sets.

lFCD is an ultrafast data-driven graph theory metric that
quantifies the local degree, the size of the local network cluster
functionally connected to each brain network node (Tomasi
and Volkow 2010). We have shown that lFCD hubs in posterior
parietal and occipital cortices (Tomasi and Volkow 2011b) have
high metabolic cost (Tomasi et al. 2013) and exhibit pronounced
temporal variability (Tomasi et al. 2016). MRI data sets with
higher spatiotemporal resolution (2-mm isotropic; 0.72 s) have
demonstrated high accuracy for hub localization, and high GM
specificity and sensitivity (Tomasi et al. 2015). In part, this
reflects the high temporal resolution achieved by multiband
EPI, which allows significant attenuation of spurious connectiv-
ity in white matter by 0.01–0.08 Hz band-pass filtering. The

Figure 8. Whole-brain average sensitivity (left) and specificity (right) for lFCD (black) and FC (red) as a function of time computed from FCP-Cambridge (top) and CoRR-

HNU (bottom) rfMRI data sets. Bars reflect standard errors.
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more pronounced partial volume effects and less effective
physiologic noise removal at lower spatiotemporal resolution
of CoRR-HNU and FCP-Cambridge data sets could explain the
lower dynamic range (A) of specificity and sensitivity for CoRR-
HNU and FCP-Cambridge than for HCP. This also affects accur-
ate quantification of t0 for these data sets.

Thus, high spatiotemporal resolution FCD is a powerful vox-
elwise data-driven tool for exploring the brain connectome. In
contrast to seed-voxel correlation analysis (Biswal et al. 1995),
data-driven FCD is ideal for exploratory analyses because it
does not rely on a priori hypotheses and quantifies the strength
of the local FC hubs in just a few minutes/subject (Tomasi and
Volkow 2010). However, the fact that lFCD requires shorter scan
time does not mean that FC and sICA are less appropriate to
use in clinical research than lFCD because they provide comple-
mentary information and may reflect nonidentical physio-
logical phenomena. In this respect, a recent study showed that
resting functional networks derived from sICA predicted an
individual’s brain fMRI activation patterns to different tasks
(Tavor et al. 2016), which as on now has not been shown for
FCD.

Overall this study suggests that 7–10min scanning could
result in stable static rfMRI biomarkers. However, development
of dynamic biomarkers such as those reflecting the dynamics
of the “state of mind” of each patient may require longer scan-
ning times. The resilience of the lFCD metric to temporal
dynamics makes it ideal for FC studies in pediatric and patient
populations who may not tolerate long scans.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/
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