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Abstract

Background: We previously derived and validated a bronchial epithelial gene expression biomarker to detect lung cancer in
current and former smokers. Given that bronchial and nasal epithelial gene expression are similarly altered by cigarette
smoke exposure, we sought to determine if cancer-associated gene expression might also be detectable in the more readily
accessible nasal epithelium.
Methods: Nasal epithelial brushings were prospectively collected from current and former smokers undergoing diagnostic
evaluation for pulmonary lesions suspicious for lung cancer in the AEGIS-1 (n¼375) and AEGIS-2 (n¼130) clinical trials and
gene expression profiled using microarrays. All statistical tests were two-sided.
Results: We identified 535 genes that were differentially expressed in the nasal epithelium of AEGIS-1 patients diagnosed
with lung cancer vs those with benign disease after one year of follow-up (P< .001). Using bronchial gene expression data
from the AEGIS-1 patients, we found statistically significant concordant cancer-associated gene expression alterations
between the two airway sites (P< .001). Differentially expressed genes in the nose were enriched for genes associated with
the regulation of apoptosis and immune system signaling. A nasal lung cancer classifier derived in the AEGIS-1 cohort that
combined clinical factors (age, smoking status, time since quit, mass size) and nasal gene expression (30 genes) had statistic-
ally significantly higher area under the curve (0.81; 95% confidence interval [CI]¼0.74 to 0.89, P¼ .01) and sensitivity (0.91; 95%
CI¼0.81 to 0.97, P¼ .03) than a clinical-factor only model in independent samples from the AEGIS-2 cohort.
Conclusions: These results support that the airway epithelial field of lung cancer–associated injury in ever smokers extends to
the nose and demonstrates the potential of using nasal gene expression as a noninvasive biomarker for lung cancer detection.

The diagnostic evaluation of lung cancer among high-risk current
and former smokers with lesions found on chest imaging repre-
sents a growing clinical challenge due to the implementation of
lung cancer screening (1). While the National Lung Cancer

Screening Trial (NLST) demonstrated a 20% relative reduction
in lung cancer–related mortality through annual screening of
high-risk smokers by low-dose chest CT (LDCT), approximately
25% of CT-screened subjects had a pulmonary lesion, of which
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over 95% were ultimately diagnosed as benign (2). While there are
guidelines for the management of pulmonary nodules (3),
unnecessary invasive procedures (including surgical lung biopsy)
are frequently performed on patients who are ultimately diag-
nosed with benign disease (4,5). There is a clear and growing need
to develop additional diagnostic approaches for evaluating pul-
monary lesions to determine which patients should undergo CT
surveillance or invasive biopsy.

Our group and others have established that airway gene
expression signatures can serve as biomarkers for the presence
of smoking-related lung diseases including lung cancer and
COPD (6–8). Previous work has shown that chronic exposure to
tobacco smoke results in an airway-wide field of injury with
both reversible and irreversible alterations in bronchial airway
epithelial cell gene expression upon smoking cessation (9,10).
Importantly, gene expression profiles from cytologically normal
bronchial epithelial cells obtained via endobronchial brushings
can serve as a biomarker that distinguishes ever smokers with
lung cancer from those with benign lung disease (6) independ-
ently of clinical risk factors (11). More recently, Whitney et al.
reported a 23-gene bronchial genomic lung cancer classifier (12),
which was validated in two prospective clinical trials (13). While
the high sensitivity and negative predictive value of this classi-
fier suggest that it can be used to assign patients to CT surveil-
lance, it is dependent upon cells obtained during bronchoscopy.
Although bronchoscopy-related complications are uncommon
(14,15), bronchoscopy is not always chosen as a diagnostic
modality based on the size/location of the lung lesion, pretest
risk of disease, patient preference, and degree of underlying
lung disease.

Given concordant response of nasal and bronchial epithelium
to tobacco smoke (16) and the validated performance of the bron-
chial genomic classifier for lung cancer, we sought to test the
hypothesis that cancer-associated expression differences might
also be detectable in nasal epithelium and related to those found
in bronchial epithelium. Detecting cancer-associated gene
expression in nasal epithelium would suggest its potential to
serve as a less invasive biospecimen for lung cancer detection
and potentially expand the clinical settings in which airway gene
expression could be used for this purpose.

Methods

For a complete description of the methods, please see the
Supplementary Materials and Methods (available online).

Experimental Design

Patients were enrolled at 28 medical centers in the United
States, Canada, and Europe as part of two prospective studies
within the Airway Epithelial Gene Expression in the Diagnosis
of Lung Cancer (AEGIS) clinical trials (registered as NCT01309087
and NCT00746759). All study protocols were approved by the
institutional review board at each medical center, and written
informed consent was obtained from all patients prior to enroll-
ment. Inclusion and exclusion criteria have been previously
described (13). All patients were current or former cigarette
smokers (>100 cigarettes in their lifetime) undergoing broncho-
scopy as part of their diagnostic workup for clinical suspicion
of lung cancer, and all samples were collected prospectively
prior to diagnosis. Patients were followed for up to one year
postbronchoscopy until a final diagnosis of lung cancer or
benign disease was made. Lung tumor stage was assessed using

the TNM staging system (17). In this study, 554 nasal epithelium
samples were selected and profiled using microarrays (see
Supplementary Materials and Methods, available online). We
were limited by patients with a benign diagnosis and matched
them approximately 2:3 with patients diagnosed with lung can-
cer. Microarray data generated from bronchial epithelium sam-
ples from 299 patients together with their clinical annotations
were obtained from Whitney et al. (12).

Microarray Processing

All procedures were performed as previously described (7) using
Affymetrix Gene 1.0 ST microarrays. CEL files from nasal and
bronchial samples passing quality control (Supplementary
Materials and Methods, available online) were processed sepa-
rately using the Robust Multichip Average (RMA) algorithm (18)
and the standard Affymetrix Chip Definition File to estimate
gene expression signal. ComBat (19) was used to correct for
batch effects.

Characterization of Cancer Associated Genes in Nasal
Epithelium

Cancer-associated gene expression profiles in nasal epithelium
were identified using linear models (20) that corrected for smoking
status, pack-years, sex, age, and RNA quality (RIN). Functional
enrichment of the most differentially expressed genes (P< .001) was
assessed using the Reactome and Gene Ontology (GO) databases
and EnrichR (21). Similarities between cancer-associated gene
expression profiles in nasal and bronchial epithelium were assessed
using a preranked gene set enrichment analysis (GSEA) (22).

The expression of 11 gene clusters previously identified as
being associated with cancer in the bronchial epithelium (12)
was summarized in AEGIS-1 nasal samples by taking the mean
of the cluster genes per sample. The association of each cluster
mean with the presence or absence of cancer was computed
using a Welch t test. Finally, the correlation of scores from a
previously reported bronchial genomic lung cancer classifier (12)
was evaluated in matched bronchial and nasal samples from
AEGIS-1 (n¼ 157 patients). These analyses are described in detail
in the Supplementary Materials and Methods (available online).

Derivation of Nasal Clinicogenomic Lung Cancer
Classifier

We derived a clinical factor lung cancer classifier using a
training set of AEGIS-1 patients (n¼ 517) using logistic regres-
sion to combine patient age, smoking status (current, former),
time since quit (�15 years, >15 years, unknown), and mass size
(<3 cm, �3 cm, infiltrates). Similarly, we derived a clinicoge-
nomic classifier using penalized logistic regression to combine
all of the variables in the clinical factor model plus the score
from a nasal lung cancer gene expression classifier. This gene
expression classifier was derived in the nasal training set
(n¼ 375) using a weighted voting algorithm. The most differen-
tially expressed genes by moderated t test were included in
this model. The total number of genes included in this classifier
was optimized in cross-validation. Specifically, we selected the
smallest number of genes that maximized cross-validation
performance. A more detailed description is provided in the
Supplementary Materials and Methods (available online).
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Statistical Analysis

Differences in clinical covariates between patients with and
without lung cancer were assessed using Fisher’s exact test (cate-
gorical variables) or Welch t test (continuous variables). Differential
expression analyses were performed using linear modeling (limma
R package [20]) or Welch t tests unless otherwise specified. For
the differential expression analysis, a two-sided P value of less
than .001 was considered evidence of statistically significant differ-
ential expression. Correlation coefficients were calculated using
Pearson’s product-moment coefficient. Classification performance
was assessed using standard measures including receiver operat-
ing characteristic (ROC) curve, the area under the curve (AUC), sen-
sitivity, specificity, negative predictive value (NPV), and positive
predictive value (PPV). Differences between ROC curve AUC values
were assessed using DeLong’s test (23) for correlated ROC curves.
Operating points for binary classification were chosen as the
threshold that maximized sensitivity while maintaining 50% spe-
cificity in the training set. Differences in sensitivity and specificity
between models were assessed using McNemar’s chi-square test
for count data (24). Statistical differences in NPV between models
were assessed using the generalized score statistic (25) for paired
analyses or a proportions test for unpaired analyses. All confidence
intervals (CIs) are reported as two-sided binomial 95% confidence
intervals. All statistical tests were two-sided, and a P value of less
than .05 was considered statistically significant.

Results

Study Population

Five hundred fifty-four nasal epithelium samples were selected for
microarray profiling from a larger pool of RNA samples collected
prospectively from patients with suspect lung cancer enrolled in
the AEGIS clinical trials (13). Four hundred twenty-four of these
samples were from patients enrolled in the AEGIS-1 trial, and 130
were from patients in the AEGIS-2 trial (Supplementary Figure 1,
available online). Thirty-one patients from the AEGIS-1 cohort had
an indeterminate cancer diagnosis at one year post–sample collec-
tion or were lost to follow-up and were removed from the study.
Additionally, 18 nasal microarray samples from the AEGIS-1 data
set that did not meet minimum quality standards were also
removed. No samples were removed from the AEGIS-2 data set. The
remaining 375 samples from the AEGIS-1 cohort were used as a
training set in which all data analyses and biomarker derivation
steps were performed, while the 130 samples from the AEGIS-2
cohort were used solely to validate the predictive model (Table 1).
The distribution of cancer stages was slightly skewed toward later-
stage cancers in the validation set (Supplementary Table 1, avail-
able online). Lung cancer patients tended to have larger nodules
than patients with benign diagnoses in both the training and vali-
dation sets (P< .001 for both comparisons) (Supplementary Table 2,
available online) while patient age was statistically significantly
higher among cancer patients in the training set (P< .001). The gene
expression data from these samples has been deposited in the NCBI
Gene Expression Omnibus under accession number GSE80796.

Lung Cancer–Associated Gene Expression in Nasal
Epithelium

We identified 535 genes that were differentially expressed in
the nasal epithelium of AEGIS-1 patients diagnosed with lung
cancer vs those with benign disease after one year of follow-up

(P< .001) (Figure 1; Supplementary File 1, available online). Genes
downregulated in patients with lung cancer were enriched for
genes associated with DNA damage, regulation of apoptosis, and
processes involved in immune system activation including the
interferon-gamma signaling pathway and antigen presentation
(Table 2). Among genes that were upregulated in lung cancer
patients, we found enrichment for genes involved in endocytosis
and ion transport (Table 2). A complete list of statistically signifi-
cantly enriched pathways and GO categories (FDR< 0.05) is
shown in Supplementary Files 2–4 (available online).

Similarities in Nasal and Bronchial Cancer–Associated
Gene Expression

To determine if a shared pattern of cancer-related gene expres-
sion might exist between the nose and bronchus, we leveraged

Table 1. Clinical and demographic characteristics of patients who
contributed nasal epithelial samples

Characteristic

AEGIS-1
training

set (n¼ 375)

AEGIS-2
validation

set (n¼ 130) P

Cancer Status, No.* .006
Lung Cancer 243 66
Benign Disease 132 64

Smoking Status, No.* .75
Current 140 46
Former 235 84

Sex, No.* .75
Male 237 80
Female 138 50

Cumulative smoke exposure
(SD, No.), pack-y†

39.0 (26.9, 371) 34.8 (30.7, 130) .17

Time since quit (SD, No.), y† 7.6 (12.9, 309) 9.4 (13.4, 120) .21
Age (SD), y† 59.5 (10.4) 61.7 (11.5) .06
Lesion size, No.*,‡ .89
>3 cm 171 59
�3 cm 142 54
Infiltrate 44 17
Unknown 18 0

Lesion location, No.*,§ .16
Central 134 55
Peripheral 114 31
Central and peripheral 100 44
Unknown 27 0

Lung cancer histological
type, No.*,jj

.45

Small cell 40 8
Non–small cell 200 58

Adenocarcinoma 90 29
Squamous 72 17
Large cell 9 4
Not specified 29 8

Unknown 3 0
Diagnosis of benign

condition, No.*
105 34 .13

Infection 36 7
Sarcoidosis 21 12
Other 48 15

*P value calculated using two-sided Fisher’s Exact test.

†P value calculated using two-sided Student’s t test.

‡P value calculated comparing >3 cm vs �3 cm vs infiltrates.

§P value calculated comparing central vs peripheral vs central and peripheral.

jjP value calculated comparing non–small cell vs small cell.
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microarray data from 299 bronchial epithelium samples
obtained from AEGIS-1 patients (12). One hundred fifty-seven of
the 299 bronchial samples came from the same patients as
those in our nasal training set (Supplementary Table 3 and
Supplementary Figure 2, available online). Using bronchial gene
expression data from the AEGIS-1 patients, we found statisti-
cally significant concordant cancer-associated gene expression
alterations between the two airway sites (P< .001). GSEA (22)
revealed (Figure 2A) that the genes upregulated in nasal epithe-
lium of patients with lung cancer were among the genes most
upregulated in bronchial epithelium of patients with cancer
(P< .001) and that a similar relationship exists for genes
downregulated in patients with cancer between the nose and

bronchus (P< .001). The expression of the most concordantly
differentially expressed genes is shown in Figure 2B and high-
lighted in Supplementary File 1 (available online).

To further explore the hypothesis of a shared field of nasal
and bronchial lung cancer–associated injury, we examined the
nasal expression of 232 genes with lung cancer–associated
expression in bronchial epithelium (12). Whitney et al. grouped
these genes into 11 clusters, and we found that the mean expres-
sion of eight of the 11 clusters was statistically significantly asso-
ciated with lung cancer (P< .05) in our training set (Table 3),
including gene clusters enriched for genes involved in cell cycle,
response to retinoic acid, and the innate immune response.
Based on the concordant expression of cancer-associated genes

G
en

es

Patient cluster 1 Patient cluster 2

Gene expression (z-score)

-2 +2

Cancer Benign

Nasal samples

Patient cluster
Cancer status

Figure 1. Characterization of 535 cancer-associated nasal epithelial genes in the training set. Five hundred thirty-five genes were differentially expressed by cancer sta-

tus in the nasal training set (P< .001) using a linear model that included cancer status, smoking status, pack-years, sex, age, and RIN as covariates. These genes were

grouped into two co-expression clusters by unsupervised hierarchical clustering. Unsupervised hierarchical clustering of patients across these genes revealed two pri-

mary patient clusters.
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in bronchial and nasal epithelium, we computed a “bronchial”
lung cancer classifier score (12) for the nasal training set samples
and found that they were highly correlated with the scores
computed from matched bronchial samples (n¼ 157, R¼ 0.70,
P< .001) (Supplementary Figure 3, available online). Taken
together, these results suggest that lung cancer–associated gene
expression differences are similar in nasal and bronchial
epithelium.

Nasal Gene Expression as an Independent Predictor of
Lung Cancer Status

To determine if nasal gene expression could serve as a predictor
of lung cancer status, we selected the 30 most statistically sig-
nificantly differentially expressed genes (P< .001) from among
the 535 genes with cancer-associated nasal gene expression for
use in a weighted-voting biomarker (Supplementary File 5,
available online). The biomarker panel size of 30 genes was
chosen as the smallest number of genes that achieved maxi-
mal performance in cross-validation. This biomarker had an
AUC of 0.69 (n¼ 375, 95% CI¼ 0.63 to 0.75, P< .001) in cross-
validation in the training set. Twenty-two of the 30 genes
were also statistically significantly correlated between
matched bronchial and nasal samples (mean R¼ 0.29,
range¼ 0.16–0.49, P< .05).

In order to evaluate the potential for the nasal gene expres-
sion biomarker to add to clinical risk factors for lung cancer
detection, we developed a clinical risk factor model and tested
whether incorporating the gene-expression biomarker enhan-
ces its performance. In choosing which clinical risk factors to
include, we relied on a study in which Gould et al. identified
smoking status, time since quit, age, and mass size as impor-
tant clinical risk factors of lung cancer for patients with solitary
pulmonary nodules (26). Patient age, smoking status (current,
former), time since quit (�15 years, >15 years, unknown), and
categorized mass size (<3 cm, � 3 cm, infiltrates) were used to
create a clinical risk factor model for lung cancer using logistic
regression. The training set for this model consisted of the nasal
training set used to derive the gene expression classifier as well
as clinical data from an additional 142 patients from the AEGIS-
1 cohort for a total training set of 517 patients for the clinical
model (see Supplementary Figure 2, available online). A

Table 2. Functional characterization of genes with cancer-associated
expression in nasal epithelium

Genes
False discovery

rate

Downregulated genes (n¼ 492)
DNA damage

Signal transduction involved in mitotic
DNA integrity checkpoint (GO:1902400)

<0.001

Ubiquitin-dependent degradation of Cyclin D1
(reactome)

<0.001

Regulation of apoptosis (reactome) <0.001
G1/S DNA damage checkpoints (reactome) <0.001

Immune system activation
Antigen presentation and processing of

exogenous antigen (GO:0019884)
<0.001

Interferon-gamma signaling (reactome) <0.001
Upregulated genes (n¼ 43)

Ion transport
Response to magnesium ion (GO:0032026) 0.01
Regulation of endocytosis (GO:0030100) 0.01
Positive regulation of release of calcium ion

into cytosol (GO:0010524)
0.02

Figure 2. Concordance between cancer-associated gene expression in bronchial and nasal epithelium. A) The 535 genes with cancer-associated expression in nasal epi-

thelium were split into up- and downregulated gene sets, and we examined their distribution within all genes ranked from most downregulated (left) to most upregu-

lated (right) in the bronchial epithelium of patients with cancer using gene set enrichment analysis. We found that the genes with increased expression in nasal

epithelium are enriched among the genes that are most induced in the bronchial epithelium of patients with cancer (top; P< .001 by a two-sided permutation-based

Kolmogorov-Smirnov-like test [22]) while the reverse was true for genes with decreased expression in nasal epithelium (bottom; P< .001 by a two-sided permutation-

based Kolmogorov-Smirnov-like test [22]). Genes included in the core enrichment are shown in the green box. B) Heatmaps and hierarchical clustering of the core

enrichment genes in nasal (left) and bronchial (right) samples. All statistical tests were two-sided.
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clinicogenomic logistic regression model that incorporated the
clinical factors and the nasal gene expression classifier score
was derived in the 375 training set samples with nasal gene
expression.

The performance of the clinical and clinicogenomic models
was evaluated using an independent set of nasal samples
(n¼ 130) from the AEGIS-2 clinical trial that were not used in the

development of the classifier. The clinicogenomic model yielded
an AUC of 0.81 (95% CI¼ 0.74 to 0.89) in the validation set, which
was statistically significantly higher than the AUC of 0.74 (95%
CI¼ 0.66 to 0.83) achieved by the clinical risk-factor model alone
(P¼ .01) (Figure 3). Operating points for binary classification
were chosen to maximize training set sensitivity with specificity
of 50% or greater for both models. The addition of cancer-
associated gene expression to the clinical risk factor model
increased sensitivity from 0.79 (95% CI¼ 0.67 to 0.88) to 0.91 (95%
CI¼ 0.81 to 0.97, P¼ .03) and negative predictive value from 0.73
(95% CI¼ 0.58 to 0.84) to 0.85 (95% CI¼ 0.69 to 0.94, P¼ .03) (Table
4). The negative likelihood ratio of the clinicogenomic classifier
was consistent between training (0.18; 95% CI¼ 0.12 to 0.28) and
validation (0.18; 95% CI¼ 0.08 to 0.39) sets. Additionally, in sub-
jects with either lesion size less than 3 cm or peripheral lesions,
the clinicogenomic model had a negative predictive value of
0.85 (95% CI¼ 0.65 to 0.96) or 0.93 (95% CI¼ 0.66 to 1.00), respec-
tively (Supplementary Table 4, available online).

Discussion

In this study, we have established that the lung cancer–associ-
ated airway “field of injury” detectable in bronchial airway
epithelium (6,11,12) extends to the nasal epithelium. These
findings strengthen the “field of injury” hypothesis in which
there are gene expression alterations in normal-appearing epi-
thelial cells throughout the entire airway of smokers with lung
cancer and, intriguingly, suggest the potential for lung cancer
biomarkers based on nasal epithelial gene expression.

Table 3. Aggregate expression of lung cancer gene clusters from
bronchial epithelium in nasal epithelial samples

Cluster Function
No. of

probesets
Direction in

cancer P*

1† Innate immune 25 Down <.001
2† Mitotic cell cycle 47 Down .05
3 Inflamation 45 Down .83
4† Resp. retinoic acid/

cell cycle
34 Up .004

5 NA 10 Up .36
6 NA 21 Down .02
7† Submucosal gland markers 20 Up .01
8 n/a 15 Up .003
9† Xenobiotic detoxification 7 Down .15
10† Cartilaginous markers 4 Down .05
11 NA 1 Down .03

*P value of two-sided t test measuring the difference in mean average expression

of all genes in a cluster between cancer and benign nasal sample in the AEGIS-1

cohort.

†In bronchial genomic classifier described by Whitney et al. 2015 (12).
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Figure 3. Clinicogenomic and clinical classifier performance in the validation set. Shown are the receiver operating characteristic (ROC) curves for the clinicogenomic

(solid line) and clinical (dashed line) classifiers in the independent AEGIS-2 validation set. The area under the curve (AUC) was 0.81 (95% confidence interval [CI]¼0.74

to 0.89) for the clinicogenomic classifier and 0.74 (95% CI¼0.66 to 0.83) for the clinical classifier. The difference between ROC curves was statistically significantly differ-

ent (P¼ .01 by a two-sided Delong’s test for correlated ROC curves).
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While previous studies have validated the existence of bron-
chial airway gene expression alterations in patients with lung
cancer and demonstrated their clinical utility in lung cancer
detection (13), little is known about the physiological processes
responsible for this “field of injury.” One hypothesis for the
presence of lung cancer–associated alterations in nasal and
bronchial gene expression is that the subset of smokers who
develop lung cancer exhibit a distinct genomic response to
tobacco smoke exposure throughout all airway epithelial cells,
consistent with the “etiological field effect” described by
Lochhead et al. for colon and other cancer types (27). This para-
digm suggests that the airway gene-expression signature is a
risk marker for lung cancer as opposed to a direct consequence
of the presence of lung cancer based on local or systemic factors
produced by the tumor or its microenvironment (ie, the
“conventional field effect” defined by Lochhead et al. [27]).
Consistent with the etiological field effect hypothesis, we
observed a concordant downregulation of genes associated with
immune system activation in patients with lung cancer in both
bronchial and nasal epithelium, which might suggest that an
impaired immune response sets the stage for tumorigenesis in
the lung microenvironment. Alternatively, despite the distance
to the tumor, these cancer-associated gene expression differen-
ces may be a direct result of factors secreted by the tumor or its
microenvironment, or some other consequence of the presence
of the tumor consistent with the “conventional field effect”
described above.

Mechanistically, it is intriguing that a number of genes with
important roles in cancer-related processes are among the differ-
entially expressed genes. Of the genes that were downregulated
in patients with lung cancer, CASP10 and CD177 were among
the most correlated genes between bronchial and nasal epithe-
lium and are associated with the induction of apoptosis and acti-
vation of the immune response, respectively. We also identified
a number of genes involved in the p53 pathway that were
downregulated in patients with lung cancer, including BAK1,
ST14, CD82, and MUC4. BAK1 is associated with the induction of
apoptosis (28,29) and has been previously shown to be
downregulated in the tumors of patients with non–small cell
lung cancer (NSCLC) (30). ST14 has been described as a tumor
suppressor in breast cancer and its overexpression associated
with the inhibition of tumor cell migration and cell invasion (31).
The downregulation of CD82, which is a metastasis suppressor in
prostate cancer (32), has been shown to be correlated with poor
survival in patients with lung adenocarcinoma (33). MUC4,
whose downregulation has been associated with increased
tumor stage and poorer overall survival, has also been shown to
play an oncogenic role in multiple cancers and is a tumor sup-
pressor in NSCLC, acting as a modifier of p53 expression (34).

From a clinical perspective, we found that the addition of
lung cancer–associated gene expression to established clinical
risk factors improved the sensitivity and negative predictive
value for detecting lung cancer; these are the key performance
metrics for driving potential clinical utility in this setting (eg,
allowing physicians to avoid unnecessary invasive procedures
in those with benign disease). This provides the first proof of
concept for the use of nasal gene expression for lung cancer
detection. We elected to establish the presence of a nasal field
of lung cancer–associated injury using samples from the AEGIS
trial given the unique availability of matched bronchial sam-
ples, despite the fact that these patients were undergoing bron-
choscopy for suspect lung cancer. The demonstration of the
added value of nasal gene expression for lung cancer detection
in this setting sets the stage for the development of nasal gene
expression biomarkers for lung cancer in other clinical settings
where bronchoscopy is not frequently used because of lesion
size/location, risk of complications, or cost. In particular, it will
now be of interest to develop nasal biomarkers for patients with
small peripheral nodules found incidentally or via screening as
our current bronchoscopy-based cohort is enriched for patients
with centrally located lesions. In the clinical setting of patients
with small peripheral nodules, we envision that a nasal bio-
marker for lung cancer with a low negative likelihood ratio (on
par with the NLR we observed for the nasal biomarker in the
AEGIS samples) could be used to identify nodule patients who
are at low risk of malignancy and can be managed by CT
surveillance.

The importance and potential impact of this study derive
from several key strengths. First, the patients came from a large
number of academic and community hospitals and reflect a
variety of practice settings and different geographical locales;
thus the diversity of alternative benign diagnoses is repre-
sented. Second, the training and validation sets came from two
separate clinical trials, which minimizes the potential for the
model to depend on locally confounding variables. Third, the
samples were prospectively collected and cancer status was
unknown at the time of collection. Fourth, we have shown that
nasal gene expression identifies a source of lung cancer risk
that is independent of major clinical risk factors.

There were also a number of important limitations to this
study. Nasal samples used in this study were collected from
patients undergoing bronchoscopy for clinical suspicion of lung
cancer. As a result, our cohort was enriched for patients with
larger nodules and an elevated pretest risk of lung cancer.
Further, the size of our independent validation set limited our
ability to assess the subgroup performance of our biomarker in
patients with small and/or peripheral nodules, a clinical setting
where the test may have greater clinical utility. Lastly due to

Table 4. Classifier performance in the validation set (n¼ 130)

Biomarker performance metric Clinical model Clinicogenomic model P

Area under the curve (95% CI)* 0.74 (0.66 to 0.83) 0.81 (0.74 to 0.89) .01
Sensitivity (95% CI)† 0.79 (0.67 to 0.88) 0.91 (0.81 to 0.97) .03
Specificity (95% CI)† 0.58 (0.45 to 0.70) 0.52 (0.39 to 0.64) .42
Negative predictive value (95% CI)‡ 0.73 (0.58 to 0.84) 0.85 (0.69 to 0.94) .03
Positive predictive value (95% CI)‡ 0.66 (0.54 to 0.76) 0.66 (0.55 to 0.76) .97
Accuracy (95% CI)§ 0.68 (0.60 to 0.76) 0.72 (0.63 to 0.79) .68

*P value comparing models calculated using Delong’s two-sided test. CI¼ confidence interval.

†P value comparing models calculated using McNemar’s two-sided chi-square test.

‡P value comparing models calculated using two-sided generalized score statistic.

§P value comparing models calculated using two-sided Fisher Exact test.
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our nested case/control study design, the disease prevalence in
our cohort is not representative of the intended use clinical
setting.

Together, the findings demonstrate the existence of a cancer-
associated airway field of injury that can be measured in nasal
epithelium, a biosample that can be collected noninvasively with
little instrumentation or advanced training. Moreover, we find
that nasal gene expression contains information about the pres-
ence of cancer that is independent of standard clinical risk fac-
tors, suggesting that nasal epithelial gene expression might aid
in lung cancer detection. These findings, in particular the high
NPV of the nasal clinicogenomic biomarker, suggest the potential
to rule out lung cancer and set the stage for efforts to develop
nasal gene expression biomarkers that might have clinical utility
in avoiding unnecessary invasive procedures in settings where
bronchoscopy is not used as a diagnostic procedure, including
small peripheral nodules.
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