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Abstract

Background: Compelling evidence shows that progestins regulate breast cancer growth. Using preclinical models, we
demonstrated that antiprogestins are inhibitory when the level of progesterone receptor isoform A (PR-A) is higher than that
of isoform B (PR-B) and that they might stimulate growth when PR-B is predominant. The aims of this study were to investi-
gate ex vivo responses to mifepristone (MFP) in breast carcinomas with different PR isoform ratios and to examine their clini-
cal and molecular characteristics.
Methods: We performed human breast cancer tissue culture assays (n¼36) to evaluate the effect of MFP on cell proliferation.
PR isoform expression was determined by immunoblotting (n¼282). Tumors were categorized as PRA-H (PR-A/PR-B � 1.2) or
PRB-H (PR-A/PR-B � 0.83). RNA was extracted for Ribo-Zero-Seq sequencing to evaluate differentially expressed
genes. Subtypes and risk scores were predicted using the PAM50 gene set, the data analyzed using The Cancer Genome Atlas
RNA-seq gene analysis and other publicly available gene expression data. Tissue microarrays were performed using paraffin-
embedded tissues (PRA-H n¼53, PRB-H n¼24), and protein expression analyzed by immunohistochemistry. All statistical
tests were two-sided.
Results: One hundred sixteen out of 222 (52.3%) PRþ tumors were PRA-H, and 64 (28.8%) PRB-H. Cell proliferation was in-
hibited by MFP in 19 of 19 tissue cultures from PRA-H tumors. A total of 139 transcripts related to proliferative pathways were
differentially expressed in nine PRA-H and seven PRB-H tumors. PRB-H and PRA-H tumors were either luminal B or A pheno-
types, respectively (P ¼ .03). PRB-H cases were associated with shorter relapse-free survival (hazard ratio [HR] ¼ 2.70, 95%
confidence interval [CI] ¼ 1.71 to 6.20, P ¼ .02) and distant metastasis–free survival (HR¼4.17, 95% CI¼2.18 to 7.97, P< .001).
PRB-H tumors showed increased tumor size (P< .001), Ki-67 levels (P< .001), human epidermal growth factor receptor 2
expression (P¼ .04), high grades (P¼ .03), and decreased total PR (P¼ .004) compared with PRA-H tumors. MUC-2 (P< .001) and
KRT6A (P¼ .02) were also overexpressed in PRB-H tumors.
Conclusion: The PRA/PRB ratio is a prognostic and predictive factor for antiprogestin responsiveness in breast cancer.
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The progesterone receptor (PR) is a member of the steroid nu-
clear receptor family. There is increasing clinical (1,2) and ex-
perimental evidence (3–5) suggesting its relevance in regulating
breast cancer development and growth. However, PR levels are
still only used as a surrogate marker for estrogen receptor alpha
(ERa) activity (6,7).

Two PR isoforms are transcribed from a single gene (8), and
each isoform possesses unique tissue-specific functions (9). PR-A
(94 kDa) is entirely contained within the larger PR-B (115 kDa) pro-
tein, making them difficult to discriminate by immunohistochem-
istry (IHC) or polymerase chain reaction (PCR). Few breast cancer
studies have evaluated the PR isoforms (10–15). Among those that
have, the consensus is that PR-A is the prevailing isoform, al-
though contradictory data exist concerning its prognostic value.
Currently, immunoblotting (IB) is the most reproducible method of
discriminating between the isoforms to obtain the PR-A/PR-B ratio.

Using medroxyprogesterone acetate (MPA)–induced murine
carcinomas and human breast cancer xenografts engineered to
express different PR isoform ratios, we demonstrated that only
tumors with PR-A levels higher than PR-B levels regress with
antiprogestins (16–18). Moreover, constitutive resistant tumors
were resensitized to antiprogestin treatment when they re-
expressed PR-A after treatment with demethylating agents and
HDAC inhibitors (18,19).

Antiprogestins have induced different responses in clinical
trials (reviewed in [20–22]). We hypothesized that antiproges-
tins, together with conventional antiestrogens, offer a valid
therapeutic approach for tumors with high PR-A levels. The aim
of this study was to investigate the responses of breast cancers
with different PR isoform ratios to MFP treatment and to evalu-
ate their molecular portraits and clinical features.

Methods

Patient Tumor Specimens

Tissue samples were obtained from 395 patients undergoing
breast cancer surgery from 2007 to 2015. The study was approved
by the institutional review boards of the Hospital Rivadavia,
Buenos Aires (n ¼ 20), Hospital Magdalena V de Mart�ınez,
General Pacheco, Buenos Aires (n ¼ 375), and IBYME-CONICET.
Informed consent was obtained from all patients. The samples
were flash-frozen and/or kept in tissue culture medium. Patients
were excluded when inconsistent data between IB and IHC were
obtained or if the quality of an IB was not acceptable.

Primary Cultures and Organotypic Tissue Cultures

Fresh tissues were processed within four hours of resection.
Primary cultures were performed as previously described
(Supplementary Methods, available online) (23).

Tissue slices (100mm thick) were obtained using a McIlwain
Tissue Chopper (Ted Pella, Inc, Redding, CA) and incubated in
DMEM/F-12 without phenol red (Sigma-Aldrich, St. Louis, MO),
with 10% fetal calf serum (FCS; Life Technologies, Carlsbad,
CA), with or without MFP (Sigma-Aldrich). After 48 hours, tis-
sues were harvested, formalin-fixed, and paraffin-embedded
(FFPE) (24). A pathologist (MM) examined morphological integ-
rity and the presence of viable cancer cells by hematoxylin and
eosin (H&E) staining. If adequate, Ki-67 was evaluated by IHC
(ab15580, Abcam, Cambridge, MA) as previously described (25).
The percentage of positive cells was calculated in a minimum
of five fragments per treatment. The average number of cells

per tumor was 1039 (median ¼ 869, range ¼ 197–3134 cells). An
inhibitory/stimulatory effect was registered if a statistically sig-
nificant difference was recorded (P< .05).

Immunohistochemical Studies and Tissue Arrays

ER and PR expression were extracted from the clinical histories.
Human epidermal growth factor receptor 2 (HER2) expression
was evaluated by Gabriela Acosta-Haab (Roche Laboratories,
Buenos Aires, Argentina). Four tissue microarrays (TMAs), one
with 64 samples and the other three with 24 samples each, were
constructed using samples segregated by PR isoform content.
Anti-MUC-2 (sc-15334; 1:200), anti-FGF-10 (sc-7917; 1:100), and
anti-glucocorticoid receptor (GR; sc-1004, 1:150) antibodies were
obtained from Santa Cruz Biotech (Santa Cruz, CA), anti-CRISP-3
(14847-1-AP; 1:250) from Proteintech Group Inc. (Rosemont, IL),
anti-KRT6A (RB-169p; 1:500) from Covance Inc. (Princeton, NJ),
and anti-androgen receptor (AR; 5153P, 1:250) from Cell Signaling
(Danvers, MA).

Frozen Samples

Frozen samples were pulverized and separated in TRIzol reagent
(Life Technologies) for RNA extraction and in DNA digestion buf-
fer and Pierce buffer (Thermo Scientific, Waltham, MA) for IB.

Immunoblotting

T47D breast cancer cells (ATCC, Manassas, VA) were cultured as
described (26), and cytosol and nuclear proteins extracted.
Proteins were measured using a Lowry protein assay (27); ali-
quots of standard preparations were stored at �70 �C.

For IB, 100 mg of extracted protein was electrophoresed on an
8% polyacrylamide gel (16). T47D standards were included as
positive controls. Anti-PR (PR1294; Dako, Agilent Technologies,
Santa Clara, CA; or H190; Santa Cruz) both at 1:500, and anti-
ERK (sc-94; Santa Cruz, 1:1000) antibodies were used. Band in-
tensities were densitometrically measured using Image J
(National Institutes of Health; Bethesda, MD). ERK was evalu-
ated to control sample quality.

Criteria for Patient Classification According to PR
Isoform Ratio

We established a priori that a nuclear PR-A/PR-B ratio of 1.2 or
greater is representative of patients with high PR-A (PRA-H),
whereas a PR-B/PR-A ratio of 1.2 or greater is representative of pa-
tients with high PR-B (PRB-H). Patients with either ratio falling be-
tween 1.2 and 0.83 were considered equimolar. This cutoff value
was selected based on the 20% variability observed when quanti-
fying PR-A and PR-B using IBs performed with the same samples
at different times. Usually, nuclear and cytosol fractions gave co-
incident values. In borderline cases in which the nuclear value
was higher than 1.1 or lower than 0.9 and the cytosolic value was
clearly PRA-H or PRB-H, the cytosolic value was considered.

RNA Isolation and RNA-Seq Data Analysis

RNA extracted from 22 samples was processed at the University
of North Carolina. Sixteen samples proved suitable for RNA se-
quencing analysis (Ribo-Zero-Seq); two samples were excluded
as outliers. RNA was isolated and purified as described in the
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Supplementary Methods (available online). Heatmap visualiza-
tion of differentially expressed transcripts and PAM50 genes
was achieved using MultiExperiment Viewer software (MeV v4.
9) (28). Intrinsic subtype classification of breast cancer samples
was performed using the 50-gene (PAM50) predictor bioclassifier
R script (29) and functional enrichment analyses using the
ClueGo Cytoscape’s plug-in (http://www.cytoscape.org/) and
InnateDB resource (http://www.innatedb.com/) based on a list
of deregulated transcripts between PRA-H and PRB-H tumors
(FDR < 0.05, log2 FC > 61). To further explore the prognostic
value of the PR isoforms in invasive breast carcinomas, we eval-
uated information from two publicly available gene expression
data sets from the UCSC Xena resource (https://xena.ucsc.edu/).
We analyzed 586 luminal-like and ERþ/PRþ primary invasive
breast carcinomas derived from the The Cancer Genome Atlas–
Breast Invasive Carcinoma project (30) and 355 from a study
reported by Yau et al. (31). Tumor classification in PRA-H and
PRB-H cases was performed based on low or high expression lev-
els of PR-associated signatures (eg, PRB-H tumors were defined
as having high expression of PRB-H genes and low of PRA-H
genes) using the StepMiner one-step algorithm (32) implemented
in R. PRA-H and PRB-H cases were then compared.

Statistical Analysis

Absolute and relative frequencies of the main patient character-
istics were calculated. To compare the effect of MFP on individ-
ual primary/tissue cultures, the Mann Whitney test was used.
The chi-square test was used to compare the proportion of PRA-
H and PRB-H samples inhibited by MFP. A total of 19 patients per
group was predicted to detect statistically significant differences
between both groups (80% vs 40%; type I error: 5%, type II error:
10%; https://select-statistics.co.uk/calculators/sample-size-calcu
lator-two-proportions/). The Wilcoxon test was used to evaluate
possible associations between ER, AR, and GR expression and
MFP responsiveness. To compare clinicopathological parameters
among the two groups, the chi-square test and Fisher’s exact
test were used for categorical variables. The Student’s t test was
used to compare the mean age between the two groups. The
Cochran-Armitage trend test was used to evaluate possible

trends in histologic grade, PR status, and ER status. Log-rank
tests were used to analyze Kaplan-Meier curves using the
Survival R package. A P value of less than .05 was considered sta-
tistically significant, and all statistical tests were two-sided.

Results

Patient Distribution According to PR Isoform Ratio

In total, 282 samples were included; patient and tumor features
are shown in Table 1. The median PR-A/PR-B ratio across all
PRþ samples was 1.2 (range ¼ 0.1–20.2, 25.0% percentile: 0.825,
75.0% percentile: 2, 95% confidence interval [CI] ¼ 1.48 to 1.94).
Of the 222 PRþ breast cancers, 116 were PRA-H predominant
(52.3%), 64 were PRB-H predominant (28.8 %), and 42 were equi-
molar (Figure 1A). Figure 1B illustrates the frequency distribu-
tion of the PR-A/PR-B ratio.

Effect of MFP in Cultures Of Breast Cancer Samples
Classified According Their PR-A/PR-B Ratio

From 70 primary culture attempts, successful subcultures were
achieved in only nine cases (13% efficiency). In four out of five
of the PRA-H samples, MFP decreased the number of cells
(P¼ .03) (Supplementary Figure 1, available online); different

Table 1. Clinicopathological parameters of patients*

Characteristics No. (%)

Age (n¼ 247), y
<40 13 (5.3)
40–50 50 (18.2)
51–60 57 (23.1)
>60 127 (51.4)

Tumor size, cm (n¼ 202)
<2 37 (18.3)
2–5 137 (67.8)
>5 28 (13.9)

Histologic grade (n¼247)
I 47 (19.0)
II 71 (28.7)
III 129 (52.2)

PR-positive (n¼ 282) 222 (78.7)
ERa-positive (n¼ 234) 197 (84.2)
HER2-positive (n¼ 222) 40 (18.0)
Triple-negative (n¼ 239) 17 (7.1)

*ERa ¼ estrogen receptor alpha; HER2 ¼ human epidermal growth factor receptor 2;

PR¼ progesterone receptor.
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Figure 1. Classification of breast tumors according to their progesterone receptor

isoform A (PR-A)/progesterone receptor isoform B (PR-B) ratios. A) Left: Diagram

showing the percentage of PRþ tumors. Right: The PR isoform ratio was evalu-

ated densitometrically measuring the band intensity of each isoform in immu-

noblots. PRþ tumors were classified into three categories according to the PR-A/

PR-B ratio: PRA-H (52.3%), equimolar (18.3%), and PRB-H (28.8%). A representative

immunoblot of each category is shown. B) Frequency diagram showing the dis-

tribution of the PR-A/PR-B ratio for all evaluated PRþ tumors. PR ¼ progesterone

receptor; PR-A ¼ PR isoform A; PR-B ¼ PR isoform B; PRA-H ¼ tumors with higher

levels of PR-A than PR-B; PRB-H ¼ tumors with higher levels of PR-B than PR-A.
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responses were observed in non-PRA-H samples. Considering
the low efficiency of successful subculture, we explored a novel
tissue culture method (described in the “Methods” section).
Using this methodology, 36 of 112 cases (32.1%) were successful,
increasing the efficiency previously obtained with primary cul-
tures. In vitro studies were performed by researchers blinded to
the IB results. Statistically significant inhibition of Ki-67 expres-
sion was observed after 48 hours of MFP treatment in 19 of 19 of
the PRA-H samples and three of 10 of the PRB-H samples (Figure
2A). MFP stimulated Ki-67 expression in two of 10 of the PRB-H
samples (Figure 2, A and B). In total, one of four of the equimolar
and one of three of the PR-negative samples were inhibited by
MFP (data not shown). Figure 2C shows two representative exam-
ples of Ki-67 staining. Overall, the tissue cultures maintained the
morphological features of their parental tumors (Supplementary
Figure 2, available online). Supplementary Table 1 (available on-
line) shows the individual characteristics of the tumors that
were included as well as their ERa, PR, AR, and GR status.
Collectively, the results from these in vitro studies demonstrate
that PRA-H tumors were consistently inhibited by MFP, whereas
PRB-H, equimolar, or PR-negative tumors were only occasionally
inhibited. Most importantly, MFP may stimulate cell proliferation
in some PRB-H samples. ERa (P¼ .93), AR (P¼ .18), and GR (P¼ .82)
status were not associated with MFP responsiveness.

Transcriptome Analysis of PRB-H and PRA-H Samples

RNA-seq analysis of nine PRA-H and seven PRB-H tumors re-
vealed 139 genes that were differentially expressed (FDR < 0.05,
Log2 FC > 1): 84 were upregulated in the PRB- H tumors (and
downregulated in PRA-H), while 55 were upregulated in the

PRA-H tumors (Figure 3A; Supplementary Table 2, available on-
line). Pathway enrichment analysis of the deregulated tran-
scripts revealed that they were related to specific bioprocesses
associated with the cell proliferation signature of breast cancer
cells, including the Aurora B (P< .001) and FOXM1 (P¼ .004) sig-
naling pathways, M phase (P< .001), and other cell cycle (P< .
001) processes (Figure 3B).

Using the PAM50 gene set to analyze gene expression, we ob-
served that the genes overexpressed in the PRB-H tumors were 1)
highly concentrated within the group of genes that characterize the
luminal B subtype and 2) proliferation-related genes (Figure 3C).
Based on this expression pattern, these tumors could be classified
as high risk. In contrast, the PRA-H tumors were associated with
the luminal A subtype, which indicates they were of a lower risk.

Further analysis of the deregulated transcripts discriminat-
ing the PRA-H tumors from the PRB-H tumors among two inde-
pendent luminal-like/ER- and PR-positive breast cancer data
sets suggested that PRB-H patients have a worse prognosis and
are more likely to have luminal B carcinomas, whereas PRA-H
patients are more likely to have the luminal A intrinsic subtype
(P¼ .03) (Figure 4, A and C). Survival analysis revealed that PRB-
H cases are associated with shorter relapse-free survival (haz-
ard ratio [HR] ¼ 2.70, 95% CI¼ 1.71 to 6.20, P ¼.02) (Figure 4B) and
distant metastasis–free survival (HR¼ 4.17, 95% CI¼ 2.18 to 7.97,
P< .001) (Figure 4D) compared with their PRA-H counterparts.

KRT6A and MUC-2 Expression in PRA-H and PRB-H
Samples

Four of the deregulated genes were selected for protein expres-
sion evaluation by IHC in TMA performed using both PRA-H and
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Figure 2. Effects of mifepristone (MFP) in tissue cultures of breast cancer samples classified according their progesterone receptor isoform A (PR-A)/progesterone recep-

tor isoform B (PR-B) ratio. A) Proliferative responses (Ki-67 staining) of primary breast cancer tissues cultured ex vivo with or without 10 nM MFP for 48 hours. The per-

centage of cells with nuclear Ki-67 staining with respect to all tumor cells was calculated in at least five different sections per experimental group. The mean values

were plotted and connected with a line. A statistically significant decrease in Ki-67 staining was observed in each of the 19 cultures tested (P< .001, two-sided paired t

test), whereas variable responses were obtained in 10 PRB-H cases (P¼ .54). B) Table illustrating the number of tumors that were inhibited or stimulated by MFP accord-

ing to the PR-A/PR-B ratio; a vs b: P< .001, two-sided Fisher’s exact test; c vs d: P¼ .01, two-sided Student’s t test. C) Two representative cases of PRA-H (left) and PRB-H

(right) tissue cultures are shown. Top: Hematoxylin and eosin images of paraffin-embedded tissue cultures and Ki-67 immunohistochemistry showing nuclear stain-

ing; bar ¼ 50 lm. Bottom: Quantification of Ki-67þ cells/all tumor cells in five different explants of the examples shown in (B); P values were calculated using the two-

sided Mann Whitney test. H&E ¼ hematoxylin and eosin; MFP¼mifepristone; PR ¼ progesterone receptor; PR-A ¼ PR isoform A; PR-B ¼ PR isoform B; PRA-H ¼ tumors

with higher levels of PR-A than PR-B; PRB-H ¼ tumors with higher levels of PR-B than PR-A.
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PRB-H samples. Transcription levels of KRT6A (P¼ .02) and
MUC-2 (P< .001), upregulated in PRB-H, were corroborated at the
protein level by IHC (Figure 5, A and B). No statistically signifi-
cant differences were found regarding CRISP-3 (upregulated in
PRB-H) or FGF-10 (upregulated in PRA-H) expression. Intense
KRT6A expression was observed in isolated cells mainly in the
PRA-H tumors (Figure 5A); a more uniform cytoplasmic staining
prevailed in the PRB-H tumors.

Clinical Features of PRA-H and PRB-H Patients

No statistically significant differences were found between the
PRA-H and PRB-H patients in average age, although the latter
had a mean age that was three years younger than the former.
Compared with the PRA-H patients, at the time of surgery, the
PRB-H patients had larger tumors (P< .001) with worse histologi-
cal grade (P¼ .03) and lower levels of total PR (P¼ .004). No differ-
ences or trends were observed regarding ERa status, number of
positive lymph nodes, or distant metastases. Positive HER2 ex-
pression (P¼ .04) and high Ki-67 expression (P< .001) prevailed
in the PRB-H tumors (Table 2). Both are biomarkers of worse
prognosis.

Discussion

In this study, we showed that PRA-H breast cancers can be in-
hibited by MFP ex vivo and that the PR-A/PR-B ratio serves as a
prognostic factor, with PRB-H patients having a worse progno-
sis. Our study emphasizes the relevance of determining the PR
isoform ratio before starting antiprogestin treatments. Of the
two clinical trials currently evaluating antiprogestins for PRþ
breast cancer—trial NCT02052128 is assessing onapristone and
trial NCT01800422 is assessing telapristone acetate—neither is
considering the PR isoform ratio as a possible inclusion crite-
rion. On the basis of the data reported herein, we have recently
started a trial evaluating the use of neo-adjuvant MFP treatment
for patients with PRA-H breast cancer (NCT02651844; MIPRA).

The prognostic value of PR isoforms in breast cancer remains
controversial, and this has been extensively discussed in recent
reviews (33,34). Isoform expression has been evaluated by IB in
few other studies (10,11,13). Bamberger et al. (11) and Hopp et al.
(13) suggested that high PR-A levels potentially correlate with
worse prognosis or recurrence after tamoxifen treatment. Our
study, which focused on the PR-A/PR-B ratio rather than on ab-
solute PR isoform values, indicates that patients with lower PR-
A levels than PR-B levels may have a worse prognosis. Similar
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results associating PR-A silencing due to promoter methylation
with worse prognosis have been communicated by Pathiraja
et al. (14). Whereas the previously mentioned studies used cyto-
solic or total extracts to perform IB, ours is the only study that
used nuclear extracts to define the PR-A/PR-B isoform ratio.
Moreover, the conditions we used to define a tumor as PRA-H or
PRB-H are considerably more stringent than those used in previ-
ous studies (11,13).

Immunofluorescence (IF), IHC, and/or PCR have been used
to define the PR-A/PR-B ratio in two breast cancer studies
(12,15). Different antibodies have been reported to specifically
recognize PR-A in FFPE tissues (15,35); however, the measure-
ment of a ratio of intensities using different antibodies with
different affinities may not be as accurate as the use of IB.
Similarly, in PCR studies, PR-A values are obtained by subtract-
ing values obtained using primers that recognize both PR iso-
forms and those recognizing only PR-B (12,36–39). A correlation
between the protein and mRNA expression of PR isoforms
has not yet been proven using large numbers of tumors. Mote

et al. (15) used IF to quantity PR isoforms and showed that ex-
ogenous hormone replacement therapy results in higher levels
of PR-B relative to PR-A and identified a correlation between
the PR-A/PR-B ratio and recurrence in patients treated with
tamoxifen, but not in those treated with the combination of
tamoxifen/aromatase inhibitors. Thus, they proposed that
measurements of PR isoforms may help identify the most ap-
propriate ER-targeted therapy.

In vitro studies using cells genetically modified to express
different levels of PR-A and/or PR-B have associated PR-A with
a gene expression signature that indicates aggressiveness
(40,41). However, when the modified cells were transplanted
into immunosuppressed mice, they did not behave as expected.
Interestingly, T47D-YA tumors expressing PR-A showed a
slower growth rate than T47D-YB tumors expressing PR-B, and
only the former were statistically significantly inhibited by ta-
moxifen (42) or MFP (18). These results are concordant with our
current data and also with data obtained in preclinical murine,
human, and canine models (17–19,43,44).
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This is the first study to perform ex vivo evaluations of the
effect of antiprogestins in human breast cancers categorized
according to the prevailing PR isoforms expressed. Initially, we
adapted a tissue culture method used in the field of neurobiol-
ogy (45); however, a similar method was recently reported for
breast cancer samples (46). The effect of MFP on PRA-H tumors
was consistent over all 19 samples studied, which implied that
our decision to stop the analysis was warranted, even though
we only achieved success with 10 PRB-H tumors. Even if the
nine remaining samples would have been inhibited by MFP, the
difference would have still reached the predicted statistical sig-
nificance. A stimulatory effect of MFP was detected in two PRB-
H samples. Interestingly, the second sample was a relapse from
the first, reinforcing the reliability of the tissue culture method
utilized. Low concentrations of MFP were used to reduce the
drug’s anti-glucocorticoid (47) and anti-androgenic effects (48).
Although no association was found between ERa, GR, and AR ex-
pression and MFP responsiveness in the PRA-H tumors, a larger
number of PRB-H, equimolar, or PR-negative samples must be
evaluated to determine whether GR and AR contribute to the in-
hibitory effect of MFP observed in selected cases.

Molecular and clinical features were concordant, and tumors
with higher levels of PR-A than PR-B were associated with bio-
markers of better prognosis and a luminal A phenotype. One
limitation of our study is that we included all patients who
underwent surgical tumor resection, regardless of tumor stage.
Further validation with independent and larger cohorts of pa-
tients with different tumor stages is warranted. When we di-
vided our cohort of luminal patients into phenotype A or B
according to the Ki-67 expression, there was a statistically sig-
nificant association between the luminal A phenotype and the
PRA-H status (not shown). However, this association was not
strong enough to exclude all PRB-H tumors. Data-mining results
supported these findings. These results emphasize the need to
identify alternative biomarkers that may help categorize PRA-H
and PRB-H tumors for cases in which IB cannot be performed.

According to RNA sequencing data, MUC-2 and KRT6A were
highly expressed in PRB-H tumors, and these results were con-
firmed by IHC. MUC-2 is exclusively expressed in breast cancer
and not in normal cells (49); KRT6A is highly expressed in basal
tumors (50) and in progenitor mammary cells (51). Studies are
now being performed to develop an IHC algorithm that includes
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assessments of Ki-67, HER2, MUC-2, and KRT6A expression as
well as other factors such as tumor size, differentiation grade,
molecular subtype, and total PR to define a PRA-H or PRB-H phe-
notype without the need of IB.

Preclinical data suggest that combined targeting of ER and
PR improves the effectiveness of single endocrine treatments
(52). If this is the case, adjuvancy seems the best scenario for
combined therapies using antiprogestins. It has recently been
demonstrated that progestins may induce ER rewiring, thus
inhibiting estrogen-induced cell proliferation (53). Standard en-
docrine therapies involve the use of tamoxifen, aromatase in-
hibitors or fulvestrant, resulting in the better positioning of
antiprogestins than progestins for the treatment of PRA-H pa-
tients. Ongoing studies are expected to provide data supporting
if progestins are better options for tumors with low PRA/PRB
ratios.

In summary, in this study we provided strong evidence that
antiprogestins should be a therapeutic option for luminal breast
cancers with higher levels of PR-A than PR-B.
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