
OR I G INA L ART I C L E

Gain Control in the Auditory Cortex Evoked by Changing
Temporal Correlation of Sounds
Ryan G. Natan1,2, Isaac M. Carruthers1,3, Laetitia Mwilambwe-Tshilobo1

and Maria N. Geffen1,2,3,4

1Department of Otorhinolaryngology and Head and Neck Surgery, 2Graduate Group in Neuroscience,
3Graduate Group in Physics and 4Department of Neuroscience, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA 19104, USA

Address correspondence to Maria Neimark Geffen, Department of Otorhinolaryngology and Head and Neck Surgery, Perelman School of Medicine,
University of Pennsylvania, 5 Ravdin, 3400 Spruce Street, Philadelphia, PA 19104, USA. Email: mgeffen@med.upenn.edu

Abstract
Natural sounds exhibit statistical variation in their spectrotemporal structure. This variation is central to identification of
unique environmental sounds and to vocal communication. Using limited resources, the auditory systemmust create a faithful
representation of sounds across the full range of variation in temporal statistics. Imaging studies in humans demonstrated that
the auditory cortex is sensitive to temporal correlations. However, themechanisms bywhich the auditory cortex represents the
spectrotemporal structure of sounds and how neuronal activity adjusts to vastly different statistics remain poorly understood.
In this study, we recorded responses of neurons in the primary auditory cortex of awake rats to sounds with systematically
varied temporal correlation, to determinewhether and how this feature alters sound encoding. Neuronal responses adapted to
changing stimulus temporal correlation. This adaptationwasmediated by a change in the firing rate gain of neuronal responses
rather than their spectrotemporal properties. This gain adaptation allowed neurons to maintain similar firing rates across
stimuli with different statistics, preserving their ability to efficiently encode temporal modulation. This dynamic gain control
mechanism may underlie comprehension of vocalizations and other natural sounds under different contexts, subject to
distortions in temporal correlation structure via stretching or compression.
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Introduction
Sounds in the natural world exhibit variations in their temporal
statistical structure. Different acoustic scenes are composed of
sounds with temporal modulations under variable statistical
constraints, and this variation in the TC statistics serves as a cue
for discrimination and identification of natural sounds (Attias
and Schreiner 1997; Escabi et al. 2003; Singh and Theunissen
2003; Geffen et al. 2011; McDermott and Simoncelli 2011;
McDermott et al. 2013; Gervain et al. 2014). The correlation of
amplitude modulations over time determines a highly salient
qualitative property of sound: the slowly changing howl of
wind blowing through an open window has a high temporal

correlation (TC), whereas the rapidly changing rustle of wind
blowing though leaves exhibits a relatively low TC. Communica-
tion sounds, including speech, contain important components
across a range of temporal scales (Rosen 1992; Poeppel 2003). In
particular, the temporal structure of human vocalizations plays
a role in speech comprehension: degrading temporal, but not
spectral information impairs speech comprehension (Remez
et al. 1981; Shannon et al. 1995). Therefore, it is critical to identify
how neurons in the auditory stream encode and represent
sounds across varying TC statistics to elucidate the neuronalme-
chanisms for hearing both environmental and communication
sounds.
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Our present knowledge of neuronal mechanisms of encoding
of the vast range of sounds at different TCs remains limited.
Human brain imaging studies found that sounds with different
temporal modulation properties differentially activated regions
of the auditory cortex, suggesting a hierarchical scheme of sensi-
tivity to TC in sounds. In Heschl’s gyrus, containing the primary
auditory cortex, studies have identified sensitivity to soundswith
increasingly rapid modulations (Zatorre and Belin 2001; Schon-
wiesner et al. 2005). The superior temporal sulcus, containing
higher order auditory cortices, exhibited sensitivity to sounds
with lower temporal modulations (Boemio et al. 2005). Further,
areas downstream of the auditory cortex, including the superior
temporal gyrus and auditory association cortex, but not the pri-
mary auditory areas, exhibited differential activation by sounds
with varying TC (Overath et al. 2008). The goal of our study was
to identify the neuronal coding strategies in the primary auditory
cortex for sounds with varying TC using electrophysiological re-
cordings in rodents to isolate spiking activity.

As the BOLD signal is thought to be driven by elevation of the
average neuronal activity over large populations of neurons
(Logothetis and Wandell 2004), a number of coding strategies in
the primary auditory cortex would be consistent with the im-
aging results.While exhibiting on average uniformactivity across
all neurons, subpopulations of neurons in the auditory cortex
maypreserve information about TCof sounds leading to differen-
tial activation in downstream areas. Just as neurons have been
found to adapt with the statistical distribution of sound intensity
and contrast (Dean et al. 2005, 2008; Rabinowitz et al. 2011; Wat-
kins and Barbour 2011), theymayalso adapt to the TC structure of
the stimuli thereby maximizing the dynamic range for their re-
sponses and providing information about TCs to downstream
areas. Alternatively, different neurons may be tuned to stimuli
with specific TC structure, resulting in uniform responses when
averaged across neurons. Here, we tested whether and how neu-
rons in the auditory cortex responded to sounds with varying
temporal correlation and whether they exhibited adaptation in
response to such variation.

To determine the mechanisms of sensitivity and responsive-
ness to sounds with varying temporal correlation TC, we
recorded the activity of A1 neurons in awake rats while present-
ing dynamic chord stimuli with varying TC. We designed these
stimuli to preserve the spectral complexity found in natural
scenes, while permitting systematic variation in temporal statis-
tics (Overath et al. 2008). Consistentwith human imaging studies,
we found that varying TCof sounds did not change the overall re-
sponse of A1 in terms of the mean population firing rate. As an
underlyingmechanism of this stability, we revealed that A1 neu-
rons adapted to increasing stimulus TC by decreasing stimulus
response gain. Expanding on prior findings on gain control of
stimulus intensity and spectrotemporal contrast (Rabinowitz
et al. 2011), these results show that gain control in A1 compen-
sates for a wider range of sound statistics and identifies the me-
chanisms for sensitivity to sounds with varying TC structure,
that are likely essential in natural sound processing.

Methods
Animals

All procedureswere approved by the Institutional Animal Care and
Use Committee of the University of Pennsylvania. Subjects in all
experiments were adult male Long-Evans rats. Rats were housed
in a temperature- and humidity-controlled vivarium on a reversed
24-h light–dark cycle with food and water provided ad libitum.

Surgery

Adult male Long-Evans rats (N = 7, 12–21 weeks) were implanted
with a chronic custom-built 6-tetrode drive as previously descri-
bed (Otazu et al. 2009; Carruthers et al. 2013, 2015; Blackwell et al.
2015). Briefly, rats were anesthetized with a mixture of ketamine
(60 mg/kg body wt, IP) and dexmedetomidine (0.25 mg/kg, IP).
Buprenorphine (0.1 mg/kg, SC) was used as an operative anal-
gesic, with ketoprofen (5 mg/kg, SC) as postoperative analgesic.
The animal’s head was secured in a stereotactic frame, and the
temporal muscle was recessed. Craniotomy and durotomy were
performed over A1. Eight tetrodes housed in a custom-built
microdrive were lowered in the brain, and the microdrive was
attached to the skull with dental cement (Metabond) and dental
acrylic. Each tetrode consisted of 4 polyimide-coated nichrome
wires (Kanthal Palm Coast, wire diameter of 12 μm) twisted
together and was controlled independently with a turn of a
screw. Two screws (1 reference and 1 ground) were inserted in
the skull at a location distal from the craniotomy. The tetrodes
were positioned 4.0–6.0 mm posterior to bregma and 7.0 mm
left of the midline and covered with agar solution (3.5%). During
the recording, the microdrive was connected via a custom-built
interface board to a headstage (Neuralynx). The electrodes were
gradually advanced below the brain surface in daily increments
of 40–50 μm to ensure recorded units were unique. Targeting of
the electrodes to the primary auditory cortex (A1) was verified
on the basis of their position in relation to brain surface blood
vessels, stereotaxic coordinates, and histological reconstruction
of the electrode tracks and confirmed by identifying the fre-
quency response function of the recorded units as previously de-
scribed (Carruthers et al. 2013) (Fig. 1A). The recorded units’ best
frequency (frequency of the tone that elicited the highest firing
rate) and tuning width spanned the range of rat hearing (n = 118,
Fig. 1B) andwas consistent with previous studies on the response
properties of units in A1 (Sally and Kelly 1988; Polley et al. 2007;
Carruthers et al. 2013, 2015).

Stimulus Construction

All stimuli were created in Matlab (MathWorks) and sampled at
400 kHz and 32-bit resolution. A set of temporally correlated dy-
namic random chord stimuli (CDRC) (Linden et al. 2003) was con-
structed similarly to stimuli in previous studies (Overath et al.
2008), adapted to the rat hearing range (Fig. 1C). This stimulus
was designed to measure the spectrotemporal receptive field of
neurons under different statistical regimes by fitting a linear–non-
linear model (Fig. 3B). One hundred amplitude modulated pure
tones, of logarithmically spaced frequencies from 400 Hz to
70 kHz, were superimposed. The amplitude envelope was gener-
ated as following: for the uncorrelated (low TC, r = 0) stimulus,
the amplitude modulations of each frequency were drawn inde-
pendently from a normal distribution over 5 ms time frames. For
the correlated (medium TC and high TC) stimuli, the amplitude
within each successive framewas generated to ensure correlation
with the previous frame, according to the Pearson’s correlation co-
efficient of r = 0.67 formediumTCor r = 0.90 for highTC (Fig. 1C). To
generate the frequency amplitude envelope matrix, the first col-
umn at time 0 was generated with a random set of values drawn
from a Gaussian distribution (mean = 40 dB, standard deviation =
8.7 dB). Each subsequent frame was generated as follows:

Si ¼ Si�1 × pþ gð1� p2Þ0:5 ð1Þ

where Si−1 is a vector of the amplitude values of the previous
frame, p is r/10, and g is a vector of random values drawn from
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Figure 1. Recording neuronal spiking activity fromprimary auditory cortex (A1). (A) Reconstruction of primary auditory cortex showing tetrode traces in black dashed lines

and cortical area borders in white lines. (B) Distribution of the best frequency and bandwidth of recorded units. (C) Top row: 100 ms sample of the amplitude envelope

across each frequency for each stimulus TC level. Below, waveforms of the repeated 10 s stimuli, from which each sample is extracted. Center row: Spike raster from a

single neuron in response to 50 repeats of each stimulus TC level. Bottom row: Mean firing rate PSTH of response to each stimulus TC level. Left column: low TC.

Center column: medium TC. Right column: high TC.
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the same Gaussian distribution. After generating each frame, the
correlation coefficient between the adjacent frames was calcu-
lated to ensure that it was r ± 0.01. Frames that violated this condi-
tionwere rejected and recalculated with a new g. Likewise, frames
were also rejected if they contained values >3 standard deviations
to prevent sound clipping. The final matrix S was rescaled to an
average of 65 and standard deviation of 15 dB. Each frequency
amplitude envelope was resampled to 400 kHz with linear spline
interpolation to smooth amplitude transitions. Respective ampli-
tude envelopes were multiplied by sine waves of each frequency
and added together to produce the final signal. For all TC values,
the stimuli had the sameaverage intensity and standarddeviation
of the amplitudes within each spectral band. A 5 ms cosine
squared rampwasapplied to the beginning and endof each stimu-
lus. The correlation coefficients used correspond to the window
length of 5, 20, or 80 ms for a correlation reduction to r = 0.2.
These values were chosen to be smaller, similar, or greater than
a typical temporal width of a spectrotemporal receptive field of
the recorded neurons.

Using the method described above, 3 sets of stimuli were cre-
ated: short, long, and alternating. Short and long stimuli con-
sisted of a single CDRC stimulus at each TC level, 10 s and
10 min long, respectively. Alternating stimuli consisted of a se-
quence of CDRC stimuli, at 2 TC levels (low/medium, medium/
high, and low/high), alternating every 2 s. For each alternating
stimulus, an amplitude envelope matrix was created in which r
changed between 2 selected values every 200 frames (2 s). To en-
sure that amplitude power was sampled evenly across frequen-
cies at each time frame, 1 vector from the matrix was time
shifted by a 4 s interval and applied to each frequency. Examples
of these stimuli as provided as Supplementary Materials (TClow.
mp3, TCmed.mp3, and TChigh.mp3).

Stimulus Delivery

Acoustic stimuli were output from the computer via a National In-
struments 16-bit high sampling rate data card (NIDAQ model NI
PCIe-6353), pre-amplified, and delivered via a magnetic speaker
(MF-1, Tucker-Davis Technologies) positioned above the recording
chamber. The speaker output was calibrated using a Bruel and
Kjaer 1/4-inch free-field microphone type 4939 positioned at the
location of the animal’s ear. The microphone was used to record
speaker output of repeated white noise bursts and tone pips be-
tween 400 and 80 000 Hz. From these measurements, the speaker
transfer function and its inverse were computed. The input to the
microphone was adjusted using the inverse of the transfer func-
tions previously described (Carruthers et al. 2013), such that the
speaker output 70-dB sound pressure level relative to 20 µPa (SPL)
tones within 3 dB between 400 and 80 000 Hz. Spectral and tem-
poral distortion products were found to be >50 dB below the SPL
of the fundamental. All stimuli were presented at 400-kHz sam-
pling rate. The narrow recording chamber was custom-designed
to minimize acoustic distortions. The chamber was positioned
inside a sound-proof acoustically isolated double-walled room.

Experimental Design

The rat was implanted with an electrode microdrive and was
trained to sit still in the recording chamber. Animals were mon-
itored via video recording for their level of arousal, following
methods previously developed in the laboratory (Aizenberg and
Geffen 2013; Carruthers et al. 2013; Aizenberg et al. 2015; Black-
well et al. 2015; Carruthers et al. 2015; Mwilambwe-Tshilobo
et al. 2015). The chronically implantedmicrodrivewas connected

via a cable to the Neuralynx digital acquisition system. The rat
was exposed to stimuli for <4 h and given a 15 min break to
drink water every 1.5 h. A stimulus designed to map the fre-
quency response function of the recorded units, consisting of
50 tones, each 50 ms long, between 400 and 80 000 Hz, logarith-
mically spaced, at 70 dB, was presented first. The same set of
stimuli was played in the following order: 1 repeat of a long
CDRC stimulus at each TC, 50 repeats of each short CDRC stimu-
lus at each TC, 1 repeat of each alternating CDRC stimulus. After
stimulus presentation, each tetrode was advanced by 40 μm.

Neural signals were acquired from the 24 implanted electro-
des with a Neuralynx Cheetah system. The neuronal signal was
filtered between 0.6 and 6.0 kHz, digitized, and recorded at
32-kHz rate. Spikes were clustered into single-unit and multi-
unit clusters with Plexon Offline Spike Sorter software. Single
units were isolated using a stringent set of criteria as previously
described (Aizenberg and Geffen 2013; Carruthers et al. 2013;
Aizenberg et al. 2015; Blackwell et al. 2015; Carruthers et al.
2015; Natan et al. 2015): Single-unit clusters contained <1% of
spikes within a 1.0 ms interspike interval, and the spike wave-
forms had to form a visually identifiable distinct cluster in a pro-
jection onto a 3-dimensional subspace (Otazu et al. 2009; Bizley
et al. 2010; Brasselet et al. 2012).

Measurement of Neuronal Response Properties
to the Stimulus

Mean Firing Rate:
To avoid drift effects, themean firing ratewasmeasured from re-
sponses to the alternating TC stimuli, between 1 and 2 s after TC
transition, and pooled across 900 TC alternation cycles per stimu-
lus. To test for changes in firing rate between different TC levels
for each neuron, we compared the mean firing rate across TC cy-
cles across neurons, using the paired sign rank test to assay the
significance (α = 0.05).

Linear–Nonlinear Model
To compute the spectrotemporal receptive field and the instant-
aneous nonlinearity, the neuronal responses at steady state (at
least 200 ms following stimulus onset) to the 10 m long stimulus
were fitted to a linear–nonlinear model (Fig. 3B). The linear–non-
linear model consisted of a linear component, corresponding to
the spectro-temporal receptive field (STRF), followed by a static
rectifying nonlinearity (Baccus and Meister 2002; Linden et al.
2003; Woolley et al. 2005; Geffen et al. 2007; Carruthers et al.
2013). The linear output (LO) is given by:

LOðtÞ ¼
XF�1

f 0¼0

XM�1

t0¼0

STRF( f 0; t0Þsð f 0; t� t0Þ ð2Þ

and the predicted firing rate by:

RðtÞ ¼ N½LOðtÞ� ð3Þ

where STRF is anM by Fmatrix; F is the numberof frequency bins,
and M is the number of temporal bins; and NðxÞ is the instantan-
eous nonlinearity. The standard deviation of the linear output
(SDLO) is computed by taking the standard deviation of LO(t)
over time.

STRF Parameters
STRFs were estimated as the optimal linear filter between the
spiking response and the frequency amplitude envelope. Ridge
regression was applied to normalize the filter by the stimulus
autocorrelation function (Theunissen et al. 2001; Baccus and
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Meister 2002; Escabi et al. 2003; Geffen et al. 2007), after which the
filter was smoothed by applying a 2-dimensional Gaussian filter
with standard deviation of 1.5 bins (7.5 ms and 0.15 octaves in the
temporal and spectral domains, respectively). STRF was de-
noised, by setting all values outside of a significant positive clus-
ter of pixels to 0. Negative clusters were not included in the
analysis, because including them did not improve firing rate pre-
diction accuracy and did not appear to systematically change
with TC. To determine the significance of the cluster, the z-
score of pixels was computed relative to the baseline values
from an STRF generatedwith scrambled spike trains, using Stat4-
ci toolbox (Chauvin et al. 2005). From STRF, the center time, dur-
ation, center frequency, and bandwidth of the positive cluster
were measured (Woolley et al. 2006; Shechter and Depireux
2007; Schneider and Woolley 2010). To measure temporal para-
meters of the receptive field, the positive portion of the cluster-
corrected STRF over the positive lobe was averaged across
frequencies and fitted with a 1-dimensional Gaussian. Because
we only examine the positive lobe of the STRF and not the entire
STRF, we assumed that the positive lobe of the STRF was linearly
separable in frequency and time. Center time and duration were
defined as the center and twice the standard deviation of the
Gaussian fit to the temporal STRF profile, respectively. Likewise,
to measure spectral parameters, STRF was averaged across time
over the positive lobe and fitted with a 1-dimensional Gaussian.
Center frequency and bandwidth were defined as the center and
2× standard deviation of the Gaussian fit, respectively.

Nonlinearity
The nonlinear component of the linear–nonlinear model was
computed as the transfer function between the linear prediction
from the cluster-corrected STRF and the actual firing rate (Baccus
andMeister 2002; Geffen et al. 2007; Carruthers et al. 2013) and fit-
ted to exponential or logistic functions, NðxÞ:

N1ðxÞ ¼ aþ b × exc ð4Þ

N2ðxÞ ¼ L
1þ e�kðx�x0Þ ð5Þ

Where a, b, c, L, k, and x0 are free variables. Firing rate offset was
defined as the firing rate at the average linear output ðN1ðxÞ ¼ 0Þ
along the exponential nonlinearity fit. Gain was defined as the
slope between 2 points along the exponential (Equation 4): One
point at the average linear output and the other at the linear out-
put 2 standard deviations greater than the average, thus the slope
between N1ðxÞ ¼ 0 and 2. Steepness was defined as the variable k
(Equation 5).

Fano Factor
The Fano factor was defined as the firing rate variance divided by
the mean firing rate (Marguet and Harris 2011). The Fano factor
was measured from responses to the alternating stimulus, at 1
to 2 s after TC transition for each TC level.

Signal to Noise Ratio
Signalwasdefinedas the variance of thefiring rate over time, aver-
aged over trials. Noisewas defined as the variance of the firing rate
over trials, averaged over time (Geffen et al. 2009). The signal to
noise ratio (SNR) was measured from responses to the alternating
stimulus, at 1 to 2 s after TC transition for each TC level.

Prediction Quality of the Linear–Nonlinear Model
The prediction quality of the model was measured as the correl-
ation coefficient between the predicted firing rate from the

linear–nonlinear model and the measured firing rate. The model
was fitted on responses to the long stimulus and tested for predic-
tion quality on responses to the repeated short stimulus.

Adaptation Time Constant

Two post-stimulus time histograms (PSTH), one for each TC level,
were computed from the mean firing rate over time between TC
transitions (every other 2 s) for each alternating TC stimulus
(Asari andZador 2009). PSTHswere smoothedwith aGaussianfil-
ter with a standard deviation of 50 ms (10 frames). A decaying ex-
ponential function was fitted from the peak of the absolute value
of the initial response (between 25 and 250 ms), to the end of the
PSTH as:

yðtÞ ¼ cþ k × e�t=τ ð6Þ

Where c is the adapted firing rate, k is themagnitude of the initial
response, and τ is the adaptation time constant.

Neuron Selection Criteria for Analysis

Out of 180 single units recorded, 118 displayed measurable tun-
ing properties (Fig. 1). Only thosewith demonstrable stimulus re-
sponse to each TC level (mean SNR >0.22 across low, medium,
and high TC) were included for analysis of firing rate, SNR, Fano
factor, and nonlinearity slope, steepness, and offset (n = 45,
Figs 2–5 and 8; n = 37, Fig. 6). Only units with a minimally stable
STRF (at least one shared significant positive pixel between
STRFs generated from low, medium, and high TC) were included
in analysis of STRFs (n = 30, Fig. 7). To measure adaptation, only
units with demonstrable adaptation (variance differing sig-
nificantly between the initial 25–250 ms and final 500 ms after
both transitions, unpaired 1-tailed t-test, α = 0.001) were included
(n = 51, Fig. 9).

Statistical Tests

The correlation coefficient (r) and correlation P values were com-
puted as Pearson’s correlation coefficient following a standard
MATLAB routine. The index of change, Δ (index), was used to
compute differences between lower and higher TC levels for sev-
eral parameters:

Δ ¼ TCh � TCl

TCh þ TCl
ð7Þ

Where TCh and TCl represent the parameter value during the
lower and higher of 2 stimulus TC levels. Significant differences
and P values of these parameters between stimulus TC levels
were reported based on the index of change as calculated using
single sample Student’s t-test (unless noted otherwise) with
standard MATLAB routines. In calculating population mean per-
cent changes, outliers were removed if they exceeded the sample
mean ± 5 standard deviations. Mean ± standard error of themean
was reported unless stated otherwise.

Results
Neurons inA1 are sensitive to the temporalmodulation rate in the
acoustic structure of sounds, but how this sensitivity is affected by
the overall statistics of the stimulus is unknown. Here, we tested
the effect of changes in the range of temporal modulation statis-
tics on encoding of temporally modulated sounds by neurons in
A1. We presented a series of spectrotemporally complex acoustic
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stimuli to awake rats and recorded the responses of neurons in
their primary auditory cortex. The stimuli consisted of a library
of correlated dynamic random chords (CDRC) with different tem-
poral correlation structure (Fig. 1C), presented either separately for
each TC level, or in alternating block design (TC level changed
every 2 s). Each CDRC was composed of 100 tones, and the ampli-
tude of each tone varied over time. In the uncorrelated (low TC,
r = 0) stimulus, the amplitude of each tone within the chord was
chosen at random every 5 ms. For the intermediate and high TC
stimuli, the amplitude of tones in a chord depended on the amp-
litude in the preceding chords, according to the correlation coeffi-
cient of that CDRC (r = 0.67 and r = 0.9, respectively). Stimuli with
different TC values (low, medium, and high) evoked precise
time-locked responses in A1 neurons (Fig. 1C).

Adaptation in A1 Neurons to Changed TC of the Stimulus

Upon transition to a different TC value of the stimulus, A1 neu-
rons typically responded by a brief increase or a decrease in
their mean firing rate, followed by relaxation to a steady firing
rate. The responses of 3 representative neurons to an alternating
high-to-low TC stimulus are depicted in Figure 2. In the stimulus,
TC level alternates every 2 s. Note that upon transition from low
TC to high TC, the firing rate consistently increased and then
gradually decreased to a steady-state level; whereas upon transi-
tion from high to low TC level, there was a transient decrease in
the firing rate following bya gradual increase (Fig. 2A,B). Thesefir-
ing rate profiles are characteristic of neurons undergoing adapta-
tion to a statistical change in the stimulus (Dean et al. 2005, 2008;
Hosoya et al. 2005; Chen et al. 2010; Rabinowitz et al. 2011). Inter-
estingly, not only did the firing rate adapt between TC levels, but
also the spectro-temporal receptive field remained constant dur-
ing isolated stimuli of different TC levels (Fig. 2C). Such adapta-
tion is thought to facilitate efficient coding in neuronal circuits,
by bringing the dynamic range of the response closer to the dy-
namic range of the stimulus (Barlow 1961). We next investigated
whether over the recorded neuronal population, the responses of
neurons exhibited adaptation to stimulus TC, and if so, what
mechanism might be responsible for it.

Expectation for an Increase in Neuronal Responses to
Stimuli with Higher Temporal Correlation

Neuronal responses to CDRC in A1 are typically modeled by a lin-
ear–nonlinear model, which consists of a linear term that takes
into account the stimulus history, and an instantaneous non-
linearity, which rectifies the output. Under the linear–nonlinear
model, the linear component of the neuronal response is mod-
eled as the spectrotemporal receptive field (STRF, Fig. 3B). Prior
to nonlinear rectification, the convolution of the stimulus with
the STRF generates an estimate of the stimulus input strength
to the model, termed the linear output (Equation 2). The non-
linear component is the instantaneous transfer function from
the STRF’s linear output to the observed firing rate of the neuron
(Fig. 3C). We designed the stimuli using a random composition of
the signal within each frequency band, which allowed for fitting
stimulus responses to the linear–nonlinear model. To establish
an expectation for how response properties would change with-
out gain control, we used the linear–nonlinear-model fits to esti-
mate the change inmeanand standard deviation of the firing rate
in response to low and high TC stimuli. Under the linear–non-
linear model, the dynamic range of the linear prediction for
each neuron can be characterized by the standard deviation of
the linear output (Equation 2, SDLO). We found that between

low and high TC, SDLO increased by a factor of 2.8 (difference 183
± 20%, P = 5.6e−19, n = 45, Fig. 3D). An implementation of the full
linear–nonlinear model, fitted on the response to the low TC
stimulus (Equation 3), also predicted a 1.5-fold increase in the
mean firing rate and a 6-fold increase in the standard deviation
of the firing rate (SDFR) compared with the responses to low TC
stimulus (FR: difference 53 ± 17%, P = 1.42e−5; SDFR: difference
497 ± 110%, P = 5.1e−21; n = 45, Fig. 3E, SDFR reflects the dynamic
range of the response). Therefore, we expected a dramatic in-
crease in the range of the firing rate of neurons in response to
the high TC stimulus.

Change in the Temporal Correlation of the Stimulus
Evokes Gain Control in A1 Neurons

Analysis of the recorded neuronal responses to stimuli with vary-
ing TC levels (Fig. 4A) revealed that changes in the firing rate and
its standard deviation were much lower than those predicted by
the linear–nonlinear model, pointing to an adaptation process.
For the low-to-high TC level transition (between 1 and 2 s after
TC transition), there were no significant changes in the mean
firing rate (P = 0.95, n = 45, Fig. 4B), and there was only a small dif-
ference in SDFR (−26 ± 6%, P = 1.9e−4, Fig. 4C). These changes in FR
were significantly smaller than would have been expected from
predicted SDLO (P = 1.7e−12, Fig. 4D, left) or predicted FR (P = 0.025,
Fig. 4D, right). Likewise, the observed changes in the SDFR were
significantly smaller than expected from predicted SDLO (P =
4.0e−13, Fig. 4E, left) or SDFR (P = 3.2e−15, Fig. 4E, right). These re-
sults support the hypothesis that A1 neurons adapt to the tem-
poral dynamic range of the inputs, thus preserving the ability
to efficiently encode stimuli under varying statistical constraints
without changing the activity level.

Next wewanted to understandwhich parameters of neuronal
responses contributed to the preservation of the firing rate and
SDFR over time. The gain of the nonlinearity has been previously
shown to be involved in the firing rate adaptation to acoustic con-
trast and amplitude (Rabinowitz et al. 2011). We predicted that to
reduce or eliminate a change in firing rate following change in
stimulus TC, the gain should decrease with higher TC to fully or
partly compensate for the increased synaptic input, as predicted
by SDLO.We independentlyestimated the linear–nonlinearmodel
to responses to either low or high TC stimuli, fitting an exponen-
tial function (Equation 4) to the nonlinearity (Fig. 5A). Indeed,
across the population, the gain was significantly lower for higher
TC stimuli (−31 ± 9%, P = 1.4e−5, n = 45, Fig. 5B). The change in gain
exhibited significant positive correlationwith the change infiring
rate (r = 0.54, P = 1.3e−4) and change in SDFR (r = 0.30, P = 0.048),
that is, neurons that displayed no change or reduced firing rate
or standard deviation for higher stimulus TC exhibited stronger
gain reductions (Fig. 5C). Fitting the nonlinearity with a logistic
function (Fig. 5D) preserved the results: the parameter controlling
the steepness of the slope of the nonlinearity, k, decreased with
higher TC of the stimulus (−28 ± 10%, P = 8.2e−7, n = 45, Fig. 5E).
The change in steepness also correlated with the change in
SDFR (r = 0.37, P = 0.012), although not the change in firing rate
(P = 0.33) (Fig. 5F). When we re-fitted the model on responses to
the higher TC stimulus, thereby incorporating the gain changes,
the firing rate and SDFR did not change from low to high TC
(FR: P = 0.42; SDFR: P = 0.27; Fig. 5G,H). Also, there was no longer
a discrepancy between the change in predicted versus actual fir-
ing rate magnitude and standard deviation (FR: not significant,
P = 0.44; SDFR: not significant, P = 0.35). Furthermore, the correlation
between the predicted and expected changes in the firing rate
and its standard deviation were improved (FR: r = 0.47, P = 0.0012;
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Figure 2. Properties of neuronal spiking in response to varied TC levels. (A) Top: 8 s sample of the stimulus amplitude envelope for the alternating low-to-high TC stimulus.

Transitions between TC levels occurred every 2 s (black dashed lines). (B) Mean firing rate PSTHs from 3 representative neurons aligned to the TC level transitions every 8 s.

(C) STRFs from Neuron 3 in response to low, medium, and high TC levels.
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Figure 3. Predicted increase in neuronal responses with increased stimulus TC. (A) Linear–nonlinear model diagram illustrating how the model predicts the firing rate in

response to input stimulus: Amplitude modulation envelope of the stimulus is convolved with the linear filter (STRF) to produce the linear output, (Equation 2), which is

subject to a transfer function (exponential fit to the nonlinearity) to generate the predicted firing rate for the neuron (Equation 3). (B) Sample STRF. (C) Sample nonlinearity

(red: exponential fit, black: data). (D,E) Model predictions for responses to low or high stimulus TC levels. Left panels: Example of model outputs fitted to a single neuron’s

TCstimulus response properties. The red box in themodel diagramhighlights the feature being analyzed.Middle: Single neuron responses. Right: Population histogramof

the change in predicted responsewith increased stimulus TC. (D) Standard deviation of the linear output (SDLO, Equation 2) of the lowTCmodel in response to lowor high

TC stimuli. (E) Predicted mean firing rate (top) and standard deviation (bottom) (Equation 3) of the low TC model in response to low versus high TC stimuli. Fit to low TC

responses: black; fit to high TC responses: gray. Here and below: unity line: gray dashed.
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SDFR: r = 0.33, P = 0.027; Fig. 5G,H) compared with nonsignificant
correlation between the prediction of the model based on low
TC responses, which lacked gain adaptation (Fig. 4D,E). Together
these results suggest that changes in gain reflect adaptation in
neuronal responses.

We examined the changes in the firing rate offset of the non-
linearity as an analog for a shift in baseline firing rate between
TC conditions. If the observed effects were due primarily to gain
adaptation, wewould not expect the nonlinearity offset to change
significantly across conditions. Indeed, across the neuronal popu-
lation, offset did not change between lower and higher TC stimuli
(P = 0.42). Since the baseline firing rate does not change across the
population, it is unlikely to contribute to compensation for in-
creased SDLO. However, changes in offset were correlated with
changes in firing rate (r = 0.40, P = 0.0058). For individual neurons,
underlying offset firing may explain some of the change in firing
rate exhibited upon stimulus TC transitions.

Transitions from low TC to medium TC and from medium TC
to higher TC led to similar adaptation in FR and its standard de-
viation (Fig. 6). There was no difference in the mean firing rate
or its standard deviation for low-to-medium transitions (FR:
P = 0.50; SDFR: P = 0.13; n = 37, Fig. 6A). For medium-to-high transi-
tions, there was no change in firing rate (FR: P = 0.84) and a small
change in SDFR (SDFR: 16 ± 5%, P = 0.011, n = 37, Fig. 6B). We note
that individual neurons exhibited significant changes in their
firing rates, with some neurons increasing and some decreasing
their responses to higher TC stimuli. The firing rate changes
between responses for low-to-medium and medium-to-high TC
transitions were correlated (n = 37, r = 0.60, P = 7.5e−5, Fig. 6C),
suggesting that firing rate responses to TC-level changes are
monotonic with TC level.

Our results thus far demonstrate that neurons in the primary
auditory cortex exhibit adaptation to changes in temporal correl-
ation of the stimulus. The mean firing rate does not change sig-
nificantly and its standard deviation increases only slightly
upon transition from low to high temporal correlation, whereas
a large change would have been expected on the basis of the
spectrotemporal receptive field of these neurons. The measured
adaptation in the firing rate can primarily be attributed to the
change in the slope of the nonlinear response function, corre-
sponding to the gain of neuronal responses.

Spectrotemporal Dynamics of Neuronal Responses Are
Unaffected by Stimulus TC

Changes in the gain of neurons due to adaptation are commonly
accompanied by changes in the receptive fields of neurons
(Baccus and Meister 2002; Nagel and Doupe 2006). For example,
in the visual system, the time course of the receptive fields
of ganglion cells becomes slower with a decrease in contrast
(Baccus and Meister 2002). The spectrotemporal density of tone
pips in an auditory stimulus has also been shown to affect the
receptive fields of neurons in the inferior colliculus (Blake and
Merzenich 2002; Kvale and Schreiner 2004). Changes in the re-
ceptive field shape and size could potentially modulate the
neurons response properties. Therefore, to determine whether
the changes in the receptive field explain differences in the firing
rate between different temporal correlation levels, we quantified
4 aspects of the recorded STRFs under each condition (Fig. 7A):
peak response time, temporal duration, center frequency, and
frequency bandwidth. Only units containing a significant posi-
tive cluster-corrected lobe in the STRF for both low and high TC
models, that spatially overlapped, were included in this analysis.

Interestingly, we found no systematic changes in the tem-
poral or spectral profile of STRFs with an increase in TC. There
were no significant changes in the bandwidth, center frequency,
and duration of the STRF positive lobe (P = 0.14, P = 0.32, and P =
0.28, respectively, n = 30), nor were there significant correlations
between the change in these parameters and changes in firing

Figure 4. Adaptation in neuronal responses to stimuli with increased temporal

correlation. (A) Stimulus amplitude envelope, as in Figure 1C, for the alternating

high–low TC stimulus. (B) Mean neuronal firing rate to high TC versus low

TC stimulus. Left: single neuron responses, right: histogram of population

responses (blue: significant decrease, red: significant increase; white: not

significant). (C) Standard deviation of the firing rate to high TC versus low TC

stimulus. Panels same as in (B). (D) Actual versus predicted change in the mean

firing rate. Left: prediction based on standard deviation of the linear output.

Right: prediction based on full linear–nonlinear model. (E) Actual versus

predicted change in standard deviation of the firing rate. Panels same as in D.
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Figure 5.Gain adaptation in neuronal responses to stimuli with increased temporal correlation. (A) Exponential nonlinearity fitted to the actual firing rate response to low

versus high TC stimuli. Gain is measured through a linear fit to the exponential. Cyan: low TC fit, Magenta: high TC fit. Responses to low TC stimulus: black circles;

responses to high TC stimulus: gray circles. (B) Gain measurements for high versus low TC stimuli. Left: individual neurons, right: histogram of change in the gain.

Stars indicate that gain was higher for low TC than for high TC stimuli (left panel) and that gain decreased upon transition from high to low TC stimuli (right panel).

(C) Change in the gain versus the change in the firing rate (left) or the standard deviation of the firing rate (right). (D, E, F) Same as in (A), (B), (C) but with logistic

nonlinearity fit. Gain is measured as the steepness parameter k in Equation 5. (G) Predictions for the firing rate based on models fitted to high versus low TC stimulus.

Left: individual neurons. Center: histogram of the index of change of the predicted firing rate with increasing TC. Right: actual versus predicted change in firing rate.

(H) Predictions for the standard deviation of the firing rate based on models fitted to high versus low TC stimulus. Panels same as in G.
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rate (P = 0.68, P = 0.74, P = 0.051, respectively) (Fig. 7B–D). Although
there was a small reduction in the time-to-peak (−2.3 ± 1.3 ms,
P = 0.018, Fig. 7E), this change was smaller than the 5 ms time
frame of acoustic envelope modulation. In addition, changes in
time-to-peak were not correlated with changes in firing rate
(P = 0.99). Taken together, we did not find a systematic change
in the receptive field that can explain the pattern of change in
the firing rate with an increasing temporal correlation.

Adaptation to Temporal Correlation Leads to More
Efficient Information Processing

The efficient coding hypothesis posits that matching the stimu-
lus response dynamic range to the dynamic range of the stimulus
improves the efficiency of coding (Barlow 1961; Fairhall et al.
2001; Schwartz and Simoncelli 2001; Vinje and Gallant 2002).
We hypothesized that the gain modulation observed above
serves to maintain encoding efficiency under different TC condi-
tions. We quantified encoding efficiency using 3 measures: the
SNR, the Fano factor, and prediction quality, and compared
them for different TC levels.

The Fano factor provides a quantification of the variability in
neuronal responses to the stimulus (Churchland et al. 2011). An

effect of adaptation, consistent with the efficient coding hypoth-
esis, would result in a decrease in the Fano factor. In fact, we
found that the Fano factor decreased with increased TC (−5.1 ±
3.6%, P = 0.029, n = 45, Fig. 8A). Changes in Fano factorwere also sig-
nificantly correlatedwith changes in firing rate (r = 0.52, P = 2.8e−4).

The SNRgives ameasure ofhowstrongly the response variabil-
ity is used to encode the stimulus (Geffen et al. 2009). Consistent
with the efficient coding hypothesis, an effect of adaptation
should be an increase in SNR (Baccus and Meister 2002). Indeed
we found that SNR increased between lowand highTCs (13 ± 3.1%,
P = 3.1e−4, n = 45), and changes in SNR were not correlated with
changes in firing rate (P = 0.10) (Fig. 8B). This suggests that popula-
tions of A1 neurons encode stimuli of higher TC with less noise.

The prediction quality is a measure of how well the linear–
nonlinearmodel captures the response properties of eachneuron
(Woolley et al. 2005; Schneider andWoolley 2010; Carruthers et al.
2013). It can be affected by the dynamic range of the stimulus, as
well as the precision and variability of the response. We com-
pared the prediction quality of the linear–nonlinear model for
responses to the low, medium, and high TC stimuli (n = 30, Fig.
8C–E). Over the population, prediction quality was lowest for
lowTC stimuli, and highest formediumandhigh TC stimuli (pre-
diction quality = 0.17 ± 0.02, 0.24 ± 0.02, 0.26 ± 0.03, respectively).

Figure 6. Neuronal firing rates in response to intermediate TC-level changes. (A) Transition from low to medium TC. (B) Transition from medium to high TC. (A, B) Left:

Stimulus envelope, as in Figure 5A. Right: Change inmean firing rate (top) and standard deviation of the firing rate (bottom) from low to high TC stimulus. Axes and colors

same as in Figure 4B,C. (C) Correlation between change in mean firing rate for medium-to-low and high-to-medium TC stimuli.
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Figure 7. Neuronal spectrotemporal receptive fields remain stable across varying temporal correlation levels. (A) Spectrotemporal receptive field (STRF) of a neuron in

response to low (left), medium (middle), and high (right) stimulus TC levels. Excitatory lobe: white, inhibitory lobe: black. Excitatory lobe bandwidth: vertical line.

Excitatory lobe duration: horizontal line. The intersection of the black lines marks the excitatory lobe center frequency and time to peak. (B–E) Analysis of model

parameters (positive lobe of the linear filter) in response to high-to-low stimulus TC levels for each neuron. (B) Frequency bandwidth. (C) Center frequency. (D)

Duration. (E) Time to peak. (B–E) Left: Single neuron data. Center: Population histogram. Right: Correlation between the change in the STRF parameter versus the

change in the firing rate with increased TC.
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Figure 8. Improved encoding efficiency with increases in temporal correlation. (A) Fano factor of each neuron for low versus high stimulus TC. (B) Signal-to-noise ratio of

each neuron for low versus high stimulus TC. (C) Prediction quality of each neuron for low versus medium stimulus TC. (D) Prediction quality of each neuron for medium

versus high stimulus TC. Left, middle, and right panels as in Figure 6B–D. (E) Index of change in prediction quality from low-to-medium stimulus TC versus medium-to-

high stimulus TC for each neuron. Plot axes as in D, left right panel.
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Figure 9. Heterogeneous responses to abrupt changes in stimulus TC. (A–D) Example PSTHs of the average firing rate of neurons with the transition from one TC level to

another centered at time 0. Transitions from high to lowTC and its adaptation fit (decaying exponential function, Equation 6) are in orange and dashed dark orange lines,

respectively. Transitions from low to high TC and its adaptation fit are in green and dashed dark green lines, respectively. (A) A neuron that displays a peak in firing rate

after either transition. (B) A neuron that displays a dip in firing rate after either transition. (C) A neuron that displays a dip in firing rate after transition to lowTC and a peak

in firing rate after transition to highTC. (D) A neuron that displays a peak in firing rate after transition to lowTC and adip in firing rate after transition to highTC. (E) Z-score

of the initial response (k) after transition to low versus high TC. Each neuron is represented by a circle and its fill color indicates the index of change in adapted firing rate

(c). (F) Time constant (τ) of the firing rate adaptation after the initial response to the low versus to the high stimulus TC. Each neuron is represented as in E.
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Between the 2 lowest TC levels, prediction quality was significant-
ly greater for medium TC stimuli (108 ± 43%, P = 0.0062, Fig. 8C).
Comparing medium to high stimulus TC, there was no significant
change in prediction quality (P = 0.076, Fig. 8D). Neither prediction
quality comparison (low-to-medium or medium-to-high) showed
correlation with firing rate changes associated with different TC
levels (P = 0.33, 0.87, respectively, Fig. 8C–D). Together, these re-
sults show that increasing the TCof the stimulus improves encod-
ing. However, prediction quality does not continue to increase
with increasedTC. In fact, across the population, there is no correl-
ation between increased prediction quality from low to medium
TC versus medium to high TC (P = 0.073, Fig. 8E).

Interestingly, the correlation time window (Overath et al.
2008) of the medium TC stimulus (20 ms) most closely matches
the temporal duration of the STRF (22 ± 1 ms). Therefore, the typ-
ical spectrotemporal response properties of A1 neurons, at least
in rats, may be best suited to encode amplitude fluctuations oc-
curring within themedium TC stimuli and contribute tomore ef-
ficient encoding for this TC level. Furthermore, this implies that
the time course of adaptation likely scales with encoding time
of cortical neurons, and neurons with different encoding times
(such as found in other cortical auditory fields (Polley et al.
2007)) may adapt to different TC stimuli.

Dynamics of Firing Rate Adaptation to Changes in
Temporal Correlation

Examining the time course of firing rate change after a transition
in the stimulus temporal correlation can be informative about the
neuronal mechanism that underlies the firing rate adaptation
(Asari and Zador 2009). We averaged the neuronal responses to a
nonrepeating sequence of CDRCs, whose TC alternated between
high and low, triggered on the low-to-high or high-to-low transi-
tions, and examined the dynamics of the firing rate over several
hundred milliseconds following the transition. Upon transition
to a higheror lower TC regime, neurons (34%of recordedneurons)
displayed either a transient increase (peak) or decrease (dip) in
their firing rate over about 100 ms. If neurons followed the lin-
ear–nonlinear model and used gain adaptation, they would uni-
formly exhibit a peak in firing rate upon transition to higher TC,
and a dip upon transition to low TC. In contrast, all combinations
of initial responses were observed: peaks for both transition
(Peak–Peak, Fig. 9A), dips for both transition (Dip–Dip, Fig. 9B),
and peak for one and dip for another (Dip–Peak or Peak–Dip,
Fig. 9C–D, also see Fig. 2A), as characterized by the z-score of their
initial response. Across the population (n = 51), there is some cor-
relation with each neuron’s adaptation profile and its changes in
adapted firing rate (represented by c in the adaptation model,
Fig. 9E): All Dip–Dip neurons exhibit decreased firing rate in
response to higher TC. Also, most Dip–Peak neurons exhibit in-
creased firing rate in response to higher TC. However, the Dip–
Peak and Peak–Peak populations did not exhibit a consistent
change in responses to stimuli with different TC.

Our results demonstrate substantial heterogeneity in the ini-
tial response to a transition between high and low TCs. Similar
heterogeneity was observed in the time constants that character-
ize the time scale of the adaptation of the baselinefiring rate from
the peak to baseline (Fig. 9F). For the majority of cells, the time
constants fell below 1 s (Fig. 9F), which is consistent with previ-
ously observed time course for gain control in both the inferior
colliculus and the auditory cortex (Dean et al. 2008; Rabinowitz
et al. 2011). Neurons that increased their firing rate in response
to high TC had shorter time constants of adaptation. This sug-
gests that there are multiple processes in place that determine

the initial response to TC transition, and that these processes
are in some cases distinct from those determining the baseline
firing rate change.

Combined, we found that over the neuronal population, there
was no significant change in the neuronal steady-state firing
rates with increase in TC. A prediction for the response strength
of neurons to these stimuli was that neurons would exhibit high-
er firing rates to stimuli with higher TC. Analysis of specific re-
sponse components revealed that the firing rate adaptation
could be attributed to the change in the neuronal stimulus-dri-
ven, nonlinear response gain rather than neuronal spectrotem-
poral receptive fields. The change in the gain was part of an
active adaptation mechanism, triggered by the transition in the
stimulus to an increased or decreased TC.

Discussion
Dynamic gain control is ubiquitous in neuronal systems (Shapley
and Victor 1978; Smirnakis et al. 1997; Brown and Masland 2001;
Chander and Chichilnisky 2001; Baccus and Meister 2002; Chung
et al. 2002; Kohn and Movshon 2003; Kvale and Schreiner 2004;
Dean et al. 2005, 2008; Nagel and Doupe 2006; Chen et al. 2010;
Rabinowitz et al. 2011). From the point of view of efficiency of
neuronal coding, dynamic gain control permits increased infor-
mation transmission bymatching the dynamic range of responses
to the dynamic range of the stimulus (Barlow 1961; Fairhall et al.
2001; Schwartz and Simoncelli 2001; Vinje and Gallant 2002). Neu-
rons in the auditory cortex exhibit tuning to the temporalmodula-
tion structure of acoustic stimuli (Lu et al. 2001; Miller et al. 2002;
Linden et al. 2003; Woolley et al. 2005; Ter-Mikaelian et al. 2007).
This tuning, however, has previously beenmeasured using stimuli
with fixed temporal correlation structure. We found that changes
in the temporal correlation of a broadband acoustic signal evoked
gain control in neuronal responses in the primary auditory cortex.
This gain control mechanism affected the nonlinear component
of the response, improving stimulus encoding. Interestingly, un-
like in other sensory modalities (Baccus and Meister 2002), the
temporal response parameters of neurons were not affected by
the temporal statistics of the stimulus.

Cortical Contribution to Temporal Gain Control

Gain adaptation has previously been observed in the auditory
cortex in response to sounds with varying intensity and contrast
(Rabinowitz et al. 2011), as well as to transitions between differ-
ent types of sounds (Asari and Zador 2009). Responses of neurons
in the inferior colliculus have also been shown to exhibit adapta-
tion to sound contrast (Blake and Merzenich 2002; Kvale and
Schreiner 2004; Dean et al. 2005, 2008). Gain adaptation to stimu-
lus contrast in the auditory cortex is therefore likely a combin-
ation of processing that takes place at the more peripheral
processing stages as well as within the cortex, at the level of in-
hibitory-excitatory neuronal circuits. The dynamic gain control
in response to temporal correlation observed in the present
study may be driven by a similar mechanism as the previously
observed gain control to changes in sound contrast (Chen et al.
2010; Rabinowitz et al. 2011). Indeed, when the stimulus is pro-
jected on the receptive field of the neuron, despite its normaliza-
tion for intensity and standard deviation, it produces signalswith
increasing dynamic range for higher TCs (Fig. 5A). As the spectro-
temporal receptive field can be thought of as approximating pro-
cessing performed prior to integration of the inputs by the A1
neuron, the stimulus with an increased TC provides higher dy-
namic range of inputs to the A1 neuron, much like a stimulus
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with an increased intensity contrast. This is due to the specific
properties of the temporal integration time course of the spectro-
temporal receptive fields of A1 neurons. Therefore, the observed
gain control likely extends to a range of higher order statistics be-
yond the lower order features, such as intensity, contrast, and
temporal correlation.

We observed that for someneurons, responses increasedwith
increasing TC (Fig. 4)—therefore, gain control did not lead to com-
plete adaptation, preserving information about TC in the mean
firing rate of the neurons. These effects are consistent with
those observed previously in response to an increase in sound
contrast, where the firing rate of neurons increaseswith contrast,
but is subject to incomplete gain control (Rabinowitz et al. 2011).
Interestingly, the effects of gain control for changes from high to
low TC, and vice versa, were heterogeneous for a subpopulation
of neurons. Some neurons that lowered their firing rate to low
TC exhibited a transient increase in firing rate upon transition
to high TC (Fig. 9). The nonlinear component of the linear–non-
linear model is thought to reflect the spiking nonlinearity at the
level of cortical neurons. Therefore, this observation supports the
argument for contribution of intra-cortical mechanisms to gain
adaptation, at least in some of the neurons (in which the sign
of firing rate change upon transition is inconsistent with the pre-
diction of the linear–nonlinear model). Remarkably, we did not
find a significant effect on the timing and spectral bandwidth
of the receptive fields of the neurons. A circuit that uses synaptic
depression or facilitation in implementing gain control would
likely result in a change in temporal response properties of the
neurons (Abbott et al. 1997; Chance et al. 1998) and therefore is
not supported by the present observations. Furthermore, themea-
sured time scale of gain control inA1,with time constants of adap-
tation below 1 s for most neurons (Fig. 9F), is greater than the time
course of adaptation measured in the inferior colliculus, corre-
sponding to the time constants of tens of milliseconds (Dean
et al. 2008). Therefore, while a major component of adaptation
may be inherited from earlier auditory areas to the cortex, intra-
cortical mechanisms also seem to play an important role.

Relation to Previous Studies

Neurons in A1 exhibit both time-locked and sustained responses
to sounds that were modulated at different temporal rates: neu-
rons responded to fast sounds with a sustained response, encod-
ing the click rate in their mean firing rate; and to slower temporal
fluctuation with synchronized spiking discharges, phase-locked
to the modulations (Lu et al. 2001). In the present study, we did
not observe such a dichotomy in responses; the change from
time-locked to sustained responses would have been reflected
in a change in the temporal component of the neuronal spectro-
temporal receptive field. Here, we did not identify a systematic
change in the temporal component of the STRF (Fig. 6). This in-
consistency may be due to the difference in stimuli between dif-
ferent studies: we implemented a novel approach to examining
the effect of temporal fluctuation rates on A1 responses by sys-
tematically changing the statistical structure of the broadband
stimulus. It is plausible that the time scales of the stimulus
modulation that were used in this study differed from those
used previously. Furthermore, using a spectrotemporally more
complex stimulus decreased the synchronization versus firing
rate dichotomy, as the responseswere likely drivenby an integra-
tion of onset and sustained acoustic cues.

Our results provide for a potential link between two earlier
studies in humans: one identifying differential activation in
the human auditory cortex by stimuli with varying temporal

modulation rates (Boemio et al. 2005) and the other using a simi-
lar stimulus design to ours that found differential activation of
the areas downstream in the auditory cortex, including the su-
perior temporal gyrus and auditory association cortex (Overath
et al. 2008). The BOLD signal may average out the heterogeneous
changes in the neuronal spiking responses (Logothetis andWan-
dell 2004). Our findings provide support for this explanation for 2
reasons. The momentarily high responses that are produced at
the transition from low to high temporal correlation are likely
too fast to be detected by the BOLD signal that integrates the in-
puts over hundreds of seconds. The gain control mechanism that
we observed may normalize the responses that the BOLD signal
picks up. At the same time, since some neurons are inhibited
by the increase in TC, while others are excited, the averaged
population activity is also less affected. In contrast, the down-
stream areas may convert the heterogeneous changes in the fir-
ing rates of A1 neurons into an increase in their firing activity,
and therefore, their responsiveness may be detected by the
BOLD signal.

Consequences for Processing of Speech and
Communication Signals

Temporal modulations at different time scales have been shown
to correspond to different aspects of the speech signal (Rosen
1992; Poeppel 2003; Hickok and Poeppel 2007). The faster fluctua-
tions denote the fine structure of speech, while the slower fluc-
tuations refer to periodicity and envelope (Rosen 1992). Signals
at different temporal scales contribute information about differ-
ent aspects of segmental and prosodic cues in speech perception.
Our results suggest that at the level of A1, the neuronal resources
devoted to any single scale are equalized, as the neuronal firing
rates are stable across a range of TCs.

Furthermore, the auditory system shows remarkable invari-
ance to temporal stretching and compressing of acoustic signals:
compressing speech up to 2-fold does not lead to an impairment
in speech comprehension (Beasley et al. 1980; Ahissar et al. 2001).
The neuronal mechanisms that would enable such invariance
have been hypothesized to produce a code that also stretches
and compresses with changes in the stimulus statistics. Our re-
sults do not support such transformation, as the receptive fields
of neurons do not changewith temporal correlation of the stimu-
lus. Therefore, they are expected to produce differential re-
sponses to sounds that are stretched or compressed, consistent
with our previous measurements of responses to rat vocaliza-
tions and emergent properties of invariant representationwithin
the auditory cortex (Carruthers et al. 2013, 2015).

To summarize, we found that neurons in the primary auditory
cortex exhibited gain control to changes in the temporal correl-
ation statistics of acoustic stimuli. This adaptation allows neurons
to maintain their mean firing rates under different stimulus re-
gimes, while increasing or preserving the information that neu-
rons can transmit about the stimulus.
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