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Abstract

The 2014 Surgeon General’s Report on smoking and health concluded that changing cigarette designs have caused an
increase in lung adenocarcinomas, implicating cigarette filter ventilation that lowers smoking machine tar yields. The Food
and Drug Administration (FDA) now has the authority to regulate cigarette design if doing so would improve public health. To
support a potential regulatory action, two weight-of-evidence reviews were applied for causally relating filter ventilation to
lung adenocarcinoma. Published scientific literature (3284 citations) and internal tobacco company documents contributed to
causation analysis evidence blocks and the identification of research gaps. Filter ventilation was adopted in the mid-1960s
and was initially equated with making a cigarette safer. Since then, lung adenocarcinoma rates paradoxically increased rela-
tive to other lung cancer subtypes. Filter ventilation 1) alters tobacco combustion, increasing smoke toxicants; 2) allows for
elasticity of use so that smokers inhale more smoke to maintain their nicotine intake; and 3) causes a false perception of
lower health risk from “lighter” smoke. Seemingly not supportive of a causal relationship is that human exposure biomarker
studies indicate no reduction in exposure, but these do not measure exposure in the lung or utilize known biomarkers of
harm. Altered puffing and inhalation may make smoke available to lung cells prone to adenocarcinomas. The analysis
strongly suggests that filter ventilation has contributed to the rise in lung adenocarcinomas among smokers. Thus, the FDA
should consider regulating its use, up to and including a ban. Herein, we propose a research agenda to support such an effort.

Cigarette smoke is the major cause of lung cancer, containing
numerous carcinogens, mutagens, and other toxicants (1–3).
When the incidence of lung cancer began to rapidly increase in
the 1950s through the 1970s, squamous cell lung cancers were
the most common sub type for men, but these decreased over
the next 40 years with the decreasing smoking prevalence (1,4–10).
However, the incidence of lung adenocarcinomas did not

similarly decrease for men and women, exceeding squamous
cell cancers in about 1990 and currently comprising about 60%
of non–small cell lung cancers (Figure 1A). In 2014, the Surgeon
General’s Report (SGR) on the Health Consequences of Smoking
concluded: “The evidence is sufficient to conclude that the
increased risk of adenocarcinoma of the lung in smokers results
from changes in the design and composition of cigarettes since
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the 1950s” (1). It was observed that the changes in lung cancer
over time followed a birth cohort effect in men, when succes-
sive generations of smokers transitioned from the use of non-
filtered cigarettes to cigarettes of lower smoking machine tar
yields (Figure 1B). A less obvious effect is seen for women
because they generally started smoking later in the century and
so mostly smoked only cigarettes with lower tar yields
(Figure 1,A and C). It was further noted that the magnitude of
lung cancer risk among smokers had increased over time; for
example, in the American Cancer Society Cancer Prevention
Studies, an almost two fold increase in risk for smoking men,
and a 10-fold increase in risk for smoking women, from the
1960s to the 1980s was observed (11). Concurrently, the relative
risks for adenocarcinomas increased from 4.6 (95% confidence
interval [CI] ¼ 1.7 to 12.6) to 19.0 (95% CI ¼ 8.3 to 47.7) in men
and 1.5 (95% CI ¼ 0.3 to 7.7) to 8.1 (95% CI ¼ 4.5 to 14.6) in
women, while the risks of other lung cancer subtypes did not
increase (6). Other studies similarly report increased rates and
risks (6,12–14). Thus, there was a paradoxical increase for lung
adenocarcinomas while squamous cell cancers decreased with
decreased smoking rates.

Beginning in the 1950s, the concept was developed that lower
smoking machine tar yields equate to reduced smoking-related
risks. This led to the cigarette industry to progressively lower tar
yields in different ways, beginning with the placement of filters
on cigarettes (15–18). This was then followed by the use of less
tobacco in cigarettes of the same length, use of reconstituted and
expanded tobaccos, increasing cigarette paper porosity, and the
placement of ventilation holes in the filter to dilute the smoke
(Figure 2) (19). The 2014 SGR indicated two reasons that lowering
tar yields could have increased the risk of lung adenocarcinomas:
the use of filter ventilation holes and increasing amounts of
tobacco-specific nitrosamines (TSNAs) in tobacco (1). Filter ventila-
tion became the critical way for cigarettes with similar designs to
have lower smoking machine tar yields, and cigarettes were mar-
keted as “regulars” (a few “regulars” remained with 0%
ventilation) and “lights” in the 1970s, and “ultralights” in the 1990s
(20–23). The public health community believed that smoking ciga-
rettes with lower smoking machine tar yields was preferable for
smokers who would not quit (24–27). Lower tar yield cigarettes
became the preferred choice of many smokers who perceived
them to be a lower health risk because of health messaging. This
perception was reinforced by the sensation of reduced harshness
when smoking due to the mixing of air and smoke and reduced
resistance to draw when puffing the cigarette (16,28,29). While
today many countries such as the United States, Canada, and the
European Union, have banned the use of “light” and “ultralight”
cigarette descriptors because of the evidence that these are not
safer cigarettes, filter ventilation continues to be used in almost
all commercial cigarettes (16,30). In some jurisdictions, including
the European Union, a maximum machine-measured tar yield is
mandated for all cigarettes, attributable to the belief that lower tar
yields lead to safer cigarettes, which happens to be achieved
primarily through the use of filter ventilation (31–33).

There have been previous calls for regulating cigarette filter
ventilation because of smokers’ misperceptions that lower-tar
cigarettes would cause less disease (34,35). Under the 2009
Family Smoking Prevention and Tobacco Control Act (TCA), the
FDA has the authority to regulate tobacco products and issue
“product standards” when there is sufficient evidence that
a standard would be “appropriate for the protection of
public health.” The purpose of this review is to provide a
weight-of-evidence review using causation criteria linking filter
ventilation to an increasing risk of lung adenocarcinoma

expanding the analysis to include chemistry and toxicology
studies, human clinical trials, and epidemiologic studies of
smoking behavior and lung cancer risk. This review will use two
methods and a consensus-building process to evaluate the evi-
dence for the causal relationship of filter ventilation to increas-
ing risk of lung adenocarcinomas in order to provide a scientific
evidence base for the regulation of filter ventilation. One
method has been traditionally used for the assessment of
smoking-related health risks, and the second method is more
recently being advocated for the use in regulatory decision-
making because of its transparency and identification of incon-
sistent data and data gaps (1,24,36–40).

Methods

This review is an evidence-based causation analysis, which uses
a weight-of-evidence review of published scientific literature and
internal tobacco company documents (experimental and human
studies) to provide a comprehensive overview of filter ventilation
in relation to lung adenocarcinoma. After grouping disparate
types of evidence, reviews were conducted within topics.
Scientific publications were identified through PubMed using the
following search terms: lights, ultralights, tar, cigarettes, filter
ventilation, air dilution, adenocarcinoma, Ames, tumorigenicity,
nitrosamines, polycyclic aromatic hydrocarbons, inhalation, puff
topography, mutagenicity, smoking machine, compensation,
smoking behavior, and chemical yields. Using cigarette and any
of the above terms yielded 81 382 publications, which were then
narrowed to 3284 based on studies that considered tar yields
(Supplementary Table 1, available online). It should be noted that
a causation analysis considers all available relevant studies and
does not exclude any based on some particular design or feature;
rather, it weights highly the most relevant and best studies.
Additionally, the online Tobacco Documents Bibliography of
internal tobacco company documents archived by the library of
the University of California, San Francisco’s Center for
Knowledge Management was searched using search strings simi-
lar to those above (41). This database includes numerous dupli-
cates, and there are numerous unique documents providing
duplicative data and methods (eg, draft reports, partial reports,
interim reports, final reports, and summaries). Thus, reporting
the number of documents that were considered is not
informative.

Causality Assessment

Two weight-of-evidence methodologies were utilized, as
described in the Supplementary Methods (available online). The
first is detailed in the 2004 SGR, derived from the method
applied in the 1964 SGR and subsequently used for the later
reports (1,24,36). This approach is consistent with an “evidence-
based causation methodology” that recognizes the importance
of human data, challenges in extrapolating laboratory toxicol-
ogy data to human risk, use of laboratory toxicology data to sup-
port conclusions based on mechanisms, and an integration of
data ranging from the laboratory to epidemiology (37). The cau-
sation criteria, briefly, include the consideration of 1) consis-
tency as applied to both experimental and human studies; 2)
strength of association that considers the magnitude of the
effect (eg, reported risk); 3) dose-response relationship; 4) specif-
icity of the effect vs other contributing causes; 5) coherence
between laboratory and human data; 6) interventions that pro-
vide direct experimental evidence using laboratory and human
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studies; 7) plausibility; and 8) analogy to other known causes.
While there is no particular guidance on how to weight dispa-
rate pieces of evidence, this review classifies categories of data
on a scale of 0 to 3, where consistency and interventions were
given a threefold weight compared with other criteria, dose-
response and biological plausibility were given a two fold
weight, and the others were the comparator at a one fold weight
(coherence, plausibility, and analogy), so that the maximum
score was 45 (Supplementary Table 2, available online). The
authors evaluated the different types of evidence presented
herein during numerous meetings and phone calls to reach a
consensus for the various weights and rankings.

The second approach uses a mode of action (MOA), and human
relevance framework for weighing the evidence has been applied
(Supplementary Table 3, available online), which has evolved for

risk assessment purposes from causation criteria developed in
the 1960s by Sir Austin Bradford Hill (38), where more recent con-
siderations now are applied in the context of modern scientific
principles and specific defining questions (39,40). This second
framework is used to enhance transparency and determine if sim-
ilar conclusions result using different approaches. The MOA links
the exposure of a cell to a substance that reflects the outcome of
interest, for example, increasing cancer risk, and does this in the
context of human relevance. This framework explicitly considers
the consistency of the data from disparate types of studies, out-
comes based on a sequence of events, and biological evidence of
pathways that can be interrupted so that risk is not considered
inevitable, and it necessitates the consideration of the dose-
response relationship. Inconsistencies and data gaps are identi-
fied using a standardized template.
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Figure 1. Trends of incidence of lung cancer among US men and women and from various birth cohorts. Adapted from the 2014 Surgeon General’s Report (1). (A–C)

Graphs present trends in age-standardized incidence rates in the United States from 1973 to 2010 for lung cancer for men (A, left) and women (A, right) and histologic

type of lung cancers using data from the National Cancer Institute’s Surveillance, Epidemiology, and End Results program. Among men, there has been a shift in the

histology patterns, with an increase of adenocarcinomas over squamous cell carcinoma (B); similar trends are seen for women (C). Graphs present trends in incidence

rates of lung cancer in the United States for 1905 and 1945 from birth cohorts of men (B) and for 1900 and 1945 from birth cohorts of women (C) and histologic type of

lung cancers. NSCLC = non–small cell carcinoma.
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Results

The published scientific literature and unpublished internal
tobacco company research can be grouped by laboratory experi-
mental data (ie, impact of filter ventilation on smoke chemistry
yields, in vitro mutagenicity, and in vivo animal studies) and
human studies (ie, smoking behavior, exposure including obser-
vational studies and clinical trials, and long-term epidemiol-
ogy). Figure 3 provides the framework for the relationship of
filter ventilation to the increased risk of adenocarcinomas.

Smoking Machines and Toxicant Delivery

Smoking machines are used to generate smoke in a standar-
dized manner for laboratory testing and were thought to be use-
ful for comparing cigarette smoke tar yields (and constituents)
in the context of relative disease risks (42–45). When cigarettes
with increasing filter ventilation are smoked on a smoking
machine, tar yields are lowered because the filter ventilation
holes allow for the smoke to be diluted with air. Machine-meas-
ured cigarette tar yields generally decreased from an estimated
average of 38 mg in 1954 to 12 mg in 1997 (Figure 4A) (46). Figure
4B shows when filter ventilation was adopted compared with
other design changes that also were intended to lower tar yields
(23). Filter ventilation was used in about 7% of marketed ciga-
rettes by the end of the 1960s, but rapidly increased to 94% to
100% by 1982 (35, 47). Today, the percent age of filter ventilation
used in commercial cigarettes ranges from 0% to 83%, although
most smokers choose cigarettes that have 10% to 20% ventila-
tion (10–15 mg tar yield). A small number of smokers prefer ciga-
rettes with greater than 40% ventilation (1–6 mg tar yields)
(23,30,47–49). Until 2008, US cigarettes were branded by the
industry as “regulars” or “full-flavor” (>15 mg tar), “lights” (6–
15 mg tar), and “ultralights” (<6 mg tar) depending on the
machine-rated tar yield, in large part determined by filter venti-
lation (Figure 4B) (19,47,50).

While the application of filter ventilation can result in lower
machine-measured tar yields, the composition of the smoke
changes increases tobacco toxicant yields and adverse biologi-
cal effects as follows (Figure 5) (51–55):

• As filter ventilation increases, the cigarette is burned down
less rapidly on the smoking machine, and there are more
puffs per cigarette (54–59).

• As the tobacco rod burns down less rapidly, there is more
time for the coal to smolder and form more toxic constitu-
ents (54,55,57).

• With increased ventilation in the range of most commercial
cigarettes, there is decreased air flow through the burning
coal tip and lower coal temperatures, resulting in more
incomplete combustion and toxic constituents (60–66). An
important publication for the chemical yields of two

Figure 2. The modern cigarette. An adapted depicted modern cigarette as to elucidate mechanisms in and around the burning cigarette by Richard R. Baker in 1982

(https://industrydocuments.library.ucsf.edu/tobacco/docs/#id¼knyy0131) (1).
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Figure 3. The framework for the relationship of filter ventilation to the increased

rate of adenocarcinoma. The placement and increase of filter ventilation lead to

higher levels of mutagens and carcinogens, compensation with the greater

depth of inhalation, and deposition of smoke that increases exposures to in the

peripheral portion of the lungs. Thus, smokers who smoke low-tar cigarettes

have developed a greater risk for adenocarcinoma of the lung. TSNAs ¼ tobacco-

specific nitrosamines.
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commercial cigarettes that differ by the amount of filter ven-
tilation shows that most toxic constituents are statistically
significantly increased (67). The analysis of this study was
done with smoke constituent yields on a per-mg-of-nicotine
basis, mimicking smoke intake for a smoker adjusting their
smoking behavior to compensate for lower nicotine delivery.
Among the increased toxicants was (N-nitrosomethyla-
mino)-1-(3-pyridyl)-1-butanone (NNK), a potent lung carcino-
gen, in agreement with other published studies (57,64,68–72).
Blocking ventilation holes decreases NNK levels (73).

• Increasing filter ventilation increases cigarette smoke muta-
genicity as measured by the Salmonella Reverse Mutation
Assay (Ames test), which is a highly replicated and exten-
sively used assay for the screening of mutagenic potential
(74–78) (Supplementary Figure 1, available online) (79). Filter

ventilation increases mutagenicity across the full range of
cigarette ventilation (69,74,80). An internal tobacco company
study assessed six different design parameters to model the
contribution of various design changes, including ventilation
to mutagenicity, using 30 different research cigarettes (81).
Filter ventilation statistically significantly increased the
mutagenicity of tar independent of other cigarette designs
and tobacco formulations (Figure 6) (81).

• Increased filter ventilation increases particle size in the
smoke due to increased water content, condensation, and
coagulation as the smoke passes through the tobacco rod
(Supplementary Table 4, available online) (54,82–88). This is
due to the slower burn down of the cigarette and increased
residence time of the smoke, allowing for the particles to
absorb more water and constituent gases.
In summary, the consistency and biological plausibility

resulting from changes in combustion provide mechanistic sup-
port for a causal relationship between filter ventilation and the
increased risk of lung adenocarcinoma, owing to a dose-
response relationship between ventilation and increased toxi-
cant yield. This applies to the full range of filter ventilation,
including highly ventilated cigarettes with the lowest machine
yields that have been previously marketed as “ultralights.”

Filter Ventilation Provides No Benefits to Smokers

Filter ventilation allows for the cigarette yields to be “elastic”
when smoked by smokers. Increased puffing intensity resulted
in a nonlinear increase in the concentration of tar and nicotine
yields because ventilation and tar reduction depend on how
fast and large the puff is (89,90). Varying puffing intensity allows
smokers of ventilated cigarettes to titrate the nicotine yield,
maintain their desired blood nicotine levels, and optimize nico-
tine reward (34,91). This process, known as “compensation,” is

Figure 4. Sales-weighted average tar and nicotine deliveries, 1954 to 1993, and percentage of filter ventilation of cigarettes based on tar yields using the Federal Trade

Commission. A) Tar and nicotine as measured by a smoking machine. Source: Hoffmann D, Djordjevic MV, Hoffman I. The changing cigarette. Prev Med. 1997;26(4):427–

434. (19). B) Adapted from: Centers for Disease Control and Prevention. Filter ventilation levels in selected U.S. cigarettes, 1997. MMWR Morb Mortal Wkly Rep.,

1997;46(44):1043–1047 (22). Bars represent 95% confidential interval. Percentage of filter ventilation is the percentage of a standard puff (two second duration, 35 mL), that

is, air taken into puff through the filter vents. A cigarette with no filter ventilation would produce a puff undiluted by air from filter vents; a cigarette with 80% filter venti-

lation would produce a puff that is 80% air from vents and 20% smoke undiluted by air from vents. Descriptors are no longer allowed by law because they are misleading

and because the classification and nicotine yields vary by definition in the literature. ET = expanded tobacco; F = filter; Nic. = nicotine; RT = reconstituted tobacco.
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Figure 5. The relationship of filter ventilation to changes in chemical yields and
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accomplished by individual puffing styles (puff topography) of
harder or longer puffs, or by blocking the ventilation holes with
one’s fingers (either consciously or unconsciously; most smok-
ers are unaware of ventilation holes) (34,42,92–101). In 2006, a
federal court decision determined that that the reporting of
machine-rated tar and nicotine yields was “totally unreliable for
measuring the actual nicotine and tar any real life smoker
would absorb because it did not take into account the phenom-
enon of smoker compensation” (102). In November 2008, the
FTC took action that prompted the removal of nicotine and tar
listings from cigarette packs and ads. As of June 2010, the TCA
prohibited the use of explicit or implicit descriptors on tobacco
packaging or in advertising that convey messages of reduced
risk or exposure, specifically including terms like “light,” “mild,”
and “low” (103). Nonetheless, there has been no action to regu-
late filter ventilation, and ventilation holes in cigarette filters
remain today on most cigarettes.

Replicating Human Puff Profiles on Smoking Machines
Academic studies replicating human smoking behavior on
smoking machines demonstrated how none of the standardized
smoking machine puffing regimens accurately predict exposure
to smokers (42,104,105). For example, Djordjevic and colleagues
found that smokers of 8 to 9 mg machine-rated tar yield ciga-
rettes, when compared with 15 mg cigarette smokers, had a 2.5-
fold higher intake of tar, nicotine, and TSNAs compared with
the machine yield (104). Hammond and coworkers compared
nicotine yields using different machine smoking regimens with
actual exposure for smokers using salivary cotinine levels,
showing that these are unrelated (105). While there are no

published studies replicating human smoking behavior on a
smoking machine by levels of ventilation, the Philip Morris
Tobacco Company conducted several studies (cross-sectional
and clinical trials) in the 1970s recording puffing behaviors by
smokers and programming a smoking machine to replicate
their profiles (106–111). They showed that filter ventilation
resulted in a compensatory response by the smoker such that
standard machine yields grossly underpredicted actual expo-
sure and that compensation led to similar exposures from ciga-
rettes with different ventilation levels.

Clinical Trials
The most direct evidence for determining a smoker’s exposure
from filters with different yield elasticity comes from clinical
trials of smokers who switched to cigarettes with different lev-
els of filter ventilation. These studies encompass a range of
designs including smoking one or several cigarettes in a labora-
tory, confining smokers to an inpatient setting so that smoking
is directly monitored, to longer-term switching trials in the nat-
uralistic setting. Among these, longer-duration studies and
those in the naturalistic setting are more informative because
they allow smokers to adjust to taste and other cigarette charac-
teristics and to compensate for changes in nicotine yields in the
“real world.” Also, studies with control groups (ie, smokers who
continue to smoke their usual brand) are more informative as
smokers may alter their behavior simply because they are in a
study about smoking (112–119). The largest study conducted to
date, which used commercial cigarettes that differ little except
by filter ventilation, was conducted by Philip Morris (113). It
studied 225 smokers of low-ventilation cigarettes (�10%) who

Figure 6. The increase in mutagenicity per % increase in ventilation, which was statistically significant. Source: Mutagenicity of the mainstream smoke condensate of

30 research cigarettes with differences in 6 parameters,” 1993. Philip Morris Records. https://industrydocuments.library.ucsf.edu/docs/#id¼thcc0126 (81).R
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switched to higher-ventilated cigarettes (�17% or �47%) or
unswitched (controls). The smokers were first confined to an
inpatient facility for eight days and had restrictions based on
how much they could smoke per day. Then, they continued in a
24-week naturalistic environment study. Compared with the
controls, there was no statistical reduction for switching to the
approximately 17% cigarettes, and while there was some statis-
tical reduction for some biomarkers when switching to the
approximately 47% cigarette, it was much less than the
expected reduction based on decreased tar yields. One limita-
tion for this study is a high dropout rate at 24 weeks, although
there are similar results for interval follow-ups. Other studies
also indicate little to no difference in actual exposure reduction
by filter ventilation or other methods to reduce exposures with
ventilated cigarettes (eg, reduction in cigarettes per day)
(89,112,113,116–118,120–122). These clinical studies are sum-
marized in Supplementary Table 5 (available online).

Cross-Sectional Studies
These studies of general population smokers assess puff topog-
raphy and exposure biomarkers at a single point in time. While
clinical trials for cigarettes with different tar yields provide
direct evidence for the effects of filter ventilation on exposure,
there also are observational cross-sectional studies that provide
corroborative data, although of lesser weight. A major limitation
of these studies is that they provide little information about
cause and effect because of inherent bias and confounding (eg
is an observed difference in a biomarker level due to the ciga-
rette design or due to self-selection by a smoker with innate
characteristics). They also do not solely assess the effect of filter
ventilation because marketed cigarettes differ by other charac-
teristics. Nevertheless, consistent with the clinical trials, these
studies (Supplementary Table 6, available online) demonstrate
that exposure biomarkers are not statistically reduced when
smoking cigarettes with differing tar yields and filter ventila-
tion, except for perhaps some comparisons of the most extreme
differences in tar yields (25,89,104,123–150). The largest study to
date (n ¼ 3600), also conducted by Philip Morris, was specifically
designed to assess biomarker exposures by tar yields. This
study showed few differences in biomarkers based on tar yields,
and statistical differences were reported only for the most
extreme comparisons of tar yields (137,144,151). Tar yield was
substantially less of a predictor for nicotine exposure compared
with number of cigarettes per day, nicotine dependence, and
puff topography. Other studies, albeit smaller, show similar
results (25,138,139,143,144). Separately, while machine--
measured tar and nicotine levels have decreased over time,
serial cross-sectional data over 25 years from the National
Health and Nutrition Examination Survey (NHANES) demon-
strate little overall change in daily nicotine intake among smok-
ers, with cotinine per cigarette increasing by 42% over that time
(152).

In summary, the consistency of the human clinical trials
and cross-sectional studies demonstrates that lower machine
tar yields do not predict lower exposures determined by bio-
markers of exposure. And actually, puff volumes increase for
smokers of cigarettes with more ventilation, suggesting greater
exposures in the lung. Reported results in cross-sectional stud-
ies of lower biomarkers for smokers of cigarettes with the most
ventilation may be due to the characteristics of the smokers
choosing these cigarettes rather than the tar yields affected by
ventilation (153). It can be noted that these studies do not sup-
port a causal relationship for filter ventilation and lung

adenocarcinoma because they do not show increased levels of
blood and urinary biomarkers. However, the above studies are
somewhat limited in study design, do not measure exposure at
the lung level, do not include validated biomarkers of harm, and
the urine and blood studies might not be a surrogate for
changes in lung exposure because of rapid absorption of carci-
nogens through the lung.

Effects of Filter Ventilation on Consumer Perception and
Response

As early as 1955, filter ventilation was recognized by the tobacco
industry to produce a smoke that is less strong, harsh, and irri-
tating (58,154–159). This led smokers to believe that they are
smoking a product that is less harmful (156,157,160). Most
smokers are unaware of the presence of filter ventilation lead-
ing to this effect (161,162), although some might subconsciously
partially block the holes with their fingers (23,163). These per-
ceptions were reinforced by implicit and explicit advertising
claims about safer cigarettes (20,23,34,101,162,164–181).
Although tar yield descriptors are currently prohibited, the mes-
saging remains because the coloring and packaging has not
changed (180,181), and smokers retain their misperceptions
about health effects based on the character and sensory effects
of the smoke (20,23,34,101,162,164–179). Thus, an added adverse
impact of filter ventilation is the fostering of a false belief that a
lower-tar cigarette is a healthier cigarette.

Filter Ventilation, Inhalation, and Smoke Distribution in
the Lung

The process of inhalation is separate from puffing for most
smokers and is a multistep process of mouth-holding followed
by inhalation (182–186). Filter ventilation allows smokers to
have higher puff volumes and to take more frequent puffs (42),
making more toxicants available to be inhaled to deeper parts
of the lungs and allowing for greater retention of nicotine and
toxic chemicals (42,182–184,187). To date, there are inconsistent
results as to whether cigarettes with different tar yields directly
influence inhalation, separate from allowing for more smoke to
enter the lungs because of larger puff volumes, although the
consensus within the academic community is that the depth of
inhalation increases with greater filter ventilation
(1,42,97,116,117,147,188–200). There is no validated method to
assess inhalation for smoking, and the inconsistencies may
relate to variations in methodologies, use of unnatural environ-
ments (eg, use of smoke chambers, constricting bands around
the chest, and radiotracer studies), small study size, and inad-
equate study design (eg, single use or limited use). Importantly,
many smoke constituents, such as nicotine, are rapidly
absorbed through the lungs so that biomarker studies of the
urine and blood might not reflect local lung exposures, and
there is evidence for differential retention of particulate matter
constituents such as TSNAs (97,184,186,201). Several studies
have indicated that 95% to 100% of inhaled nicotine is retained,
but only 60% to 97% of particulate constituents (186,201). Smoke
reaching the most distal parts of the lung, where air flow
decreases, allows for easier sedimentation of the particles. Also,
particles may grow in size and water content in the lungs,
allowing for more deposition and retention of particles with
higher amounts of smoke toxicants due to filter ventilation
(186,199,202). To validate this in humans, smoke distribution
and retention would need to be directly measured, but these
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methodologies do not exist. There is some data for smoke distri-
bution using experimental animal studies and modeling, but
these are not developed based on actual smoking behavior data,
which likely underestimate deposition (199,203). These models
also do not account for flow of the gas phase chemicals or
account for changes in filter ventilation.

In summary, there is conflicting data to conclude that filter
ventilation increases depth of inhalation. Furthermore, how
particles distribute in the lung generally is unclear, and this has
not been studied with respect to filter ventilation specifically.
However, a logical inference is that smokers with larger puff
volumes due to cigarette elasticity will make more smoke avail-
able to travel deeper into the lungs. Thus, greater depth of inha-
lation or a change in particle size do not necessarily need to
occur to affect risk because more smoke is inhaled either way.
The assumption of greater lung exposure to tobacco toxicants
leading to an increased risk for lung adenocarcinomas due to fil-
ter ventilation is may not be in conflict with clinical trials and
cross-sectional biomarker studies using blood and urine bio-
markers because these studies do not provide information
about lung exposure, distribution, or other local effects in the
lung. Small differences in exposure that are distributed widely
in the body may not be measurable and subject to numerous
factors related to innate characteristics of the smoker and rapid
transfer from the lungs to the blood stream. However, we postu-
late that small differences in exposure concentrated on a per-
puff basis might have a large impact localized in the lungs.

Different Sensitivity of Distal Airway Lung Cells Leading
to the Development of Different Types of Lung Cancer

Experimental studies and limited human evidence indicate that
the distal airways of the lung contain cells prone to the develop-
ment of adenocarcinoma and that these regions may be more
sensitive to TSNAs. It should be noted that most lung carcino-
genesis studies in experimental animals focus on TSNAs and
polycyclic aromatic hydrocarbons (PAHs) and are limited both
in number and type of animal models; other smoke toxicants
increased by filter ventilation also may contribute.
Experimental animal studies indicate that there are generally
three types of epithelial cells in the lung, namely type I pneu-
mocytes, type II pneumocytes primarily located in the alveolar
space (more distal airways—probably the progenitors of type I
pneumocytes) and Clara cells that are nonciliated and located
in the terminal bronchioles (now known as club cells or bron-
chiolar cells and located in the more proximal region of the
lung) (204,205). Although not well studied, there is evidence that
type II pneumocytes are cells involved in inflammatory reac-
tions (206), provide an inflammatory signal to recruit granulo-
cytes and cause inflammation (207), and develop into
adenocarcinoma (207–209), while the Clara cell lineage secretes
anti-inflammatory proteins and reduced with smoking, and
may be the precursor to both squamous cell lung cancer and
adenocarcinomas (206,211,212). These cell types also have dif-
ferent carcinogen-metabolizing capacities (205,206,212–214). For
example, more proximally located Clara cells have a greater
ability to metabolize the carcinogen benzo(a)pyrene than type II
pneumocytes, but the opposite occurs for TSNAs, although both
cell types metabolize both carcinogens (205,215–217). Further,
suggestive experimental animal studies indicate that NNK
induces peripheral lung adenomas (219,220), while PAHs are
more likely to induce central squamous cell tumors, although
not exclusively (220–227). While there is some evidence that the

Clara cells have more DNA damage than type II pneumocytes
following exposure to NNK, the alveolar regions have more cell
proliferation and tumors (215,223).

There are two prospective human studies assessing TSNA
exposure and lung cancer risk (228–230). Neither considers filter
ventilation in its analysis, but each provides important support
for the relationship of TSNAs and lung cancer risk. In a case-
control study nested within the Prostate, Lung, Colorectal, and
Ovarian (PLCO) Cancer Screening Trial, Church et al. reported
that a 1 standard deviation increase in urinary total NNAL (a
metabolite of NNK) was associated with a 57% (95% CI = 8% to
128%) increased risk of lung cancer (229). When analyzed by
lung cancer histology, the association of urinary NNAL with the
risk of lung adenocarcinoma was statistically significant, but
the results for other lung histologies combined were elevated,
but not statistically significant. The second study, using the
Shanghai Cohort Study and the Singapore Chinese Study, also
showed an overall increased lung cancer risk with higher levels
of NNK exposure (230,231); data for specific cancer subtypes
were not provided because histological confirmation was not
done for many subjects.

In summary, experimental animal studies indicate that the
distal airways may be more sensitive to NNK than the proximal
regions of the lung. Limited human cohort studies identify NNK
as contributing to lung cancer risk, particularly for adenocarci-
nomas. Given that filter ventilation increases NNK (as do other
factors) and that larger puffs of smoke with higher NNK levels
can reach the distal airways, along with other toxicants, these
studies add to the biological plausibility for a relationship of fil-
ter ventilation to increased lung adenocarcinoma.

Weight of Evidence Review and Causation Analysis

This weight of evidence review broadly uses three groups of evi-
dence, namely laboratory experimental data, human smoking
behavior studies, and the epidemiology of lung cancer. Table 1
and Figure 7 summarize our weight-of-evidence review in terms
of the consistency of evidence, evidence of dose-response, tem-
porality of exposure, strength of association, specificity of the
evidence, and other causal criteria as they relate to the relation-
ship of filter ventilation causing an increased risk of lung
adenocarcinoma. In this analysis, human studies are given the
greatest weight (clinical trials > cross-sectional studies; pro-
spective studies with lung cancer outcomes for variation in ven-
tilation would be given the greatest weight, but none directly
exist), while experimental animal and toxicology studies are
useful to support mechanistic associations because the direct
extrapolation from the laboratory to human risk is not possible.

A mode of action and human relevance framework also was
applied, which is summarized in Supplementary Table 3 (avail-
able online). In addition to what is identified for Table 1 and
Figure 7, this framework also identifies what data may be incon-
sistent with a causal relationship and also what data are miss-
ing, for example a future research agenda.

Consistency
There is consistency within evidence categories among the
experimental data, human behavior studies, and lung cancer
epidemiology (with the exception of filter ventilation affecting
inhalation and smoke distribution). Numerous studies from the
tobacco industry and academia indicate that filter ventilation,
in spite of decreasing tar yields using standardized smoking
machine methods on a per-cigarette basis, increases the
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Table 1. Causation analysis for filter ventilation leading to lung adenocarcinomas

Criteria
Human smoking behavior: compensation (puff topography and/or biomarker studies), increased, inhalation, and

perception*

Consistency Compensation:þþþ Both clinical trials and cross-sectional studies demonstrate compensation, although
human biomarker studies using urine and blood assays indicate that circulating
exposures may not be increased

Inhalation: þ Available studies use methodologies that are not validated, and methodologies were
used differently across studies, precluding an assessment of consistency

Perception:þþþ Consumer perception studies indicate that the feelings of “lighter smoke” provide a
sense of health benefit

Dose response Compensation:þþþ Increasing filter ventilation increases compensatory response
Inhalation: IA Insufficient study of increasing ventilation on inhalation parameters
Perception:þþ Consumer perception studies indicate that the feelings of “lighter smoke” provide a

sense of health benefit, but assessing degree of response based on amount of
ventilation has received limited study

Timing of exposure Compensation:þþþ Filter ventilation precedes the effect in experimental and observational studies
Inhalation:þþþ Filter ventilation precedes the effect in experimental and observational studies
Perception:þþþ Filter ventilation precedes the effect in experimental and observational studies

Strength of association Compensation:þþ Degree of compensation commensurate with dose response
Inhalation: IA Inadequate study using methods that are not validated or consistent across studies
Perception:þþ Magnitude of effect less clear based on degree of filter ventilation

Specificity Compensation:þþ Filter ventilation causes compensation, but other cigarette design changes also may
cause compensation; filter ventilation is the principal way of reducing smoking
machine tar yields for conventional cigarettes

Inhalation: IA Inadequate study using methods that are not validated or consistent across studies
and, other factors that affect nicotine yields may affect inhalation

Perception:þþ “Lighter” smoke leads to false perceptions of health benefits, but other branding
could cause misperceptions

Biological plausibility Compensation:þþþ Reduction in nicotine yield by filter ventilation causes smokers to compensate their
puffing to address nicotine dependence

Inhalation:þþþ Reduction in nicotine yield by filter ventilation causes smokers to compensate their
inhalation to address nicotine dependence

Perception:þþþ “Lighter” smoke reduces sensory effects, leading to false perception of health benefit
Coherence Compensation:þþþ Experimental laboratory methods consistent with human studies (trials and cross-

sectional studies), although other methods to lower nicotine yields may also
affect compensation; human biomarker studies using urine and blood assays indi-
cate that circulating exposures may not be increased

Inhalation: IA Laboratory studies cannot assess this; inadequate study of filter ventilation for
experimental human and observational studies

Perception:þþþ Experimental human studies consistent with cross-sectional studies
Human interventions Compensation:þþþ Clinical trials demonstrate compensation

Inhalation: þ Inconsistent results for human clinical trials
Perception:þþþ Clinical trials (human laboratory studies) demonstrate the sensation of a “lighter”

smoke, leading to false perceptions of a health benefit
Analogy Compensation:þþþ Other methods to lower nicotine yields may affect compensation

Inhalation: IA There has been inadequate study of various cigarette designs that may affect
inhalation

Perception:þþþ Flavors and branding/marketing with claims for health benefits also lead to a false
perception of a health benefit

Increased lung adenocarcinoma risk and rates
Consistency þþ Numerous ecological and observational cohort studies are consistent for lower tar

yields, leading to increased lung adenocarcinoma, but the direct assessment of
filter ventilation on risk has not been done, nor is it feasible

Dose response þþ Lower tar yield cigarettes lead to increased risk and rates of lung adenocarcinomas,
but there has been insufficient study and consistency by levels of filter ventilation,
eg, risk across the full spectrum of tar and nicotine yields, including “ultralight”
cigarettes

Timing of exposure þþ Rise in adenocarcinomas coincident with use of filter ventilation, but latency sug-
gests that additional factors may contribute

Strength of association þþ Large rates and risk changes with use of cigarettes manufactured after the introduc-
tion of filter ventilation

Specificity þþ Other cigarette design changes such as increased nitrates and changes in tobacco
blend also likely contribute

(continued)
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Table 1. (continued)

Criteria
Human smoking behavior: compensation (puff topography and/or biomarker studies), increased, inhalation, and

perception*

Biological plausibility þþþ Changes in the way tobacco burns and smoke yields are consistent with the effects
on location and cell sensitivity for lung adenocarcinomas

Coherence þþ Experimental animal studies indicate that NNK causes lung adenocarcinomas; other
design changes increasing NNK could also cause increased lung adenocarcinoma
risk

Human interventions IA Not feasible to test
Analogy IA Nitrates and tobacco blends could alter NNK yields, which cannot be separately

tested from filter ventilation given that both design features changed
simultaneously

Experimental data: increased chemical yields including NNK, increased mutagenicity, change in particle size, and sensitivity to NNK for distal
lung cells

Consistency Smoke constituent
yields:þþþ

Multiple published and unpublished studies demonstrate the effect for increasing
chemical yields per mg/tar and per mg/nicotine, including TSNAs

Mutagenicity:þþþ Multiple published and unpublished studies demonstrate this adverse effect; tumor-
igenicity effects have not been studied

Particle size: þ Multiple studies indicate an effect on particle size, including increased water
content; how this affects smoke distribution in the lung is unclear

Distal airway lung sensi-
tivity: þ

Epidemiology studies show increased risks and rates for adenocarcinoma with
lowering tar yields over time, and adenocarcinomas occur more frequently in the
lung periphery, where experimental studies show that the lung cells are more
sensitive to NNK

Dose-response Smoke chemical
yields:þþþ

Numerous studies show that increasing levels of filter ventilation cause a dose-
response increase in chemical yields, including NNK, per mg of tar or nicotine

Mutagenicity:þþþ Numerous studies show increasing levels of filter ventilation cause a dose-response
increase in Ames mutagenicity

Particle size: þ Increased ventilation increases particle size and water content, although how this
affects lung distribution is unclear mechanistically

Distal airway lung
sensitivity: þ

This has not been directly studied, although there is a dose-response effect for NNK
and lung adenocarcinoma in experimental animal studies

Timing of exposure Smoke chemical
yields:þþþ

Laboratory experimental studies directly assess exposures leading to outcomes

Mutagenicity:þþþ Laboratory experimental studies directly assess exposures leading to outcomes
Particle size:þþþ Laboratory experimental studies directly assess exposures leading to outcomes
Distal airway lung

sensitivity:þþþ
Laboratory experimental studies directly assess exposures leading to outcomes

Strength of association Smoke chemical
yields:þþ

Increased chemical yields cannot be extrapolated to human risk

Mutagenicity:þþ Increased mutagenicity cannot be extrapolated to human risk
Particle size: IA There has been inadequate study for understanding the magnitude of effect on particle

size and smoke distribution, so that extrapolation to human risk is not possible
Distal airway lung

sensitivity: IA
There has been inadequate study for understanding the magnitude of effect on lung

cell sensitivity, so that extrapolation to human risk is not possible
Specificity Smoke chemical yields:

þ
Other cigarette design parameters affect smoke chemistries, and some chemical

constituents can be directly transferred from tobacco
Mutagenicity: þ Other cigarette design parameters affect Ames mutagenicity
Particle size:þþ Other cigarette design parameters affect particle size and lung distribution
Distal airway lung

sensitivity: IA
Other cigarette design parameters affect lung sensitivity, such as those that also

increase NNK
Biological plausibility Smoke chemical

yields:þþþ
Changes in the way the tobacco column is burned increase incomplete combustion

and burn time
Mutagenicity:þþþ Changes in the way the tobacco column is burned increase incomplete combustion

and burn time, affecting yields that increase mutagenicity
Particle size:þþþ Changes in the way the tobacco column is burned increase chemical constituents in

the particles and water content
Distal airway lung

sensitivity:þþþ
Peripheral lung cells in experimental animals metabolize NNK differently and have

related carcinogenic effects
Coherence Smoke chemical

yields:þþþ
Multiple experimental studies demonstrate the effect on how tobacco is burned and

increased per-nicotine yields of many constituents including NNK
Mutagenicity:þþþ Multiple experimental studies demonstrate the effect on how tobacco is burned and

increased levels of some constituents’ formation of chemicals that can increase
mutagenicity

(continued)
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generation of smoke toxicants, carcinogens, and mutagens on a
per-mg-of-tar-and-nicotine basis. Smoking behavior and expo-
sures are clearly affected by smoking machine nicotine yields,
such that smokers of low–nicotine yield cigarettes demonstrate
an increase in puffing behavior due to the elasticity of the ciga-
rette filter ventilation. This is borne out by both clinical trials
and cross-sectional studies (see Supplementary Tables 5 and 6,
available online). The effects of filter ventilation on depth of
smoke inhalation are less clear for consistency or show no
effect. However, the methodologies to assess depth of inhala-
tion and particle deposition are not well developed, largely rely
on methods that have not been validated, use statistical model-
ing that also is not validated, and do not consider gases and
inhaling more smoke. Studies of smoke particle distribution
consistently show increased size with ventilation (see

Supplementary Table 4, available online). It should be noted
that increased depth of inhalation may not be required to alter
regional distribution and adenocarcinoma risk because smokers
either way are increasing the amount of smoke inhaled into the
lungs because of larger puff volumes.

The research data indicating the shift from squamous cell can-
cers to adenocarcinomas have been replicated among studies, con-
current in time with lowering tar yields and the use of filter
ventilation. Other data indicate that lung cancer risk from smoking
more modern cigarettes has increased over time, by considering
birth cohorts of men separately from women. It is not possible to
directly assess the impact of cigarette design on lung cancer risk
because almost all cigarettes on the market simultaneously
decreased tar yields and increased filter ventilation, although, lim-
ited prospective data associate an increase in TSNA exposure with

Table 1. (continued)

Criteria
Human smoking behavior: compensation (puff topography and/or biomarker studies), increased, inhalation, and

perception*

Particle size: IA Other cigarette designs affecting particle size have not been adequately studied
Distal airway lung

sensitivity:þþþ
Multiple experimental studies indicate the metabolizing effects and the induction of

tumors by NNK
Human interventions Not applicable
Analogy Smoke chemical yields:

þ
Other design changes, such as filter efficiency, can affect chemical yields, but this

also is affected by filter ventilation
Mutagenicity: þ Other design changes, such as filter efficiency, can affect mutagenicity, but this also

is affected by filter ventilation
Particle size: IA Inadequate study
Distal airway lung sensi-

tivity: IA
Inadequate study

*Grading of evidence based on scientific judgment: no relationship (0), limited evidence (þ), strongly suggestive evidence (þþ), sufficient evidence (þþþ), or inadequate

study (IA). NNK ¼ 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; TSNAs ¼ tobacco-specific nitrosamines.
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adenocarcinomas. It is not possible at this time to assess lung can-
cer risk from the highest ventilated filters (“ultralights”) because
these were only introduced to the marketplace in the late 1990s, so
that there has not been enough latency to observe a change in risk,
and relatively few smokers smoke these cigarettes.

Dose Response
There is consistency among experimental studies for increasing
filter ventilation, resulting in increased toxicant yields and
mutagens. Increasing filter ventilation affects smoking behavior
and increases puff volumes, but the effects on inhalation are
less clear and not studied based on levels of ventilation. Human
studies of smoking behavior do not show increased biomarker
levels with lower-tar cigarettes, and some biomarkers may
decrease, but these do not assess regional lung exposure.
Temporal trends of decreasing tar yields and decreasing ciga-
rette smoking rates, concurrent with increasing risks based on
birth cohorts that progressively imitate the use of ventilated fil-
ter cigarettes, are consistent with a dose-response effect,
although studies directly assessing filter ventilation or risks by
tar yields are not available.

Biological Plausibility and Coherence
These two criteria are met given the full range of studies from the
laboratory to population-level surveillance, which provides impor-
tant scientific support, although there is some uncertainty relating
to human biomarker exposure studies. How filter ventilation
increases tobacco toxicant yield, mutagenicity, and particle size is
understood. The elasticity of filter ventilation allows for increasing
puffing behavior, allowing for more of the toxicants to enter the
lungs, which then exposes distal airway lung cells that are more
sensitive to NNK and the development of adenocarcinomas.
Coherence comes from experimental studies of specific
tobacco toxicants and animal tumorigenesis, as well as muta-
genicity and other cell culture studies. Human studies using
biomarkers of exposure showing similar levels of exposure for
smokers of cigarettes with different degrees of ventilation
present some uncertainty, and while these studies are consis-
tent with each other, they present an argument against coher-
ence. The human studies indicate, however, that there is no
difference rather than a beneficial effect. As noted above, the
human studies using urine and blood biomarkers may not
reflect exposures at the target organ level (ie the lung) where
lung adenocarcinomas occur, and they do not use validated
biomarkers of harm. Thus, this area is an important research
gap to address.

Specificity
While there is highly suggestive evidence to conclude that filter
ventilation has increased the rates of lung adenocarcinoma,
there are other potential causes. As noted in the 2014 SGR, in
addition to filter ventilation, there is suggestive evidence that
increased levels of TSNAs over time also could explain the
increased adenocarcinoma risks. However, one mechanism
does not preclude the other, and both may be contributing (232);
filter ventilation further increases NNK levels on a per-mg-of-
tar-and-nicotine basis. Higher levels of NNK and other TSNAs in
cigarette smoke can be driven by their increases in tobacco filler
as a result of changes in tobacco blend content (eg increasing
burley tobacco content), increase in nitrate content, and
changes in microbial contamination (16,1,46,231–236). While
most NNK yields in smoke happen as a direct transfer from
tobacco, additional amounts may also be formed during tobacco

burning, with nitrate-rich tobaccos potentially generating
higher levels of NNK (238). While filter ventilation influences
NNK levels less than changing tobacco leaf blends filter ventila-
tion also increases other toxicant exposures.

Other Criteria
Several other causation criteria are met, although the emphasis
of these is less, such as timing of exposure, where all the clinical
trials and experimental studies demonstrate effects after expo-
sure (or lack of effects); strength of association, which is
inferred in some cases because the totality of the data indicates
significant strength to cause a measurable change in adenocar-
cinoma rates and risks; and analogy, such as experimental ani-
mal studies using specific smoke constituents, such as NNK.

Discussion

This weight of evidence review and causation analysis strongly
suggests that the inclusion of ventilation in cigarette filters has
contributed to increased lung adenocarcinomas among smok-
ers. There are some uncertainty and research gaps as noted
below, including the potential lack of coherence between mech-
anistic smoking machine yields and human exposure bio-
marker studies (the machine studies indicate the potential for
increased exposure while the human studies indicate no differ-
ence). Thus, it should not be concluded that there is sufficient
evidence for causality, rather that this review leads to a conclu-
sion that the data is highly suggestive. Importantly, the weight
of evidence does not indicate a public health benefit for the
inclusion of filter ventilation. The smoke from cigarettes with
ventilated filters provides false perceptions to the smoker of
reduced harmfulness. Filter ventilation affects how the tobacco
burns, smoking behavior, and how the lung is exposed to carci-
nogens, so that it plausibly contributes to the increased adeno-
carcinomas by a cigarette that the smoker falsely believes is
less harmful. Epidemiologic data provide indirect evidence for
filter ventilation as a contributing factor to the increased lung
adenocarcinoma rates and risks.

The FDA has the regulatory authority to issue cigarette
“product standards” (Section 907(a))(4), regulating the
“construction,” “components,” or “properties” of tobacco prod-
ucts. To do this, the FDA must have evidence that a product
standard would be “appropriate for the protection of public
health.” Based on the findings from this weight-of-evidence
review, we would recommend that the FDA ask cigarette manu-
facturers to provide clear and convincing evidence that there is
a public health benefit gained by filter ventilation in filter
design and that the benefits outweigh any health risks. Absent
such clear and convincing evidence from any source, the FDA
should consider adopting a standard to prohibit filter ventila-
tion. Given that there are cigarettes with 0% ventilation already
on the market in the United States and elsewhere, the tobacco
industry can feasibly implement this change (72,238–240).

While there may be other cigarette design features that have
contributed to the risk of smoking and the rise of adenocarcino-
mas compared with squamous cell cancers (232), it is our belief,
based on the evidence reviewed herein, that filter ventilation
has contributed to at least some of the increased risk. It should
be noted that an FDA action regulating filter ventilation would
not imply that filter ventilation is the only or most important
cigarette design to impact lung cancer risk, and a filter ventila-
tion standard could be adopted alone or in conjunction with
other product standards, for example addressing NNK exposure

R
EV

IEW

12 of 18 | JNCI J Natl Cancer Inst, 2017, Vol. 109, No. 12



or other aspects of cigarette design that contribute to addiction
and disease risk. If the FDA prohibits filter ventilation, it may
issue complementary regulations that restrict other design
methods that reduce exposures, for example using higher
amounts of expanded tobaccos, decreasing rod length, using
tobacco strains and curing methods to reduce TSNA formation,
and using highly activated carbon filters, so long as the FDA has
concluded that these other regulations would not adversely
affect smoking behavior (16,242,243).

Using the SEER 9 database, we calculated the yearly age-
adjusted incidence rates for adenocarcinoma, squamous cell
carcinoma, and total lung cancer cases for men between 1975
and 2012. Using the CDC WONDER Population Projections
(http://wonder.cdc.gov/population.html), and we computed the
number of new adenocarcinomas and squamous cell cases in
the overall US male population for the years 2008 to 2012.
We found an excess of 32 400 adenocarcinoma cases when com-
pared with squamous cell carcinomas (data not shown). While
this may not be solely attributable to filter ventilation, this rep-
resents an adverse public health impact. Equally important,
there is no existing evidence that filter ventilation reduces lung
cancer risk or has any other beneficial health effect that would
argue against regulation.

There are important research gaps that have been identified,
including the reconciliation for coherence of human biomarker
studies showing no increased exposure for smokers using ciga-
rettes with higher degrees of ventilation and patterns of inhala-
tion and smoke distribution in the lung. These would need to be
addressed by lung biomarker studies, including biomarkers of
harm, for example, using bronchoscopy to collect biospecimens
as smokers switch from ventilated cigarettes to unventilated
cigarettes. Importantly, prior to the regulation of filter ventila-
tion, the FDA also will need to assess possible unintended
effects of regulating filter ventilation, including a ban, for exam-
ple increasing smoking initiation, delaying cessation due to per-
ceptions that these are safer cigarettes, and that these would
not likely outweigh the benefits. To date, there are no studies
on the impact of removing filter ventilation on smoking behav-
ior and perceptions, the addictiveness of unventilated ciga-
rettes, and the resultant exposures and toxicity. This and other
data gaps are indicated in Supplementary Table 3 (available
online). If ventilation were removed from cigarette filters, we
expect three possible results: 1) that toxic exposure will be
decreased because the cigarette delivery is no longer elastic,
limiting the ability of the smoker to compensate with larger
puff volumes; 2) the greater amount of nicotine in smoke will
result in the smoker decreasing the number of cigarettes per
day and less smoke will enter the lungs; and 3) some smokers
may quit smoking or transition to alternative nicotine delivery
systems such as electronic cigarettes or nicotine replacement
therapy because of the harshness of the cigarette smoke and
perceptions of a more harmful smoke. To assess this, a combi-
nation of human and experimental animal studies could be
conducted in the context of the conceptual framework for
tobacco product evaluation (244). For example, clinical trials
could assess smokers switching to filtered cigarettes without
ventilation and with different packaging and study smoking
topography, inhalation depth, and biomarkers of nicotine expo-
sure and smoke toxicants. Because no single biomarker is avail-
able that can be used alone to predict the reduction in harm
from smoking (ventilated vs nonventilated cigarettes), a panel
of biomarkers of exposure to carcinogens and lung toxicants,
markers of oxidative damage and inflammation should be
measured in lung, blood, or/and urine. The studies also should

assess smokers’ perceptions, appeal, and transition to alternate
products, for example electronic cigarettes and nicotine
replacement therapy (behavioral economics and abuse liability).
Studies would need to be done in ways to assess differing
effects by race and ethnicity, gender, age, and vulnerable popu-
lations to inform the potential population-level effects.
Experimental animal studies that allow for manipulations in
both adolescent and adult rodents would parallel the human
trials to provide evidence for the impact on smoking initiation.
Another research agenda item could focus on the impact of fil-
ter ventilation on the risk of other diseases (eg chronic obstruc-
tive pulmonary disease), given shared etiologies due to tobacco
toxicants. Such research would provide additional support for
an FDA regulatory action.

In conclusion, the use of ventilation in the filters of ciga-
rettes has failed to make cigarettes safer, and more than likely
has made them more harmful. There is no demonstrated public
health benefit, and smokers perceive these as less harmful,
which in turn encourages smoking and causes harm. The FDA
now has the authority to require the elimination of filter venti-
lation because ventilation does not serve any public health pur-
pose and instead provides a false promise of reduced risk. This
single action for banning filter ventilation by the FDA is scien-
tifically justified and within its mandate to improve the public
health. Based on these weight-of-evidence reviews, the FDA
should embark on a regulatory process of data evaluation and
consider regulation(s) for the use of ventilation in filters, up to
and including a ban on their use.
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