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Abstract. The present study aimed to analyze the differen-
tially expressed genes related to the tripartite motif containing 
58 (TRIM58)/cg26157385 methylation sites, and consequently 
to provide theoretical basis for elucidating the influence of 
TRIM58/cg26157385 methylation on lung cancer prognosis. 
Methylation‑sequencing information, mRNA expression 
profiling data and clinical data were downloaded from 
cBioPortal database to screen out candidate genes related to 
the methylation of TRIM58/cg26157385 in squamous cell 
lung carcinoma. The differentially expressed genes related 
to TRIM58 methylation were extracted form both training 
dataset and validation dataset. Cox regression analysis, risk 
scoring system construction, correlation analysis between 
the expression value of genes and clinical information were 
conducted to reveal TRIM58 methylation‑related factors. 
Additionally, GO function analysis and KEGG pathway 
enrichment analysis were performed. Based on their expression 
level and the corresponding survival information for 347 out 
of 370 samples with squamous cell lung carcinoma, 183 genes 
significantly associated with prognosis were gained, and the 
top 8 ones, including alpha‑2‑macroglobulin‑like 1 (A2ML1), 
cyclin‑E1 (CCNE1), COBL, establishment of sister chromatid 
cohesion N‑acetyltransferase 2 (ESCO2), G protein‑coupled 
receptor 115 (GPR115), matrix metalloproteinases 10 
(MMP10), OVO homologue‑like 1 (OVOL1) and secretoglobin 
family 1A member 1 (SCGB1A1), were candidate signature 
genes significantly correlated with TRIM58 methylation. 
Furthermore, targeted therapy was significantly correlated 
with prognosis. Functional enrichment analysis demonstrated 

that the proliferation and differentiation of epidermal cells in 
lung squamous cell carcinoma patients were abnormal and the 
homeostasis was disturbed. Eight genes, including A2ML1, 
CCNE1, COBL, ESCO2, GPR115, MMP10, OVOL1 and 
SCGB1A1, were significantly related to TRIM58 methylation 
and treatment of lung squamous cell carcinoma, and may be 
used as potential prognostic biomarkers. The present study 
would help to elucidate the influence of TRIM58/cg26157385 
methylation on lung cancer prognosis.

Introduction

Lung cancer is the most common cancer and the leading cause 
of cancer‑related deaths in both men and women in the USA 
and China, among which the proportion of squamous cell 
lung carcinoma was as high as 30‑40% (1,2). As a common 
type of lung cancer, the histological changes of squamous cell 
lung carcinoma have been basically identified, which mainly 
included the loss of cilia, squamous metaplasia, atypical hyper-
plasia and dysplasia induced by chronic stimulation, and injury 
of the bronchial mucosa columnar epithelium (3). Research on 
etiology and pathogenesis has confirmed that the occurrence 
and development of squamous cell lung cancer is a pathological 
process involving multiple genes and pathways. However, 
genomic alterations in squamous cell lung cancers have not 
been comprehensively characterized and no molecular‑targeted 
agents have been specifically developed for its treatment (4). 
Therefore, it is urgently needed to elucidate the mechanisms 
underlying the occurrence and development of squamous cell 
lung cancer and develop new therapeutic targets.

Among numerous tumor pathogenesis, methylation 
of the functional genes has attracted the interest of many 
researchers. Aberrant promoter island methylation of tumor 
suppressor genes, including overall low level methylation and 
hyper‑methylation in some local regions, has been established 
as a common epigenetic mechanism underlying the patho-
genesis of human cancers (5‑7). The tripartite motif (TRIM) 
proteins are a family of proteins with conserved structure, 
rapid evolution and E3 ubiquitin ligase activities. TRIM is 
involved in a broad range of cellular processes and diseases, 
including innate immunity, development process, genetic 
diseases and cancer (8). Thus far, more than 60 members of the 
TRIM family proteins have been found in humans (9), among 
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which, the tripartite motif containing 58 (TRIM58) was iden-
tified as a candidate tumor suppressor and a novel methylated 
gene (7,10). TRIM58 has been reported to regulate terminal 
erythroid cell cycles and enucleation (11), and the overexpres-
sion of TRIM58 has been associated with the prognosis of 
early lung cancer (12). Furthermore, aberrant inactivation of 
TRIM58 consequent to CpG island hyper‑methylation may 
stimulate early carcinogenesis of lung adenocarcinoma (7). 
However, further functional research and verification on the 
association between TRIM58 and the prognosis of lung cancer 
are still needed.

In the present study to elucidate the inf luence of 
TRIM58/cg26157385 methylation on lung cancer prognosis, 
we used the large quantities of mRNA‑Seq data in lung 
squamous cell carcinoma patients published in cBioPortal 
database (http://www.cbioportal.org/), to screen out candidate 
genes related to the methylation of TRIM58/cg26157385, and 
construct a prognostic discrimination system based on these 
genes. The reliability of the prognostic discrimination system 
was further validated in an independent dataset.

Materials and methods

Data analysis. The data analysis flow of the present study is 
briefly summarized in Fig. 1.

Collection and pretreatment of collected data. On February 22, 
2017, two sets of squamous cell lung carcinoma data were down-
loaded from cBioPortal database (http://www.cbioportal.org/). 
One dataset was selected as the training dataset, in which 
there were 370 squamous cell lung carcinoma samples with 
both methylation sequencing information (the platform was 
Illumina Methylation450) and mRNA expression profiling 
data (the platform was IlluminaHiSeq2000). The other dataset 
was selected as the validation dataset, including 178 squamous 
cell lung carcinoma samples with mRNA expression profiling 
data (the platform was IlluminaHiSeq2000). Furthermore, 
51 normal control samples were obtained from the cBioPortal 
database.

Clinical data
Information of samples in the training dataset. The 
370 patients with squamous cell lung carcinoma consisted 
of 267 males (74.17%) and 93 females (25.83%) with mean 
age of 67.71±8.65 years. There were 114 smokers (32.11%), 
13 non‑smokers (3.66%) and 228 cases (64.23%) who had quit 
smoking. The number of patients who received radiotherapy 
and those who had not received radiotherapy was 36 (11.92%) 
and 266 (88.08%), respectively. The number of patients who 
received targeted therapy and those who had not received 
targeted therapy was 93 (30.69%) and 210 (69.31%), respec-
tively, with a mean survival time of 26.99±28.92 months. A 
total of 135 patients died at the end of the follow‑up period, 
accounting for 33.24% of the total population.

Information of samples in the validation dataset. The 
178 patients with squamous cell lung carcinoma consisted 
of 133 males (74.72%) and 45 females (25.28%) with mean 
age of 67.86±8.25 years. There were 27 smokers (16.56%), 
4 non‑smokers (2.45%) and 132 cases (80.98%) who had quit 

smoking. The number of patients who received radiotherapy 
and those who had not received radiotherapy was 14 (12.5%) 
and 98 (87.5%), respectively. The number of patients who 
received targeted therapy and those who had not received 
targeted therapy was 35 (30.43%) and 80 (69.57%), respec-
tively, with mean survival time of 29.96±31.85 months. A 
total of 78 patients died at the end of the follow‑up period, 
accounting for 43.82% of the total population.

Information of normal control samples. The 51 patients in the 
normal control samples consisted of 35 males (68.63%) and 
16 females (31.37%) with mean age of 68.34±8.49 years. There 
were 13 smokers (25.49%), 34 cases (66.67%) who had quit 
smoking and 4 cases (7.84%) without any information. The 
number of patients who received radiotherapy, those who had 
not received radiotherapy and the patients without any informa-
tion was 3 (5.88%), 35 (68.63%) and 13 (25.49%), respectively. 
The number of patients who received targeted therapy, who 
had not received targeted therapy, and those without any 
information was 13 (25.49%), 25 (49.02%) and 13 (25.49%), 
respectively, with mean survival time of 23.93±27.97 months. 
A total of 27 subjects died at the end of the follow‑up period, 
accounting for 52.94% of the total population. The informa-
tion of samples in the training, validation and normal control 
dataset is listed in Table I.

Grouping of methylation samples. DNA methylation β‑values 
are continuous variables between 0 (completely unmethylated) 
and 1 (completely methylated), representing the ratio of the 
intensity of the methylated bead type to the combined locus 
intensity (13). The methylation data of TRIM58/cg26157385 
in each sample were included in the Illumina Methylation450 
platform, which consisted of two peaks, 0.1 and 0.9, 
corresponding to the low and high degree of methylation, 
respectively. As higher β‑values represent higher level of DNA 
methylation, we divided the samples into low‑methylation 
samples with β‑values of 0.1‑0.5 and high‑methylation samples 
with β‑values of 0.5‑0.9. Finally, 133 high‑methylation samples 
and 237 low‑methylation samples were obtained. Furthermore, 

Figure 1. Data analysis flow.
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there were significant differences of the β‑values between all 
the tumor samples and the normal control samples (Fig. 2).

Screening of differentially expressed genes. The mRNA 
expression profiling data corresponding to the high and 
low degrees of methylation samples in the training dataset 
were analyzed for the differentially expressed genes using 
the limma and multtest package (http://bioconductor.
org/packages/release/bioc/html/multtest.html) in R language 
version 3.0.1 (14). FDR value <0.05 and fold change value >1.5 
were selected as threshold.

Screening of genes significantly related to prognosis and 
calculation of risk score. There were corresponding survival 
information for 347 out of 370 samples with squamous cell lung 
carcinoma. Screening of genes significantly related to prognosis 
was performed using Cox regression analysis and the significant 
P‑value and the prognostic correlation coefficient β‑value were 
calculated using the log‑rank test. According to the prognostic 
correlation coefficient β‑value and the expression value of the 
gene, the risk score computing model was defined as follows:

The prognostic correlation coefficient β‑value was indi-
cated by β and the expression value of the gene was indicated 
by expr. The corresponding risk score value of each sample 
was calculated and the samples were divided into the high‑risk 
and the low‑risk group according to the risk score median 
which was set as the boundary (15‑17).

Correlation analysis of the risk score with the clinical 
features. Correlation analysis of the risk score with the 
clinical features, including age (≥60 and <60), sex (male and 
female), radiotherapy (yes or no), targeted therapy (yes or no) 
were performed using the univariate and multivariable Cox 
regression analyses for survival package. The screened clinical 
features significantly associated with prognosis were analyzed 
using the Kaplan‑Meier survival curve.

Verification of the risk scoring system. The expression values of 
signature genes were first extracted from the validation dataset. 
The corresponding risk score values of each sample were also 

calculated according to the expression value of each gene and 
the samples were divided into the high‑risk group and the 
low‑risk group using the risk score median as boundary. The 
relationship between the high‑risk and the low‑risk samples and 
the clinical features were verified using the risk scoring system.

GO analysis and pathway enrichment. The biological process 
and KEGG pathway enrichment analysis of the selected prog-
nostic genes were performed using the Fisher algorithm using 
the clusterProfiler package in R language (18). The specific 
algorithm is as follows:

N represents the total number of genes in the genome, M 
represents the number of genes in the pathway and K indicates 
the number of differentially expressed genes. The Fisher's 

Figure 2. β‑value comparison between the tumor samples and the normal 
control samples.

Table I. Clinical information of the patients in the training and the validation datasets.

	 Training dataset	 Validation dataset	 Normal control dataset

Sample count	 370	 178	 51
Sex (Male/female)	 267/93	 133/45	 35/16
Age (mean ± SD)	 67.71±8.65	 67.86±8.25	 68.34±8.49
Smoking status (Yes/reform/no/NA)	 114/228/13/15	 27/132/4/15	 13/34/0/4
Radiotherapy (Yes/no/NA)	 36/266/68	 14/98/66	 3/35/13
Targeted‑therapy (Yes/no/NA)	 93/210/67	 35/80/63	 13/25/13
Death (Yes/no)	 135/235	 78/100	 27/24
Overall survival months (mean ± SD)	 26.99±28.92	 29.96±31.85	 23.93±27.97

Reform means the patients had quit smoking. NA, data unavailable.
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score indicates the ratio of genes (number X) belonging to the 
functional pathway out of the total differentially expressed 
genes (number K).

Results

Detection and validation of eight prognostic genes associated 
with TRIM58/cg26157385 methylation. Except the death 
numbers and the overall survival months, there were no 
significant differences among the clinical features between 
the samples in the training set and the samples in the normal 
controls (Table  II). Compared with the 51 samples in the 
normal group, there were 527 and 449 significantly different 
expression genes in the 133 high‑methylation samples 
and 237  low‑methylation samples, respectively. A total of 
629  significantly differentially expressed genes related to 
TRIM58 methylation were screened.

Based on the expression level of these 629 genes and the 
corresponding survival information of the tumor samples, 
183 genes significantly associated with prognosis (P<0.05) 
were screened using the Cox regression analysis. Eight genes 
with P‑value >10‑5 were selected as candidate signature genes, 
including alpha‑2‑macroglobulin‑like 1 (A2ML1), cyclin‑E1 
(CCNE1), COBL, establishment of sister chromatid cohesion 
N‑acetyltransferase 2 (ESCO2), G protein‑coupled receptor 
115 (GPR115), matrix metalloproteinases 10 (MMP10), OVO 
homologue‑like 1 (OVOL1) and secretoglobin family 1A 
member 1 (SCGB1A1).

According to the prognostic correlation coefficient β‑value 
(Table III) and the expression value of genes in each sample, 
the corresponding risk score of each sample was calculated as 
follows:

The samples in the training dataset were divided into the 
high‑risk group and the low‑risk group according to the risk 
score, and the screened clinical features significantly associated 
with prognosis were analyzed using the Kaplan‑Meier survival 
curve (Fig. 3A). The results indicated that the risk scoring 
system successfully classified different samples with different 
prognosis (P=0.0218).

Among the 178 samples in the validation dataset, 168 
had survival information. The overall survival analysis result 
was similar to the result of the training dataset (P=0.0424) 
(Fig. 3B).

In the training dataset, the median overall survival time 
of the high‑risk group and the low‑risk group was 450 and 
608  days, respectively, and in the validation dataset, the 
median overall survival time of the high‑risk group and the 
low‑risk group were 460 and 665 days, respectively.

Clinical and molecular characteristics of patients with high 
and low risk of lung squamous cell carcinoma driven by 
TRIM58 methylation. The expression values of eight signature 
genes in different sets of the training dataset are displayed in 
Fig. 4. Risk score, overall survival days, expression value of 

eight signature genes and clinical information of the corre-
sponding samples in the training dataset and validation dataset 
are displayed in Fig. 5.

Eight significant expression factors associated with treat-
ment. As displayed in Table IV, the results of single factor 
Cox regression demonstrated that radiotherapy, targeted 
therapy and risk score were significantly related to prognosis 
and the results of further multivariate Cox regression analysis 
indicated that targeted therapy and risk score were signifi-
cantly correlated with the prognosis of lung squamous cell 
carcinoma.

Further survival analysis of two clinical features, targeted 
therapy and risk score, were performed in the training 
dataset. As displayed in Fig. 6A-a, the survival rate of high 
risk‑targeted therapy group was significantly lower than 
the unmethylated samples, while that of low‑risk‑targeted 
therapy group was significantly higher than the unmethylated 
samples. No similar results were observed in the non‑therapy 
group (Fig. 6A-b), which further confirmed the relationship 
between the targeted therapy and prognosis. Based on the 
results in the training dataset, the data of the targeted‑therapy 
group corresponding to the validation dataset were collected 
and the correlation between the clinical information in the 
high‑risk and the low‑risk group was verified by the results 
of the survival rate. As displayed in Fig. 6B-a, the results 
were consistent with the training set, and the survival rate of 

Table III. The P‑value and the β‑value of signature genes.

Gene	 P‑value	 β‑value

A2ML1	 9.56E‑08	 0.659
COBL	 2.30E‑07	 0.823
OVOL1	 2.49E‑07	 1.355
CCNE1	 1.49E‑06	 1.502
MMP10	 2.02E‑06	 0.442
SCGB1A1	 7.20E‑06	 0.411
ESCO2	 7.44E‑06	‑ 2.815
GPR115	 7.93E‑06	‑ 0.941

Table II. Comparison of the clinical features between samples 
in the training dataset and samples in the normal control.

	 P‑value

Sex	 0.9843a

Age (years)	 0.6335b

Smoking status	 0.301b

Radiotherapy 	 0.5961b

Targeted‑therapy 	 0.7108b

Death	 0.0163b

Overall survival months 	 0.0489a

aChi‑square test; bT‑test.
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Figure 3. Kaplan‑Meier survival curve of high‑risk and low risk group samples. (A) The curve in the training dataset. (B) The curve in the validation dataset. 
The red curve and the black curve indicate the survival curve of patients in the high‑risk group and the low‑risk group, respectively. P=0.0218, indicated that 
the P‑value of the log‑rank test was significant.

Figure 4. The expression values of 8 signature genes in different comparing sets. (A) High‑methylation group compared to the normal group. (B) Low‑risk 
group compared to the high‑risk group. 
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Figure 5. Clinical and molecular characteristics of patients with high and low risk of lung squamous cell carcinoma driven by TRIM58 methylation in (A) the 
training set and (B) the validation set. (A-a and B-a) Risk score. (A-b and B-b) Overall survival days. (A-c and B-c) Expression value of 8 signature genes. 
(A-d and B-d) Clinical information of the corresponding samples.

Table IV. Univariate and multivariate cox regression analysis of prognosis between samples and clinical information in the 
training dataset.

	 Univariate cox	 Multivariable cox
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Variables	 P‑value	 HR (95% CI)	 P‑value	 HR (95% CI)

Age (years)	 0.519	 1.41 (0.49‑2.06)		
Sex	 0.703	 1.19 (0.48‑2.91)		
EGFR mutation	 0.934	 0.921 (0.722‑1.006)		
Radiotherapy	 0.0049	 0.67 (0.22‑2.05)	 0.0739	 0.605 (0.412‑0.72)
Targeted‑therapy	 0.0188	 1.06 (0.47‑2.42)	 0.0341	 0.871 (0.388‑0.957)
Risk score	 0.0393	 1.105 (1.005‑1.22)	 0.0121	 1.122 (1.026‑1.228)

HR, hazard ratio; CI, confidence interval.
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the high‑risk group was significantly lower than that of the 
low‑risk group.

Functional enrichment analysis of genes associated with 
different prognosis. Totally, 181 differentially expressed genes 
between the high‑risk group and the low‑risk group in the 
training dataset were obtained with an FDR value of <0.05. 
The hierarchical clustering chart analysis was performed 

based on gene expression level (Fig. 7). GO function and 
KEGG pathway enrichment analysis of these genes were 
performed, (Fig. 8). Upregulated genes were mainly related to 
the functions of epithelial cell development, differentiation and 
keratinization, respiratory system development and immune 
response, while downregulated genes were mainly related 
to inorganic anion transport, (cellular) ion homeostasis and 
(cellular) chemical homeostasis. A total of 13 pathways were 

Figure 7. The hierarchical clustering chart of genes with significantly different expression level between the high‑ and the low‑risk group in the training dataset.

Figure 6. Kaplan‑Meier (KM) survival curve of targeted therapy and risk score in the samples of the (A) training dataset and (B) validation dataset. 
(A-a and B-a) KM curves of targeted‑treatment samples; (A-b and B-b) KM curves of non‑targeted‑treatment samples. (A-c and B-c) KM curves of both 
treated and untreated samples. H‑Target‑therapy, high‑risk and target‑treated samples (red curve); L‑Target‑therapy, low risk and target‑treated samples (black 
curve) unmethylated, low methylation sample (green curve); H‑Non‑therapy, high risk and without target‑treatment samples (blue curve); L‑Non‑therapy, high 
risk and without target‑treatment samples (purple curve).
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Figure 8. Functional enrichment analysis of genes associated with different prognosis. (A) Significant GO functions of genes with significantly upregulated 
expression. (B) Significant GO function analysis of genes with significantly downregulated expression. (C) KEGG pathway analysis of genes associated with 
different prognosis.
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enriched, such as drug metabolism, metabolism of xenobiotics 
by cytochrome P450, retinol metabolism and complement and 
coagulation cascades.

Discussion

Aberrant promoter island methylation of tumor suppressor 
genes has been established as a common epigenetic mecha-
nism underlying the pathogenesis of human cancers, and may 
be used as diagnostic marker for tumorigenesis (5‑7). In the 
present study, we tried to use the large quantities of mRNA‑Seq 
data in lung squamous cell carcinoma patients published in 
cBioPortal database (http://cbioportal.org) to screen out candi-
date genes related to the methylation of TRIM58/cg26157385. 
Compared with the other large‑scale cancer genomic proj-
ects, such as The Cancer Genome Atlas (TCGA) and the 
International Cancer Genome Consortium (ICGC) (19,20), 
the cBioPortal for Cancer Genomics was specifically designed 
to lower the barriers of access to the complex datasets and 
thereby accelerate the translation of genomic data into new 
biological insights, therapies and clinical trials (20,21). Based 
on the genomic data types integrated by cBioPortal, which 
include somatic mutations, DNA copy‑number alterations, 
mRNA and microRNA expression, DNA methylation, protein 
abundance and phosphoprotein abundance, users achieved 
the exploration of multidimensional cancer genomic data 
and biological pathway, survival analysis, analysis of mutual 
exclusivity between genomic alterations, selective data down-
load, programmatic access and publication‑quality summary 
visualization (20). The present study was performed using 370 
squamous cell lung carcinoma samples in the training dataset 
with methylation sequencing information and mRNA expres-
sion profiling data, and 178 squamous cell lung carcinoma 
samples in the validation dataset with mRNA expression 
profiling data. According to the DNA methylation β‑values 
of TRIM58/cg26157385, the 370 samples in the training 
dataset were divided into 133 high‑methylation samples and 
237 low‑methylation samples.

Significantly different expression genes, especially 
markedly upregulated or downregulated ones, often help 
reveal the mechanisms of various biological progresses 
and are usually preferred potential candidate genes for 
researchers to study. In the present study, 527 and 449 
significantly different expression genes were gained in the 
high‑methylation samples and low‑methylation samples, 
respectively, and 629 significantly differentially expressed 
genes related to TRIM58 methylation were gained after the 
extraction of intersection between the two sets of differen-
tially expressed genes. As a candidate tumor suppressor and 
a novel methylated gene (7,10,12), aberrant inactivation of 
TRIM58 consequent to CpG island hyper‑methylation may 
stimulate the early carcinogenesis of lung adenocarcinoma, 
and furthermore, TRIM58 methylation may be a possible 
early diagnostic and epigenetic therapeutic target in lung 
adenocarcinoma  (7). Therefore, the association between 
the significantly differentially expressed genes related to 
TRIM58 methylation and lung cancer should be documented 
by combining with clinical information. After integration 
with the corresponding survival information for 347 out 
of 370 samples with squamous cell lung carcinoma, a total 

of 183 genes significantly associated with prognosis were 
gained using the Cox regression analysis of the survival 
package, and eight genes including A2ML1, GPR115, 
MMP10, CCNE1, ESCO2, COBL, OVOL1 and SCGB1A1 
were selected as candidate signature genes.

The eight candidate signature genes were divided into 
four groups. The first group included three genes encoding 
enzyme and protease inhibitors, including MMP10, GPR115 
and A2ML1. MMPs, a group of enzymes that are collectively 
capable of cleaving all components of the extracellular matrix, 
are involved in the epithelial migration, neoangiogenesis, 
matrix degradation and formation, among which, MMP10 
was potential oral cancer marker  (22‑24). GPR115 is a 
member of the adhesion G protein‑coupled receptors (GPCR) 
family, which are membrane‑bound receptors with long 
N‑terminus, and several adhesion GPCRs are known to 
have important physiological functions in CNS development 
and immune system response mediated by large cell surface 
ligands, however, there has not been discovered a function for 
GPR115 (25). A2ML1 is a kind of protease inhibitor belonging 
to the alpha‑macroglobulin superfamily and displays a unique 
trap mechanism of inhibition, by which the A2M inhibitor 
undergoes a major conformational change upon its cleavage 
by a protease, thereby trapping the protease and blocking 
it from subsequent substrate binding  (26,27). The second 
group included two genes, CNE1 and ESCO2, related to 
gene amplification. Gene amplification represents one of the 
molecular genetic hallmarks of human cancer and elucidating 
the molecular mechanisms of how amplified genes initiate and 
maintain malignant phenotypes and drive tumor progression 
was fundamental for understanding the molecular etiology of 
human cancer and its therapeutic implications (28). CCNE1 is 
the most frequent amplified gene in ovarian serous carcinomas 
and its gene amplification is related to poor survival and 
potential therapeutic target in ovarian cancer, and therefore, 
CCNE1‑targeted therapy may benefit ovarian cancer patients 
with CCNE1 amplification  (28,29). ESCO2 gene encoded 
a protein which may have acetyltransferase activity and be 
required for the establishment of sister chromatid cohesion 
during the S phase of the cell cycle, and furthermore, it may 
function in transcription repression through modulation of the 
chromatin structure (30). Transcriptional control plays a key 
role in regulating epidermal proliferation and differentiation, 
and several transcription factors are known to regulate the 
balance between the mesenchymal to epithelial transition and 
the opposite program, such as COBL and OVOL1 in the third 
group (31‑34). COBL is a WH2 domain‑based actin nucleator, 
which has been demonstrated to play a critical role in dendrite 
formation and dendritic arborisation, and its spatial control is 
indispensable for proper establishment and plasticity of cell 
morphology (31,34). OVOL1, encoding a zinc finger protein 
homologous to Drosophila melanogaster Ovo, is expressed 
in embryonic epidermal progenitor cells that are transiting 
from proliferation to terminal differentiation and regulates 
the growth arrest of embryonic epidermal progenitor cells and 
suppresses c‑myc transcription (32,33). There was one gene 
in the last group, SCGB1A1, an anti‑inflammatory protein 
predominantly expressed by Clara cells in the lung, and a 
certain number of results indicated that low SCGB1A1 level 
may play a key role in the pathophysiology of asthma (35,36). 
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As MMP10, CNE1, ESCO2, COBL and OVOL1 had been 
reported to be related to cancer and other human lung 
diseases, we had reason to believe that the 8 candidate genes 
identified in the present study may be potential factors related 
to squamous cell lung carcinoma. Further validation of these 
8 prognostic genes associated with TRIM58 methylation were 
performed using risk score, clinical and molecular charac-
teristics of patients in the training dataset. The reliability of 
the prognostic discrimination system was further validated in 
an independent dataset. The present study provided potential 
diagnosis markers for the clinical diagnosis of lung squa-
mous cell carcinoma and was helpful to explore the possible 
pathogenesis of lung squamous cell carcinoma.

Functional annotations of the significantly different expres-
sion genes according to GO and KEGG databases would 
provide ample numbers of candidate genes and more informa-
tion about the pathogenesis of lung squamous cell carcinoma. 
In the present study, upregulated genes were mainly related to 
epithelial cell development, differentiation and keratinization, 
respiratory system development and immune response, while 
downregulated genes were mainly related to inorganic anion 
transport, (cellular) ion homeostasis and (cellular) chemical 
homeostasis. This indicated that the proliferation and differ-
entiation of epidermal cells in lung squamous cell carcinoma 
patients were abnormal and the homeostasis was disturbed, 
and these findings were consistent with the histological 
changes of squamous cell lung carcinoma (32,33). Further 
KEGG pathway analysis demonstrated that these genes were 
mainly involved in 13 KEGG pathways. The expression alter-
nation of genes involved in 8 metabolism related pathways in 
the present study again indicated the abnormal metabolism in 
lung squamous cell carcinoma patients, and this may give a 
clue for further clarifying the pathogenesis of lung squamous 
cell carcinoma.

It should be noted that the present study is an extensive 
bioinformatic study based on published data. The results of 
these studies should also be further validated in in vitro or 
in vivo models. We hope that these useful results will help 
other researchers perform relevant studies.

In conclusion, our data provided a comprehensive bioinfor-
matic analysis of A2ML1, CCNE1, COBL, ESCO2, GPR115, 
MMP10, OVOL1 and SCGB1A1 as well as their corresponding 
pathways which may be involved in lung squamous cell carci-
noma using two independent datasets. The results indicated 
that all of them were significantly related to the methylation 
of TRIM58/cg26157385 and treatment of lung squamous cell 
carcinoma. Therefore, these genes may be used as potential 
diagnostic markers and the present study would be helpful to 
elucidate the influence of TRIM58/cg26157385 methylation on 
lung cancer prognosis.
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