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Deep reinforcement learning for de novo drug design
Mariya Popova1,2,3, Olexandr Isayev1*, Alexander Tropsha1*

We have devised and implemented a novel computational strategy for de novo design of molecules with
desired properties termed ReLeaSE (Reinforcement Learning for Structural Evolution). On the basis of deep
and reinforcement learning (RL) approaches, ReLeaSE integrates two deep neural networks—generative and
predictive—that are trained separately but are used jointly to generate novel targeted chemical libraries.
ReLeaSE uses simple representation of molecules by their simplified molecular-input line-entry system (SMILES)
strings only. Generative models are trained with a stack-augmented memory network to produce chemically
feasible SMILES strings, and predictive models are derived to forecast the desired properties of the de novo–
generated compounds. In the first phase of the method, generative and predictive models are trained separately
with a supervised learning algorithm. In the second phase, both models are trained jointly with the RL approach to
bias the generation of new chemical structures toward those with the desired physical and/or biological properties.
In the proof-of-concept study, we have used the ReLeaSE method to design chemical libraries with a bias toward
structural complexity or toward compounds with maximal, minimal, or specific range of physical properties, such
as melting point or hydrophobicity, or toward compounds with inhibitory activity against Janus protein kinase 2.
The approach proposed herein can find a general use for generating targeted chemical libraries of novel
compounds optimized for either a single desired property or multiple properties.
INTRODUCTION
The combination of big data and artificial intelligence (AI) was referred
to by theWorld Economic Forum as the fourth industrial revolution
that can radically transform the practice of scientific discovery (1).
AI is revolutionizing medicine (2) including radiology, pathology,
and other medical specialties (3). Deep learning (DL) technologies
are beginning to find applications in drug discovery (4, 5) including
areas of molecular docking (6), transcriptomics (7), reaction mecha-
nism elucidation (8), and molecular energy prediction (9, 10).

The crucial step in many new drug discovery projects is the for-
mulation of a well-motivated hypothesis for new lead compound
generation (de novo design) or compound selection from available
or synthetically feasible chemical libraries based on the available
structure-activity relationship (SAR) data. The design hypotheses are
often biased toward preferred chemistry (11) or driven by model inter-
pretation (12). Automated approaches for designing compounds with
the desired properties de novo have become an active field of research in
the last 15 years (13–15). The diversity of synthetically feasible
chemicals that can be considered as potential drug-like molecules was
estimated to be between 1030 and 1060 (16). Great advances in compu-
tational algorithms (17, 18), hardware, and high-throughput screening
technologies (19) notwithstanding, the size of this virtual library prohi-
bits its exhaustive sampling and testing by systematic construction and
evaluation of each individual compound. Local optimization approaches
have been proposed, but they do not ensure the optimal solution, as the
design process converges on a local or “practical” optimum by stochastic
sampling or restricts the search to a defined section of chemical space
that can be screened exhaustively (13, 20, 21).

Notably, a method for exploring chemical space based on contin-
uous encodings of molecules was proposed recently (22). It allows
efficient, directed gradient-based search through chemical space but
does not involve biasing libraries toward special physical or biological
properties. Another very recent approach for generating focusedmolec-
ular librarieswith the desired bioactivity using recurrent neural networks
(RNNs) was proposed as well (23); however, properties of produced
molecules could not be controlled well. An adversarial autoencoder was
proposed (24) as a tool for generating new molecules with the desired
properties; however, compounds of interest are selected by means of
virtual screening of large libraries, not by designing novel molecules.
Specifically, points from the latent space of chemical descriptors are
projected to the nearest known molecule in the screening database,
which are regarded as hit compounds.

Herein, we propose a novel method for generating chemical
compounds with desired physical, chemical, and/or bioactivity proper-
ties de novo that is based on deep reinforcement learning (RL). RL is
a subfield of AI, which is used to solve dynamic decision problems. It
involves the analysis of possible actions and estimation of the statistical
relationship between the actions and their possible outcomes, followed
by the determination of a treatment regime that attempts to find the
most desirable outcome. The integration of RL and neural networks
dates back to the 1990s (25). However, with the recent advancement
of DL, benefiting from big data, new powerful algorithmic approaches
are emerging. There is a current renaissance of RL (26), especially
when it is combined with deep neural networks, that is, deep RL. Most
recently, RL was used to achieve superhuman performance in the game
Go (27), which was considered an impossible task given the theoretical
complexity of more than 10140 possible solutions (28). One may see an
analogy with the complexity of chemical space exploration with an
algorithm that avoids brute-force computing to examine every possi-
ble solution. Below, we describe the application of deep RL to the pro-
blem of designing chemical libraries with the desired properties and
show that our approach termed ReLeaSE (Reinforcement Learning
for Structural Evolution) affords a plausible solution to this problem.

The proposed ReLeaSE approach alleviates the deficiency of a
small group of methodologically similar approaches discussed above.
The most distinct innovative aspects of the approach proposed herein
include the simple representation of molecules by their simplified
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molecular-input line-entry system (SMILES) strings only for both
generative and predictive phases of the method and integration of
these phases into a single workflow that includes a RL module. We
demonstrate that ReLeaSE enables the design of chemical libraries with
the desired physicochemical and biological properties. Below, we discuss
both the algorithm and its proof-of-concept applications to designing
targeted chemical libraries.
Þ

RESULTS
The general workflow for the ReLeaSE method (Fig. 1) includes two
deep neural networks [generative (G) and predictive (P)]. The process
of training consists of two stages. During the first stage, both models
are trained separately with supervised learning algorithms, and during
the second stage, the models are trained jointly with an RL approach
that optimizes target properties. In this system, the generative model
is used to produce novel chemically feasible molecules, that is, it
plays a role of an agent, whereas the predictive model (that predicts
the properties of novel compounds) plays the role of a critic, which
estimates the agent’s behavior by assigning a numerical reward (or
penalty) to every generated molecule. The reward is a function of the
numerical property generated by the predictive model, and the gener-
ative model is trained to maximize the expected reward.

RL formulation as applied to chemical library design
Both generative (G) and predictive (P) models are combined into a
single RL system. The set of actionsA is defined as an alphabet, that
is, the entire collection of letters and symbols is used to define ca-
nonical SMILES strings that are most commonly used to encode
chemical structures. For example, an aspirin molecule is encoded as
[CC(O)OC1CCCCC1C(O)O]. The set of states S is defined as all pos-
sible strings in the alphabet with lengths from zero to some value T.
The state s0 with length 0 is unique and considered the initial state.
The state sT of length T is called the terminal state, as it causes
training to end. The subset of terminal states S* = {sT ∈ S} of S that
contains all states sT with length T is called the terminal states set.
Reward r(sT) is calculated at the end of the training cycle when the
terminal state is reached. Intermediate rewards r(st), t < T are equal to
zero. In these terms, the generative networkG can be treated as a policy
approximation model. At each time step t, 0 < t < T, G takes the pre-
vious state st − 1 as an input and estimates the probability distribution
p(at | st − 1) of the next action. Afterward, the next action at is sampled
from this estimated probability. Reward r(sT) is a function of the pre-
dicted property of sT using the predictive model P

rðsTÞ ¼ f ðPðsTÞÞ ð1Þ

where f is chosen depending on the task. Some examples of the
functions f are provided in the computational experiment section. Giv-
en these notations and assumptions, the problem of generating chem-
ical compounds with desired properties can be formulated as a task of
finding a vector of parametersQ of policy networkG, whichmaximizes
the expected reward

JðQÞ ¼ E½rðsTÞjs0;Q� ¼ ∑
sT∈S*

pQðsTÞrðsTÞ→max ð2Þ

This sum iterates over the set S* of terminal states. In our case, this set is
exponential, and the sum cannot be computed exactly. According to the
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law of large numbers, we can approximate this sum as a mathematical
expectation by sampling terminal sequences from themodel distribution

JðQÞ ¼ E½rðsTÞjs0;Q�
¼ Ea1epQða1js0ÞEa2epQða2js1Þ…EaTepQðaT jsT�1ÞrðsTÞ ð3Þ

To estimate J(Q), we sequentially sample at from the model G for
t from 0 toT. The unbiased estimation for J(Q) is the sum of all rewards
in every time step, which, in our case, equals the reward for the terminal
state as we assume that intermediate rewards are equal to 0. This quan-
tity needs to be maximized; therefore, we need to compute its gradient.
This can be done, for example, with the REINFORCE algorithm (29)
that uses the approximation of mathematical expectation as a sum,
which we provided in Eq. 3 and the following form

∂Qf ðQÞ ¼ f ðQÞ ∂Qf ðQÞ
∂Q

¼ f ðQÞ∂Qlog f ðQÞ ð4Þ

Therefore, the gradient of J(Q) can be written down as

∂QJðQÞ ¼ ∑
sT∈S*

∂QpQðsTÞ
� �

rðsTÞ ¼ ∑
sT∈S*

pQðsTÞ ∂Qlog pQðsTÞ
� �

rðsTÞ

¼ ∑
sT∈S�

pQðsTÞ ∑
T

t¼1
∂Qlog pQðat jst�1Þ

" #
rðsTÞ

¼ Ea1epQða1js0ÞEa2epQða2js1Þ…EaTepQðaT jsT�1Þ ∑
T

t¼1
∂Qlog pQðat jst�1Þ

" #
rðsT

ð5Þ

which gives an algorithm ∂QJ(Q) estimation.

Neural network architectures
Model G (Fig. 1A) is a generative RNN, which outputs molecules in
SMILES notation. We use a special type of stack-augmented RNN
(Stack-RNN) (30) that has found success in inferring algorithmic pat-
terns. In our implementation, we consider legitimate (that is, corre-
sponding to chemically feasible molecules) SMILES strings as sentences
composed of characters used in SMILES notation. The objective of
Stack-RNN then is to learn hidden rules of forming sequences of
letters that correspond to legitimate SMILES strings.

To generate a valid SMILES string, in addition to correct valence for
all atoms, one must count ring opening and closure, as well as bracket
sequences with several bracket types. Regular RNNs such as long
short-term memory (LSTM) (31) and gated recurrent unit (GRU) (32)
are unable to solve the sequence prediction problems because of their
inability to count. One of the classical examples of sequences that can-
not be properly modeled by regular RNNs are words from the Dyck
language, where all open square brackets are matched with the respec-
tive closed ones (33). Formal language theory states that context-free
languages, such as the Dyck language, cannot be generated by model
without stack memory (34). As a valid SMILES string should at least
be a sequence of all properly matched parentheses with multiple types
of brackets, RNNs with an additional memory stack present a theo-
retically justified choice for modeling SMILES. Another weakness of
regular RNNs is their inability to capture long-term dependencies,
which leads to difficulties in generalizing to longer sequences (35). All
of these features are required to learn the language of the SMILES
2 of 14
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Fig. 1. The workflow of deep RL algorithm for generating new SMILES strings of compounds with the desired properties. (A) Training step of the generative
Stack-RNN. (B) Generator step of the generative Stack-RNN. During training, the input token is a character in the currently processed SMILES string from the training set.
The model outputs the probability vector pQ(at|st − 1) of the next character given a prefix. Vector of parameters Q is optimized by cross-entropy loss function minimization. In
the generator regime, the input token is a previously generated character. Next, character at is sampled randomly from the distribution pQ(at| st − 1). (C) General pipeline
of RL system for novel compound generation. (D) Scheme of predictive model. This model takes a SMILES string as an input and provides one real number, which is an
estimated property value, as an output. Parameters of the model are trained by l2-squared loss function minimization.
Popova et al., Sci. Adv. 2018;4 : eaap7885 25 July 2018 3 of 14
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notation. In a valid SMILESmolecule, in addition to correct valence for all
atoms, one must count ring opening and closure, as well as bracket se-
quences with several bracket types. Therefore, only memory-augmented
neural networks such as Stack-RNN or Neural Turing Machines are the
appropriate choice for modeling these sequence dependencies.

The Stack-RNN defines a new neuron or cell structure on top of the
standard GRU cell (see Fig. 1A). It has two additional multiplicative
gates referred to as the memory stack, which allow the Stack-RNN to
learn meaningful long-range interdependencies. Stack memory is a dif-
ferentiable structure onto and fromwhich continuous vectors are inserted
and removed. In stack terminology, the insertion operation is called
PUSH operation and the removal operation is called POP operation.
These traditionally discrete operations are continuous here, since PUSH
and POP operations are permitted to be real values in the interval (0, 1).
Intuitively, we can interpret these values as the degree of certainty with
which some controller wishes to PUSH a vector v onto the stack or POP
the top of the stack. Such an architecture resembles a pushdown autom-
aton, which is a classic framework from the theory of formal languages,
capable of dealing with more complicated languages. Applying this
concept to neural networks provides the possibility to build a trainable
model of the language of SMILES with correct syntaxes, proper balance
of ring opening and closures, and correct valences for all elements.

The second model P is a predictive model (see Fig. 1D) for esti-
mating physical, chemical, or biological properties ofmolecules. This
property prediction model is a deep neural network, which consists of
an embedding layer, an LSTM layer, and two dense layers. This network
is designed to calculate user-specified property (activity) of themolecule
taking a SMILES string as an input data vector. In a practical sense, this
learning step is analogous to traditional quantitative structure–activity
relationships (QSAR)models. However, unlike conventional QSAR, no
numerical descriptors are needed, as themodel distinctly learns directly
from the SMILES notation as to how to relate the comparison between
SMILES strings to that between target properties.

Generation of chemicals with novel structures
The generative network was trained with ~1.5 million structures
from the ChEMBL21 database (please see Materials and Methods
for technical details) (36); the objective of the training was to learn
rules of organic chemistry that define SMILES strings corresponding
to realistic chemical structures. To demonstrate the versatility of the
baseline (unbiased) Stack-RNN, we generated over 1M compounds.
All structures are available for download from the Supplementary
Materials. Random examples of the generated compounds are shown
in Fig. 2.

A known deficiency of approaches for de novo molecular design is
frequent generation of chemically infeasible molecules (22, 37). To ad-
dress this possible issue of concern, we have established that 95% of all
generated structures were valid, chemically sensible molecules. The
validity checkwas performed by the structure checker fromChemAxon
(38). We compared the 1M de novo–generated molecules with those
used to train the generative model from the ChEMBL database and
found that the model produced less than 0.1% of structures from the
training data set. Additional comparison with the ZINC15 database
(39) of 320M synthetically accessible drug-like molecules showed that
about 3% (~32,000molecules) of de novo–generated structures could be
found in ZINC. All ZINC IDs for the matching molecules are available
in the Supplementary Materials.

To assess the importance of using a stack memory–augmented
network as described in Materials and Methods, we compared several
Popova et al., Sci. Adv. 2018;4 : eaap7885 25 July 2018
characteristics of chemical libraries generated by models developed
either with or without stack memory. For this purpose, we trained
another generative RNN with the same architecture but without using
stack memory. Libraries were compared by the percentage of valid
generated SMILES, internal diversity, and similarity of the generated
molecules to those in the training data set (ChEMBL). The model
without stack memory showed that only 86% of molecules in the re-
spective library were valid (as evaluated by ChemAxon; cf. Materials
and Methods) compared to 95% of molecules being valid in the library
generated with stack memory network. As expected (cf. the justification
for using stack memory augmented network inMaterials andMethods),
in the former library, syntactic errors such as open brackets, unclosed
cycles, and incorrect bond types in SMILES strings were more frequent.
On the basis of the analysis of respective sets of 10,000 molecules
generated by eachmethod (see Fig. 3A), the library obtained without
stack memory showed a decrease in internal diversity of 0.2 units of the
Tanimoto coefficient and yet a fourfold increase in the number of du-
plicates, from just about 1 to 5%. In addition, Fig. 3B shows that the
number of molecules similar to the training data set (Ts > 0.85) for the li-
brary obtained without stack memory (28% of all molecules) is twice the
number for the library obtained with stackmemory (14%). These results
highlight the advantages of using a neural network with memory for
generating the highest number of realistic and predominantly novel mol-
ecules, which is one of the chief objectives of de novo chemical design.

To further characterize the structural novelty of the de novo–
generated molecules, we compared the content of the Murcko scaffolds
(40) between the ChEMBL training set and the virtual library generated
by our system. Murcko scaffolds provide a hierarchical molecular
organization scheme by dividing small molecules into R groups, linkers,
and frameworks (or scaffolds). They define the ring systems of a mol-
ecule by removing side chain atoms. We found that less than 10% of
scaffolds in our library were present in ChEMBL. Overall, this analysis
suggests that the generative Stack-RNNmodel did not simply mem-
orize the training SMILES sequences but was indeed capable of gen-
erating extremely diverse yet realistic molecules as defined by the
structure checker from ChemAxon.

In addition to passing the structure checker, an important require-
ment for de novo–generated molecules is their synthetic feasibility. To
this end, we used the synthetic accessibility score (SAS) method (41),
which relies on the knowledge extracted from known synthetic reac-
tions and adds penalty for high molecular complexity. For ease of
interpretation, SAS is scaled to be between 1 and 10. Molecules with
high SAS values, typically above 6, are considered difficult to synthesize,
whereas molecules with low SAS values are easily synthetically acces-
sible. The distribution of SAS values calculated for 1M molecules
generated by theReLeaSE is shown in fig. S1. To illustrate the robustness
of the de novo–generated chemical library, we compared its SAS
distribution with that of the SAS values both for the full ChEMBL
library (~1.5 million molecules) and for 1M random sample of mole-
cules in ZINC. Similar to typical commercial vendor libraries,
distribution of SAS for ReLeaSE is skewed toward more easily synthe-
sizable molecules. Median SAS values were 2.9 for ChEMBL and 3.1 for
both ZINC and ReLeaSE. More than 99.5% of de novo–generated mol-
ecules had SAS values below6. Therefore, despite their high novelty,most
generated compounds can be considered synthetically accessible.

Property prediction
For over more than 50 years of active development of the field,
well-defined QSAR protocols and procedures have been established
4 of 14
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(42), including best practices formodel validation, as reported in several
highly cited papers by our group (42, 43). Any QSAR method can be
generally defined as an application of machine learning (ML) and/or
statistical methods to the problem of finding empirical relationships
of the form y = ƒ(X1, X2,…,Xn), where y is the biological activity (or
any property of interest) of molecules; X1, X2,…, Xn are calculated
molecular descriptors of compounds; and ƒ is some empirically
established mathematical transformation that should be applied to
descriptors to calculate the property values for all molecules.Model val-
idation is a critical component of model development; our approach to
model validation in this study is described in Materials and Methods.
Popova et al., Sci. Adv. 2018;4 : eaap7885 25 July 2018
BuildingMLmodels directly fromSMILES strings,which is a unique
feature of our approach, completely bypasses the most traditional step
of descriptor generation in QSAR modeling. In addition to being rela-
tively slow, descriptor generation is nondifferentiable, and it does not
allow a straightforward inversemapping from the descriptor space back
to molecules albeit a few approaches for such mapping (that is, inverse
QSAR) have been proposed (44–46). For instance, one of the studies
described above (22) used mapping from the point in a latent variable
to real molecules represented by points most proximal to that point. In
contrast, using neural networks directly on SMILES is fully differentia-
ble, and it also enables direct mapping of properties to the SMILES
Fig. 2. A sample of molecules produced by the generative model.
Fig. 3. Performance of the generative model G, with and without stack-augmented memory. (A) Internal diversity of generated libraries. (B) Similarity of the
generated libraries to the training data set from the ChEMBL database.
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sequence of characters (or strings). SMILES strings were previously
used forQSARmodel building (47, 48); however, inmost cases, SMILES
strings were used to derive string- and substring-based numerical
descriptors (49). Note that, in our case, the ability to develop QSAR
models using SMILES was critical for integrating property assessment
(evaluative models) and de novo structure generation (generative
models) into a single RL workflow, as described below.

In terms of external prediction accuracy, SMILES-based ML
models also performed very well. For example, using fivefold cross-
validation (5CV), we obtained the external model accuracy expressed
asR2ext of 0.91 and rootmean square error (RMSE)= 0.53 for predicting
logP (see Materials and Methods). This compared favorably to a ran-
dom forestmodel withDRAGON7descriptors (R2ext = 0.90 andRMSE=
0.57). For the melting temperature (Tm) prediction, the observed RMSE
of 35°C was the same as that predicted with the state-of-the-art con-
sensus model obtained by using an ensemble of multiple conventional
descriptor-based ML models (50), which afforded an RMSE of 35°C.

The following study was undertaken to evaluate the external predic-
tive accuracy for novel compounds designed with the ReLeaSEmethod.
We have identified more than 100 compounds that were not present
in the training set from our library in the ChEMBL database. Then,
we manually extracted their experimental logP or Tm data from the
PubChem database. Multiple measurements were averaged. Final
Popova et al., Sci. Adv. 2018;4 : eaap7885 25 July 2018
subsets were composed from about 20 molecules for each property.
The comparison between predicted and experimental measurements
yielded an RMSE of 0.9 for logP and ~42°C for Tm. This accuracy was
slightly lower than that for the respective quantitative structure–
property relationship (QSPR) model obtained with cross-validation.
We consider the reasonable success of this exercise in property predic-
tion for an external data set as additional evidence that our approach
yields molecules with both desired and accurately predicted properties.

Generation of property value biased libraries with the
RL system
To explore the utility of the RL algorithm in a drug design setting, we
have conducted case studies to design libraries with three controlled
target properties: (i) physical properties considered important for
drug-like molecules, (ii) specific biological activity, and (iii) chemical
complexity. For physical properties, we selected Tm and n-octanol/
water partition coefficient (logP). For bioactivity prediction, we
designed putative inhibitors of Janus protein kinase 2 (JAK2) with
novel chemotypes. Finally, the number of benzene rings and the
number of substituents (such as –OH, –NH2, –CH3–CN, etc.) were
used as a structural reward to design novel chemically complex
compounds. Figure 4 shows the distribution of predicted properties
of interest in the training test molecules and in the libraries designed
4003002001000−100−200

Melting temperature (Tm), oC

JAK2 inhibition (pIC50) Number of substituents

Optimized
Baseline

4 86 10 212- 0 2

Number of benzene rings

Partition coefficient (logP)

A

B

C

D

E

Baseline

Minimized

Maximized

Fig. 4. Property distributions for RL-optimized versus baseline generator model. (A) Melting temperature. (B) JAK2 inhibition. (C) Partition coefficient. (D) Number of
benzene rings. (E) Number of substituents.
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by our system. In all cases, we sampled 10,000molecules by the baseline
(no RL) generator and RL-optimized generative models and then
calculated their properties with a corresponding predictive model.
Values of the substructural features were calculated directly from the
two-dimensional (2D) structure. Table 1 summarizes the analysis of
generated molecules and the respective statistics.
Melting temperature
In this experiment, we set two goals: either to minimize or to maximize
the target property. Upon minimization, the mean of the distribution
in the de novo–generated library was shifted by 44°C, as compared to
the training set distribution (Fig. 4A). The library of virtually synthe-
sized chemicals included simple hydrocarbons such as butane, as well as
polyhalogenated compounds such asCF2Cl2 andC6H4F2. Themolecule
with the lowest Tm = −184°C in the produced data set was CF4. This
property minimization strategy was extremely effective, as it allowed
for the discovery of molecules in the regions of the chemical space far
beyond those of the training set of drug-like compounds. In the maxi-
mization regime, the mean of the Tm was increased by 20° to 200°C.
As expected, the generated library indeed included substantially
more complex molecules with the abundance of sulfur-containing
heterocycles, phosphates, and conjugated double-bond moieties.
Designing a chemical library biased toward a range of
lipophilicity (logP)
Compound hydrophobicity is an important consideration in drug de-
sign. One of the components of the famous Lipinski’s rule of five is that
orally bioavailable compounds should have their octanol-water
partition coefficient logP less than 5 (51). Thus, we endeavored to design
a library that would contain compounds with logP values within a
favorable drug-like range. The reward function in this case was defined
as a piecewise linear function of logPwith a constant region from 1.0 to
4.0 (see fig. S2). In other words, we set the goal to generate molecules
according to a typical Lipinski’s constraint. As shown in Fig. 4C, we
have succeeded in generating a library with 88% of themolecules falling
within the drug-like region of logP values.
Popova et al., Sci. Adv. 2018;4 : eaap7885 25 July 2018
Inhibition of JAK2
In the third experiment, which serves as an example of the most com-
mon application of computationalmodeling in drug discovery, we have
used our system to design molecules with the specific biological func-
tion, that is, JAK2 activity modulation. Specifically, we designed li-
braries with the goal of minimizing or maximizing negative logarithm
of half maximal inhibitory concentration (pIC50) values for JAK2.
While most of drug discovery studies are oriented toward finding mo-
lecules with heightened activity, bioactivity minimization is also pur-
sued in drug discovery to mitigate off-target effects. Therefore, we
were interested in exploring the ability of our system to bias the de-
sign of novel molecular structures toward any desired range of the
target properties. JAK2 is a nonreceptor tyrosine kinase involved in
various processes such as cell growth, development, differentiation, or
histone modifications. It mediates essential signaling events in both
innate and adaptive immunity. In the cytoplasm, it also plays an impor-
tant role in signal transduction. Mutations in JAK2 have been impli-
cated in multiple conditions such as thrombocythemia, myelofibrosis,
or myeloproliferative disorders (52).

The reward functions in both cases (minimization and maximi-
zation) were defined as exponential functions of pIC50 (see fig. S2). The
results of library optimization are shown in Fig. 4B.Withminimization,
themean of predicted pIC50 distributionwas shifted by about one pIC50

unit, and the distribution was heavily biased toward the lower ranges of
bioactivity with 24% of molecules predicted to have practically no activity
(pIC50 ≤ 4). In the activity maximization exercise, properties of gener-
ated molecules were more tightly distributed across the predicted ac-
tivity range. In each case, our systemvirtually synthesized both known and
novel compounds, with most de novo–designed molecules being novel
compounds. The generation of known compounds (that is, not included
in the training set) can be regarded as model validation. The system retro-
spectively discovered 793 commercially available compounds deposited
in the ZINC database, which constituted about 5% of the total gener-
ated library. As many as 15 of them [exemplified by ZINC263823677
Table 1. Comparison of statistics for generated molecular data sets.
Property
V
alid molecules

(%)

Mean
SAS
Mean molar
mass
Mean value of target
property
Match with ZINC15
database (%)
Match with ChEMBL
database (%)
Tm M
Baseline
 95
 3.1
 435.4
 181
 4.7
 1.5
inimized
 31
 3.1
 279.6
 137
 4.6
 1.6
Maximized
 53
 3.4
 413.2
 200
 2.4
 0.9
Inhibition
of JAK2 M
Baseline
 95
 3.1
 435.4
 5.70
 4.7
 1.5
inimized
 60
 3.85
 481.8
 4.89
 2.5
 1.0
Maximized
 45
 3.7
 275.4
 7.85
 4.5
 1.8
LogP R
Baseline
 95
 3.1
 435.4
 3.63
 4.7
 1.5
ange-
optimized
70
 3.2
 369.7
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(http://zinc15.docking.org/substances/ZINC000263823677/) and
ZINC271402431 (http://zinc15.docking.org/substances/ZINC000271402431/)]
were actually annotated as possible tyrosine kinase inhibitors.
Substructure bias
Finally, we also performed two simple experiments mimicking the
strategy of biased chemical library design where the designed li-
brary is enriched with certain user-defined substructures. We de-
fined the reward function as the exponent of (i) the number of
benzene rings (–Ph) and (ii) the total number of small group sub-
stituents. Among all case studies described, structure bias was
found to be the easiest to optimize. The results of the library op-
timization study are shown in Fig. 4 (D and E). Furthermore, Fig. 5
illustrates the evolution of generated structures as the structural
reward increases. We see that the model progresses toward generat-
ing increasingly more complex, yet realistic molecules with greater
numbers of rings and/or substituents.

We expect that designing structurally biased libraries may be a
highly desirable application of the ReLeaSE approach as researchers
often wish to generate libraries enriched for certain privileged scaffold
(s) and lead compound optimization (53). Conversely, the system
also allows the avoidance of particular chemical groups or substruc-
tures (such as bromine or carboxyl group) that may lead to undesired
compound properties such as toxicity. Finally, one could implement a
certain substructure, or pharmacophore similarity, reward to explore
additional chemical space.

Table 1 shows a decrease in the proportion of valid molecules after
the optimization.Wemay explain this phenomenon by the weaknesses
of predictive models P (see Fig. 1C) and the integration of predictive
and generativemodels into a single design system.We presume that the
generative model G tends to find some local optima of the reward
Popova et al., Sci. Adv. 2018;4 : eaap7885 25 July 2018
function that correspond to invalid molecules, but the predictive model P
assigns high rewards to these molecules. This explanation is also sup-
ported by the results of structure bias optimization experiments, as
we did not use any predictive models in these experiments and the
decrease in the proportion of valid molecules was insignificant. We
also noticed that, among all experiments with predictive models,
those with logP optimization showed the highest proportion of valid
molecules and, at the same time, the predictive model for logP esti-
mation had the highest accuracy R2 = 0.91 (see Materials and Meth-
ods). It is probably harder for the RL system to exploit the high-quality
predictive model P and produce fictitious SMILES strings with pre-
dicted properties in the desired region.

Model analysis
Model interpretation is a highly significant component in any ML
study. In this section, we demonstrate how Stack-RNN learns and
memorizes useful information from the SMILES string as it is being
processed.More specifically, we havemanually analyzed neuron gate
activations of the neural network as it processes the input data.

Figure 6 lists several examples of cells in neural networks with inter-
pretable gate activations. In this figure, each line corresponds to activa-
tions of a specific neuron at different SMILES processing time steps by
the pretrained baseline generative model. Each letter is colored
according to the value of tanh activation in a cool-warmcolormap from
dark blue to dark red, that is, from −1 to 1.We found that our RNNhas
several interpretable cells. These cells can be divided into two kinds of
groups: chemically sensible groups, which activate in the presence of
specific chemical groups or moieties, and syntactic groups, which keep
tracks of numbers, bracket opening and closure, and even of SMILES
string termination when the new molecule is generated. For instance,
Reward increase

A

B

Fig. 5. Evolution of generated structures as chemical substructure reward increases. (A) Reward proportional to the total number of small group substituents.
(B) Reward proportional to the number of benzene rings.
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we saw cells reflecting the presence of a carbonyl group, aromatic
groups, or NH moieties in heterocycles. We also observed that, in
two of these three examples, there were counter cells that deactivate
in the presence of the aforementioned chemical groups. Neural
network–based models are notoriously uninterpretable (54), and most
of the cells were indeed in that category. On the other hand, the possi-
bility of even partial interpretation offered by this approach could be
highly valuable for a medicinal chemist.

Visualization of new chemical libraries
Tounderstand how the generativemodels populate chemical spacewith
newmolecules, we used t-distributed stochastic neighbor embedding
(t-SNE) for dimensionality reduction (55).We selected data sets for three
end points used in our case studies (Tm, logP, and JAK2) that were
produced with corresponding optimized generative models G. For every
molecule, we calculated a latent vector of representation from the
feed-forward layer with a rectified linear unit (ReLU) activation function
in thepredictivemodelP for the respective property and constructed 2D
projection using t-SNE. These projections are illustrated in Fig. 7. Every
point corresponds to amolecule and is colored according to its prop-
erty value.

For libraries generated to achieve certain partition coefficient
distribution (Fig. 7A), we can observe well-defined clustering ofmol-
ecules with similar logP values. In contrast, for Tm (Fig. 7B), there are
no such clusters. High and low Tm molecules are intermixed together.
This observation can be explained by the fact that Tm depends not
only on the chemical structure of the molecule but also on inter-
molecular forces and packing in the crystal lattice. Therefore, plotting
molecules in this neural net representation could not achieve good sep-
aration of high versus low Tm. In the case of the JAK2model, we could
observe two large nonoverlapping areas roughly corresponding to in-
active (pIC50 < 6) and active (pIC50 ≥ 6) compounds. Inside these
Popova et al., Sci. Adv. 2018;4 : eaap7885 25 July 2018
areas, molecules are typically clustered around multiple privileged
scaffolds. Specifically for JAK2, we see an abundance of compounds
with 1,3,5-triazine, 1,2,4-triazine, 5-methyl-1H-1,2,4-triazole, 7H-
pyrrolo[2,3-d]pyrimidine, 1H-pyrazolo[3,4-d]pyrimidine, thieno-
triazolo-pyrimidine, and other substructures. Overall, this approach
offers a rapid way to visualize compound distribution in chemical
space in terms of both chemical diversity and variability in the values
of the specific prediction end point. Furthermore, joint embedding of
both molecules in the training set and those generated de novo allows
one to explore differences in the chemical space coverage by both sets
and establish whether structurally novel compounds also have the
desired predicted property of interest.
DISCUSSION
We have created and implemented a deep RL approach termed
ReLeaSE for de novo design of novel chemical compounds with desired
properties. To achieve this outcome, we combined two deep neural
networks (generative and predictive) in a general workflow that also
included the RL step (Fig. 1). The training process consists of two
stages. In the first stage, both models were trained separately using
supervised learning, and in the second stage, models were trained
jointly with an RL method. Both neural networks use end-to-end
DL. The ReLeaSe method does not rely on predefined chemical de-
scriptors; the models are trained on chemical structures represented by
SMILES strings only. This distinction differentiates this approach from
traditional QSAR methods and simpler to both use and execute.

This method needs to be evaluated in the context of several previous
and parallel developments elsewhere to highlight its unique innovative
features. Our ReLeaSE method has benefited from the recent devel-
opments in the ML community as applied to natural language proces-
sing and machine translation. These new algorithms allow learning the
Fig. 6. Examples of Stack-RNN cells with interpretable gate activations. Color coding corresponds to GRU cells with hyperbolic tangent tanh activation function,
where dark blue corresponds to the activation function value of −1 and red describes the value of the activation function of 1; the numbers in the range between −1
and 1 are colored using a cool-warm color map.
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Fig. 7. Clustering of generated molecules by t-SNE. Molecules are colored on the basis of the predicted properties by the predictive model P, with values shown by
the color bar on the right. (A and C) Examples of the generated molecules randomly picked from matches with ZINC database and property values predicted by the

predictive model P. (A) Partition coefficient, logP. (B) Melting temperature, Tm (°C); examples show generated molecules with lowest and highest predicted Tm. (C) JAK2
inhibition, predicted pIC50.
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mapping froman input sequence (for example, a sentence inone language)
to an output sequence (that same sentence in another language). The
entire input sentence represents an input vector for the neural network.
The advantage of this approach is that it requires no handcrafted feature
engineering.

Considering the use of similar approaches in chemistry, several
comparable developments elsewhere should be discussed. RL approach
for de novo molecular design was introduced in reference (37) as well.
However, no data were provided to show that the predicted properties
of molecular compounds are optimized. Instead of demonstrating the
shift in distribution of biological activity values against dopamine recep-
tor type 2 before and after the optimization, that study showed an in-
crease in the fraction of the generated molecules, which are similar to
those in training and test sets. This increase does not automatically
mean that the generative model is capable of producing novel active
compounds. In contrast, this result may indicate a model’s weaknesses
in predicting novel valuable chemicals that are merely similar to the
training set compounds, that is, the model is fitted to the training set
butmay have a limited ability to generate novel chemicals that are subs-
tantially different from the training set compounds. The generative
model in references (23, 37) is a “vanilla” RNN without augmented
memory stack, which does not have the capacity to count and infer
algorithmic patterns (34). Another weakness of the approach described
in reference (37), from our point of view, is the usage of a predictive
model built with numerical molecular descriptors, whereas we propose
amodel that is essentially descriptor-free andnaturally forms a coherent
workflow together with the generative model. After the manuscript of
our study was submitted for publication, a study by Jaques et al. (56)
that used simple RNN and off-policy RL to generate molecules was
published. However, in addition to low percentage (~30 to 35%) of
valid molecules, in that study, the authors did not directly optimize
any physical or biological properties but rather a proxy function that
includes a SAS, drug-likeness, and a ring penalty.

It is important to highlight the critical element of using QSAR
models as part of our approach as opposed to the traditional use of
QSAR models for virtual screening of chemical libraries. The absolute
majority of compounds generated de novo by the ReLeaSE method are
novel structures as compared to the data sets used to train generative
models, and anyQSARmodel could be used to evaluate their properties.
However, one of our chief objectives was to develop a method that can
tune not only structural diversity (cf. case study 1) but,most importantly,
also bias the property (physical or biological) toward the desired range of
values (case studies 2 and 3). The principal element of the ReLeaSE
method as compared to traditional QSARmodels is that QSARmodels
are implemented within the ReLEeaSE such as to put “pressure” on the
generative model. Thus, although any QSAR model could evaluate
properties of new chemicals, those built into our method are used di-
rectly for RL to bias de novo library design toward the desired property.

As a proof of principle, we tested our approach on three diverse
types of end points: physical properties, biological activity, and chemical
substructure bias. The use of flexible reward function enables different
library optimization strategies where one can minimize, maximize, or
impose a desired range to a property of interest in the generated
compound libraries. As a by-product of these case studies, we have
generated a data set of more than 1M of novel compounds. Here, we
have focused on presenting the newmethodology and its application for
initial hit generation. However, ReLeaSE could also be used for lead op-
timization, where a particular privileged scaffold is fixed and only sub-
stituents are optimized. Our future studies will explore this direction.
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Computational library design methods are often criticized for their
inability to control synthetic accessibility of de novo–generated mole-
cules (13). Computationally generated compounds are often quite
complex; for instance, they may include exotic substituents. In many
cases, these compounds may require multistep custom syntheses or
could even be synthetically inaccessible with the current level of tech-
nology. In the pharmaceutical industry, the ease of synthesis of a pro-
spective hit molecule is of primary concern as it strongly affects the cost
of the manufacturing process required for the industrial-scale produc-
tion. For all experiments in this paper, the synthetic accessibility of de
novo–generated–focused libraries was estimated using the SAS (41).
Distributions of SAS values are shown in fig. S3, and the medians of
the SAS are listed in Table 1. This analysis shows that property optimi-
zation does not significantly affect synthetic accessibility of the gener-
atedmolecules. The biggest shift of 0.75 for the distributionmedian was
observed in the proof-of-concept study targeting the design of JAK2 in-
hibitorswithminimized activity. Less than 0.5%ofmolecules had a high
SAS of >6, which is an approximate cutoff for systems that are difficult
to synthesize (41).

Obviously, it is technically feasible to include the SAS as an addi-
tional reward function; however, in our opinion, there are two main
reasons as to why this is not desirable, at least with the current form
of SAS. First, predicted SAS for newly generated molecules are prac-
tically independent of property optimization. Their distribution
follows that from commercially available compounds. Second, “syn-
thetic accessibility” is not a well-defined concept (57). In the process
chemistry, it depends on multiple factors that determine the ease of
synthesis of a particular molecule such as the availability of reagents,
the number and difficulty of synthetic steps, the stability of intermediate
products, the ease of their separation, reaction yields, etc. (58). In con-
trast, the most commonly used SAS method (also used in this work) is
based on molecular complexity as defined by the number of substruc-
tures andmolecular fragments (41). Therefore, optimizing SASwith RL
as part of our approach would result in substantially reduced novelty of
generatedmolecules and a bias toward substructures with low SAS used
to train the model.

In summary, we have devised and executed a new strategy termed
ReLeaSE for designing libraries of compounds with the desired prop-
erties that uses both DL and RL approaches. In choosing the abbre-
viation for the name of the method, we were mindful of one of the
key meanings of the word “release,” that is, to “allow or enable to
escape from confinement; set free.” We have conducted computa-
tional experiments that demonstrated the efficiency of the proposed
ReLeaSE strategy in a single-task regimewhere each of the end points
of interest is optimized independently. However, this system can be
extended to afford multiobjective optimization of several target
properties concurrently, which is the need of drug discovery where
the drug molecule should be optimized with respect to potency, selec-
tivity, solubility, and drug-likeness properties. Our future studies will
address this challenge.
MATERIALS AND METHODS
Experimental data
The melting point data set was extracted from the literature (50). The
PHYSPROP database (www.srcinc.com) was used to extract the oc-
tanol/water partition coefficient, logP for diverse set of molecules.
Experimental IC50 and Ki data for compounds tested against JAK2
(CHEMBL ID 2971) were extracted from ChEMBL (36), PubChem
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(59), and the Eidogen-Sertanty Kinase Knowledgebase [KKB Q1 2017
(http://eidogen-sertanty.com/kinasekb.php)]. Compounds that had in-
conclusive IC50 values were considered unreliable and were not includ-
ed in the modeling.

Data curation
Compiled data sets of compounds were carefully curated follow-
ing the protocols proposed by Fourches et al. (60). Briefly, explicit
hydrogens were added, and specific chemotypes such as aromatic
and nitro groups were normalized using ChemAxon Standardizer.
Polymers, inorganic salts, organometallic compounds, mixtures, and
duplicates were removed. The modeling-ready curated data set con-
tained 14,176 compounds for logP, 15,549 compounds for JAK2, and
47,425 compounds for Tm. All molecules were stored as normalized
and canonicalized SMILES strings according to procedures developed
elsewhere (61).

Property prediction models
We have built QSPR models for three different properties—Tm,
logP, and pIC50 for JAK2. Curated data sets for all three end points
were divided into training and training sets in 5CV fashion. In de-
veloping these QSPR models, we followed standard protocols and
best practices for QSPR model validation (42). Specifically, it has been
shown that multiple random splitting of data sets into training and
test sets affords models of the highest stability and predictive power.
Uniquely, models built herein did not use any calculated chemical de-
scriptors; rather, SMILES representations were used. Each model con-
sisted of an embedding layer transforming the sequence of discrete
tokens (that is, SMILES symbols) into a vector of 100 continuous
numbers, an LSTM layer with 100 units and tanh nonlinearity, one
dense layer with 100 units and rectify nonlinearity function, and one
dense layer with one unit and identity activation function. All three
models were trained with the learning-rate decay technique until con-
vergence. The resulting 5CV external accuracies of the models are
shown in fig. S4.

Training for the generative model
In the first stage, we pretrained a generativemodel on aChEMBL21 (36)
data set of approximately 1.5 million drug-like compounds so that the
model was capable of producing chemically feasible molecules (note
that this step does not include any property optimization). This network
had 1500 units in a GRU (32) layer and 512 units in a stack augmenta-
tion layer. The model was trained on a graphics processing unit (GPU)
for 10,000 epochs. The learning curve is illustrated in fig. S5.

The generative model has two modes of processing sequences—
training and generating. At each time step, in the training mode, the
generative network takes a current prefix of the training object and
predicts the probability distribution of the next character. Then, the
next character is sampled from this predicted probability distribu-
tion and is compared to the ground truth. Afterward, on the basis of
this comparison, the cross-entropy loss function is calculated, and
parameters of the model are updated. At each time step, in generating
mode, the generative network takes a prefix of already generated se-
quences and then, like in the trainingmode, predicts the probability
distribution of the next character and samples it from this predicted
distribution. In the generative model, we do not update the model
parameters.

At the second stage, we combined both generative and predictive
models into one RL system. In this system, the generative model plays
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the role of an agent, whose action space is represented by the SMILES
notation alphabet, and state space is represented by all possible strings
in this alphabet. Thepredictivemodel plays the role of a critic estimating
the agent’s behavior by assigning a numerical reward to every generated
molecule (that is, SMILES string). The reward is a function of the nu-
merical property calculated by the predictive model. At this stage, the
generativemodel is trained tomaximize the expected reward. The entire
pipeline is illustrated in Fig. 1.

We trained a Stack-RNN as a generative model. As mentioned
above, for training, we used the ChEMBL database of drug-like
compounds. ChEMBL includes approximately 1.5 million of SMILES
strings; however, we only selectedmolecules with the lengths of SMILES
string of fewer than 100 characters. The length of 100was chosen because
more than 97% of SMILES in the training data set had 100 characters
or less (see fig. S6).

Stack-augmented recurrent neural network
This section describes the generative model G in more detail (30). We
assume that the data are sequential, which means that they come in the
form of discrete tokens, that is, characters. The goal is to build a model
that is able to predict the next token conditioning on all previous tokens.
The regular RNN has an input layer and a hidden layer. At time step t,
the neural network takes the embedding vector of token number t from
the sequence as an input and models the probability distribution of the
next token given all previous tokens so that the next token can be
sampled from this distribution. Information from all previously ob-
served tokens is aggregated in the hidden layer. This can be written
down as follows

ht ¼ sðWixt þWhht�1Þ ð6Þ

where ht is a vector of hidden states, ht − 1 is the vector of hidden states
from the previous time step, xt is the input vector at time step t, Wi is
parameters of the input layers, Wh is a parameter of the hidden layer,
and s is the activation function.

The stackmemorywas used to keep the information and deliver it to
the hidden layer at the next time step. A stack is a type of persistent
memory, which can only be accessed through its topmost element.
There are three operations supported by the stack: POP operation,
which deletes an element from the top of the stack; PUSH operation,
which puts a new element at the top of the stack; and NO-OP
operation, which performs no action. The top element of the stack
has value st[0] and is stored at position 0

st ½0� ¼ at ½PUSH�sðDhtÞ þ at ½POP�st�1½1� þ at ½NO‐OP�st�1½0� ð7Þ

whereD is a 1 ×mmatrix and at= [at[PUSH], at[POP], at[NO−OP]] is
a vector of stack control variables, which define the next operation to be
performed. If at[POP] is equal to 1, then the value below is used to
replace the top element of the stack. If at[PUSH] is equal to 1, then a
new value will be added to the top, and all the rest values will be
moved down. If at[NO−OP] is equal to 1, then the stack keeps the same
value on top.

A similar rule is applied to the elements of the stack at a depth i > 0

st ½i� ¼ at ½PUSH�st�1½i� 1� þ at ½POP�st�1½iþ 1�
þ at ½NO‐OP�st�1½i� ð8Þ
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Now, the hidden layer ht is updated as

ht ¼ sðUxt þ Rht�1 þ Dskt�1Þ ð9Þ

where D is a matrix of sizem × k and skt�1 are the first k elements for
the top of the stack at time step t − 1.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/7/eaap7885/DC1
Fig. S1. Distribution of SAS for the full ChEMBL21 database (~1.5 million molecules), random
subsample of 1M molecules from ZINC15, and generated data set of 1M molecules with
baseline generator model G.
Fig. S2. Reward functions.
Fig. S3. Distributions of SAS for all RL experiments.
Fig. S4. Distribution of residuals and predicted versus observed plots for predictive models.
Fig. S5. Learning curve for generative model.
Fig. S6. Distributions of SMILES’s string lengths.
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