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N E U R O S C I E N C E

Cross-species systems analysis identifies gene networks 
differentially altered by sleep loss and depression
Joseph R. Scarpa1*, Peng Jiang2*, Vance D. Gao2*, Karrie Fitzpatrick2†, Joshua Millstein3‡, 
Christopher Olker2, Anthony Gotter4§, Christopher J. Winrow4¶, John J. Renger4‖,  
Andrew Kasarskis1**††, Fred W. Turek2**††, Martha H. Vitaterna2**††

To understand the transcriptomic organization underlying sleep and affective function, we studied a population 
of (C57BL/6J × 129S1/SvImJ) F2 mice by measuring 283 affective and sleep phenotypes and profiling gene expression 
across four brain regions. We identified converging molecular bases for sleep and affective phenotypes at both 
the single-gene and gene-network levels. Using publicly available transcriptomic datasets collected from sleep-
deprived mice and patients with major depressive disorder (MDD), we identified three cortical gene networks al-
tered by the sleep/wake state and depression. The network-level actions of sleep loss and depression were opposite 
to each other, providing a mechanistic basis for the sleep disruptions commonly observed in depression, as well 
as the reported acute antidepressant effects of sleep deprivation. We highlight one particular network composed 
of circadian rhythm regulators and neuronal activity–dependent immediate-early genes. The key upstream driver 
of this network, Arc, may act as a nexus linking sleep and depression. Our data provide mechanistic insights into 
the role of sleep in affective function and MDD.

INTRODUCTION
Sleep and affective behaviors are highly interrelated phenotypes, 
commonly altered in a variety of neuropsychiatric diseases (1, 2). 
Major depressive disorder (MDD) is a devastating illness and often 
involves dysregulated sleep, including insomnia and altered sleep 
architecture, while acute total sleep deprivation (SD) has been used 
clinically to induce a temporary improvement of mood in patients 
with MDD (3). Detailed mechanisms underlying this complex in-
teraction remain largely unknown, although it is believed that the 
two interactive processes of sleep drive―circadian timing and sleep 
homeostasis―are both altered in MDD (3, 4). Recent large-scale 
transcriptomic analyses have revealed many molecular correlates 
associated with sleep, affective function, or MDD. These efforts 
have highlighted some common pathways, such as the circadian clock 
system, synaptic transmission and plasticity, and lipid metabolism 
and myelination, suggesting potential molecular processes linking 
sleep, affective function, and MDD (5, 6). Despite these advances, 
we still do not fully understand how these molecular underpinnings 
operate in coordinated networks across multiple brain regions to 
control complex behaviors or how these functional organizations 
are altered in MDD.

To examine gene networks associated with different domains of 
behavioral functions, we comprehensively investigated 20 categories 
of phenotypes that included 283 cognitive, affective, and sleep traits 
in an F2 mouse population derived from C57BL/6J (B6) and 129S1/
SvImJ (129) inbred strains (Table 1, data file S1, and fig. S1). We 
assessed genotypes at 2458 informative single-nucleotide polymor-
phism (SNP) markers and, in a subset of animals, measured gene 
expression by microarray across four brain regions key to sleep and 
affective functions (frontal cortex, hippocampus, thalamus, and hy-
pothalamus; n = 83 to 108 samples for each region). Phenotypic and 
transcriptomic segregations in this F2 population allowed us to sys-
temically interrogate the transcriptomic network organization across 
brain regions in relation to a variety of behaviors, including sleep, thus 
providing a foundation to study how functional gene networks may be 
altered in MDD. Multiple links between sleep and affective functions 
were uncovered at both the single-gene and gene-network levels.

We then used publicly available transcriptomic datasets to demon-
strate how cortex-specific gene networks are differentially affected 
by MDD in humans and acute SD in mouse models. We identify an 
Arc-regulated gene network containing circadian clock and cyclic 
adenosine 3′,5′-monophosphate (cAMP)–responsive immediate-
early genes (IEGs), which may provide a mechanistic basis for the 
role of sleep in MDD. Together, our findings add to our under-
standing of the molecular underpinnings underlying the interactions 
between sleep, affective functions, and neuropsychiatric disorders.

RESULTS
Genetic control of gene expression is conserved across brain 
regions linking sleep and affect
To investigate naturally occurring genetic variations of transcriptional 
networks underlying sleep and affective behaviors, we first identified 
genetic loci that regulate the expression of genes [expression quanti-
tative trait locus (eQTL)] in the F2 population. Initially, we examined 
each brain region separately and focused our analysis on eQTLs acting 
on nearby genes (cis-eQTLs). We used a permutation-based approach 
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(7) to control false discovery rate (FDR) for testing multiple linked 
SNPs per gene and across a total of ~18,500 genes per brain region. We 
found that the expression levels of 2417 genes in the cortex, 2301 genes 
in the hippocampus, 2802 genes in the hypothalamus, and 2629 genes 
in the thalamus were significantly associated with at least one cis-SNP at 
FDR < 0.05 (data file S2). Since previous work has demonstrated that 
multitissue eQTL approaches can increase the statistical power of cis-
eQTL detection and determine eQTL conservation across tissues (7), we 
next used an empirical Bayes approach for multitissue eQTL analysis 
(8) to investigate the genetic landscape of gene expression across brain 
regions. This analysis revealed that 95.6% of identified cis-eQTLs were 
shared by all four brain regions (Fig. 1A; example genes in Fig. 1B), 
providing compelling evidence for eQTL conservation throughout the 
brain. These results suggest that DNA variation has system-wide effects 
on gene expression, implicating global regulatory mechanisms for both 
intraregional and interregional function.

To understand the relevance of these eQTL-regulated genes to 
sleep and affective behavior, we computed partial correlations be-
tween the expression of eQTL genes and sleep/behavioral pheno-
types. The expression-phenotype correlations were conditioned on 
eQTL genotype to remove spurious relationships between genes 
and phenotypes due to associations to the same or linked genetic 
loci. We then used the same empirical Bayes approach to investigate 
whether phenotypic relations of eQTL genes were also conserved 
across brain regions. Among the 3414 eQTL-controlled genes, we 
found 516 genes associated with at least one phenotype in at least 
one brain region, involving 994 pairs of gene-phenotype associa-
tions at FDR < 0.05. Since different brain regions are involved in 
different behavioral functions, we predicted that eQTL-linked genes 
would be associated with affective and sleep phenotypes in a region-
specific manner despite their brain region–conserved genetic control. 
Surprisingly, although not as large as the proportion of regionally 

conserved eQTL, a significant portion (36.9%) of the identified 
gene-phenotype associations were conserved in all four brain re-
gions (Fig. 1, C and D). Cross-region–conserved gene-phenotype 
associations were observed regardless of whether the phenotypes 
were sleep or affective behaviors. To ensure that the empirical Bayes 
approach does not bias toward cross-region conservation, we ran-
domly permuted the gene-phenotype associations in each brain re-
gion and found that the occurrence of cross-region conservations 
on randomized data was extremely rare (0.166% ± 0.002% of all the 
significant gene-phenotype pairs; 1000 permutations). Furthermore, 
to exclude the possibility that the observed regional conservation in 
gene-phenotype associations is an artifact of correlated gene ex-
pression among brain regions, we further conditioned the partial 
correlation model on the expression of the gene in the other three 
brain regions, and a similar fraction (39.4%) of gene-phenotype asso-
ciations persisted to be conserved across all brain regions. Therefore, 
our observations suggest that the functional relevance of genetically 
regulated gene expression to complex neurobehaviors may be con-
served across multiple brain regions.

We next focused on eQTL genes associated with both sleep and 
behavioral phenotypes, as they could provide a molecular link be-
tween sleep and affective functions. We sought to determine whether 
the sleep and behavioral measurements share regulation at the ge-
netic level or, conversely, are independently regulated. We found 
that 460 eQTL-regulated genes were associated with at least one 
sleep phenotype and 82 eQTL genes were associated with at least 
one affective phenotype. Among them, 26 were associated with 
both (data file S2), which is significantly higher than expected by 
random chance if sleep and affect are genetically independent (odds 
ratio = 3.10, P = 1.28 × 10−5). This observation thus suggests that 
genetically controlled gene expression across brain regions may in 
part underlie the interactions between sleep and affective functions. 
In particular, 11 eQTL genes were associated with both sleep pheno
types and measurements from the forced swim or tail suspension 
tests, which are often interpreted as signs of behavioral despair 
or depressive behavior (data file S2). Although the relationship be-
tween these behavioral tests and human depression is debated (9), 
these associations are still reminiscent of the sleep disturbances 
observed in patients with MDD. Many of the highlighted genes 
(Grm7, Kcnj10, and Tspo) have indeed been implicated in MDD 
(10–12), suggesting clinical relevance of these genetically regulated 
genes linking sleep and behavioral despair. In addition, we found 
that the amount of struggling activity during the first minute of 
forced swim and the amount of sleep rebound after SD were associ-
ated with the expression of Cdk5rap1, which encodes a regulator 
protein of CDK5, a neuronal cyclin-dependent kinase involved 
in the regulation of synaptic plasticity (13), circadian clock (14), 
and depression-like behavior (15, 16). This observation is con-
sistent with the interaction between sleep homeostasis and MDD 
observed in humans, hinting that the molecular mechanisms of 
such interaction may involve Cdk5rap1. Together, our observa-
tions suggest that sleep is linked to mood regulation through a 
shared genetic landscape for gene expression across multiple brain 
regions.

The transcriptome is segregated genetically and 
functionally into networks across brain regions
While correlating DNA and transcriptional variation revealed a frac-
tion of the transcriptome that is under genetic control, this analysis 

Table 1. Experimental schedule. A timetable displaying the mouse’s  
age at which each experimental manipulation occurred. EEG, 
electroencephalography; EMG, electromyography. 

Age (weeks) Activity

4 Arrival

5–6 Undisturbed acclimatization

7 Elevated plus maze, open field arena, novel object 
recognition*

8 Fear conditioning, tail suspension test

9 Forced swim test†

10 EEG/EMG implant surgery

11 Habituation to sleep-recording equipment

12 Baseline sleep (BL), SD, and recovery sleep (SDR)‡

13 Restraint stress and recovery sleep (Rst)‡

14–15 Undisturbed

16 Euthanasia and tissue dissection

*Novel object recognition was only performed for the first 90 mice and was 
discontinued.     †Forced swim test was only performed on the latter 106 
mice.     ‡Sleep was recorded in a subset of 121 mice, drawn from the 
later cohorts, of which gene expression was studied. See Materials and 
Methods for details.
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did not explicitly account for the organization of genes into higher-
level networks involving larger portions of the transcriptome. To 
identify coregulated gene networks, we performed weighted gene 
coexpression network analysis (WGCNA) (Fig. 2A) (17). We iden-
tified 26 network modules in the cerebral cortex, 23 modules in the 
hippocampus, 27 modules in the thalamus, and 33 modules in the 
hypothalamus, ranging in size from 30 to 929 genes. Each module 
from each region was named by an arbitrary color; modules in dif-
ferent regions may share a color name, but similarly named modules 
do not imply equivalence or any biological relationship. We con-
firmed that many of these modules were overrepresented by genes 
involved in known biological pathways and Gene Ontology (GO) 
terms, which suggested that they were functionally coherent (data 
file S3). We also determined that each module was robust through 
resampling methods (18). Furthermore, specific modules in each re-
gion were also overrepresented by regional eQTL-controlled genes 
(data file S3), suggesting that shared genetic control can contribute 
to transcriptional coregulation of genes.

To investigate whether gene networks were conserved between 
brain regions, we compared the average connectivity of a module in 

one brain region to their gene counterparts in the other brain re-
gions (Fig. 2B). This MDC (19) measure revealed a stark dichotomy. 
Modules that are highly enriched with cis-eQTL genes tended to show 
small or no differential connectivity across brain regions, whereas 
network modules not enriched with eQTL-controlled genes tended to 
exhibit large changes in connectivity across brain regions (Fig. 2C and 
data file S3). Within each eQTL-enriched module, the involved eQTLs 
were located predominantly on the same chromosome (Fig. 2D and 
data file S3). Thus, the coexpression of genes in these eQTL-enriched 
modules may be driven by genetic linkage among these closely lo-
cated eQTLs, and not functionally concordant, as supported by the 
lack of GO and pathway enrichment in these modules (data file S3). 
However, genetic linkage may not be the sole reason for gene coex-
pression in eQTL-enriched modules. For example, the cortical dark 
gray module is an eQTL-enriched module (module genes located 
on chromosome 3) but is also highly enriched with target genes of 
transcription factor (TF) GATA6 (located on chromosome 18), as 
determined in chromatin immunoprecipitation studies (odds ratio = 
13.97, adjusted P = 2.26 × 10−10). Similar enrichments of TF targets 
were observed in several other eQTL-enriched modules (data file 
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Fig. 1. Genetic landscape of gene expression and its functional significance across brain regions. (A) Venn diagram showing the number of eQTL genes identified 
in each brain region using the empirical Bayes–based multitissue method. (B) Examples of two eQTL-regulated genes that showed brain region–conserved and brain 
region–specific genetic regulations. Synj2 showed brain region–conserved genetic correlations, while the cis-genetic regulation of Mis18a appeared to be brain region–
specific (no cis-regulation in the thalamus). (C) Venn diagram showing the number of significant correlations between the expression of eQTL-controlled genes and 
phenotypes. Correlations were conditioned on eQTL genotype. (D) Examples of conditional correlations between phenotypes and the expression of eQTL genes, showing 
brain region–conserved and brain region–specific relationships with phenotypes. Phenotypes were regressed on eQTL genotype data, and the residuals were plotted 
against the expression of the gene that was regulated by the eQTL. Geno, eQTL genotype; Rst NREM , changes in the EEG  power during non-rapid eye movement 
(NREM) sleep after Rst; Rst NREM σ, changes in the EEG σ power during NREM sleep after Rst. The association between Synj2 and Rst NREM  appeared to be specific to 
hippocampus and hypothalamus, while the association between Mis18a and Rst NREM σ can be observed across all four brain regions.
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S3), suggesting that coexpression of genes in these modules may 
also be driven by shared transcriptional regulation and, thus, function-
ally relevant. Nevertheless, since we have systematically characterized 
the functional relevance of eQTL-controlled genes at the single-gene 
level, we report here only results of non–eQTL-enriched modules 
from the network-level analyses for simplicity, although the eQTL-
enriched modules were still included in these analyses.

Transcriptional networks underlie the interaction  
between sleep and affective behaviors
We have previously demonstrated that transcriptomic network or-
ganization in the mouse striatum is associated with multiple sleep, 
cognitive, and affective functions under chronic stress (20); in this 
study, we expanded our analysis to four brain regions. To investi-
gate the association between gene networks and neurobehavioral 
functions, we computed correlations between each module’s eigen-
gene (that is, the first principal component) and each phenotype. 
Each brain region was evaluated separately for these analyses, and 
all significant module-trait relationships were provided in data file 
S3. The relevance of a network module to a phenotypic category was 
determined by the percentage of phenotypes in the category that is 
significantly associated with the module (Fig. 3A). Consistent with 
our previous findings, network modules in each brain region were 
extensively associated with phenotypes across different behavioral 
domains. All non–eQTL-enriched network modules that were asso-

ciated with behavioral phenotypes were also associated with sleep 
phenotypes, providing sets of functionally coordinated molecular 
correlates for the interactions between affective and sleep functions. 
For example, the saddle brown module in the hypothalamus was 
the most relevant module for behavioral despair phenotypes of the 
forced swim test. Saddle brown was enriched with genes involved in 
myelination (data file S3), abnormalities of which have been impli-
cated in MDD by transcriptomic and imaging studies (21, 22). Co-
expression of this module may be partially due to variation in cell 
composition between neurons and glia, especially considering that 
corpus callosum dysgenesis is seen in the 129 family of mouse strains 
(23). This module was also the most relevant for the anxiety-like 
behavior in the elevated plus maze and was associated with changes in 
the EEG power spectra and sleep fragmentation during recovery after 
SD (Fig. 3A). These findings suggest that multiple aspects of affective 
behavior and sleep changes after stress may interact with each other 
via a network of myelination genes in the hypothalamus.

Myelination modules were notable in three brain regions: cortical 
cyan, hippocampal brown, and hypothalamic saddle brown. These 
modules shared a significant portion of member genes, but they were 
extensively reorganized and differentially connected across brain 
regions (Fig. 3B), with each region having unique sets of network 
hub genes (see module statistics in data file S3). In addition to the 
differential network organization, their associations to sleep and af-
fective phenotypes were also altered across brain regions. The cortical 
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cyan module was primarily correlated with sleep/wake state amount, 
the hippocampal brown module was primarily correlated with EEG 
activity during baseline conditions and changes in sleep fragmentation 
during recovery from SD, and as described above, the hypothalamic 
saddle brown module was mostly associated with anxiety and de-
pressive behaviors. Similar region-specific connectivity and pheno-
typic relevance were observed for networks of extracellular matrix 
genes (cortical dark turquoise, hippocampal blue, thalamic yellow, 
and hypothalamic turquoise; Fig. 3C). Together, these results de-
scribe how differential connectivity of gene networks with similar 
cellular or molecular functions may be linked to their brain region–
specific roles in sleep and affective behaviors.

Acute SD affects the expression of sleep  
and neurobehavioral networks
Since gene expression in our study was profiled at only one time 
point after the completion of all phenotypic measurements, the ob-
served gene networks across brain regions provided a static snapshot 
of the functional transcriptomic organizations relevant to sleep and 
affective behaviors. Altered physiological states, such as sleep and wake, 
are known to associate with profound and dynamic changes in the tran-
scriptome (6). To evaluate how these gene networks may be altered 
across sleep and wake, we leveraged publicly available transcriptomic 
datasets collected from multiple brain regions of sleep-deprived mice 
to integrate with our data. A search of the Gene Expression Omnibus 
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Fig. 3. Functional significance of gene coexpression network modules. (A) Heat maps describing the relevance of modules (rows) to phenotypic categories (columns). 
Categories of affective phenotypes included those measured in the elevated plus maze (EPM), open field arena (OFA), fear conditioning test (FCT), tail suspension test 
(TST), and forced swim test (FST). Sleep phenotypic categories included sleep/wake state amount, sleep fragmentation, REM sleep, EEG power band, and circadian orga-
nization measured under undisturbed baseline conditions (BL), as well as the changes in these phenotypes after a 6-hour SD or 1-hour Rst. Only non–eQTL-enriched 
modules are shown. Heat colors indicate the percentage of phenotypes in a category that are significantly correlated with module eigengene. Numbers in each cell indi-
cate the number of phenotypes in the category that are significantly associated with module eigengene. For clarity, the heat colors for cortex and thalamus are saturated 
at 60%. (B and C) Organization of myelination network modules (B) and extracellular matrix modules (C) across brain regions. Left: Gene overlap among modules of the 
same cellular function. The lower triangles of the matrices show the percentage of overlapping genes relative to the size of the smaller module (or relative to the com-
bined size of two modules in parentheses). The upper triangles of the matrices show the P values from Fisher’s exact tests evaluating the enrichment of module in one 
another. Right: Differential connectivity of modules with the same cellular function across brain regions. Cells were colored according to their values. CTX, cortex; HPC, 
hippocampus; THL, thalamus; HTH, hypothalamus.
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(GEO) database identified three datasets in the cerebral cortex (ac-
cession numbers GSE6514, GSE78215, and GSE33491) (24–26), one 
dataset in the hippocampus (accession number GSE33302) (27), and 
one dataset in the hypothalamus (accession number GSE6514) (24). 
Focusing our analysis on acute SD of 5 to 6 hours, we first performed 
a gene-level analysis and identified 2080 differentially expressed genes 
(15% of all tested genes) in the cortex and 1567 genes (7%) in the 
hippocampus at FDR < 0.05. Although no differential expression was 
found at FDR < 0.05 in the hypothalamus, the expression levels of 
5480 genes (24%) were altered at FDR < 0.10. The identified genes 
and highlighted pathways are comparable to previous reports ex-
amining these datasets (data file S4).

To evaluate differential expression at the gene-network level, we 
combined the gene coexpression network modules reconstructed 
using our (B6 × 129) F2 data with the SD differential expression 
signatures. We used gene set enrichment analysis (GSEA) (28) to 
identify coexpression network modules in which the overall distri-
bution of SD-induced changes in gene expression was skewed or 
shifted toward increased expression (positive GSEA scores) or de-
creased expression (negative GSEA scores). Significant GSEA scores 
thus suggest network-level differential gene expression in coexpres-
sion modules. We found five modules in the cortex, eight modules 
in the hippocampus, and five modules in the hypothalamus that were 
differentially expressed after SD (Fig. 4). A number of these sleep/
wake-affected network modules were also highly relevant to sleep 
phenotypes in our dataset, supporting their connection to sleep. 
For example, network-level gene expression in the previously men-
tioned cortical myelination module (cortical cyan) and a hippo-
campal module associated with nicotinic acetylcholine receptor 
signaling (hippocampal green) was down-regulated after acute SD 
(Fig. 4). Both modules were highly relevant to sleep/wake amount 
under baseline conditions, and cortical cyan was also highly rele-
vant to SD-induced changes in sleep/wake amount and restraint-
induced changes in sleep fragmentation (Fig. 3A). This is consistent 
with previously characterized roles of acetylcholine signaling and 
myelination in sleep and wake (29, 30). In addition, several sleep/
wake-affected network modules were also highly relevant to affec-

tive phenotypes. SD reduced the expression of a cortical synaptic 
transmission module (cortical turquoise; Fig. 4), which was highly 
relevant to behavioral despair phenotypes measured in the forced 
swim test (Fig. 3A). The enriched GO terms of this module also 
included genes influencing behavior (data file S3). Therefore, these 
observations suggest that sleep loss may influence neurobehavioral 
output by perturbing sleep/wake-dependent synaptic transmission 
gene networks.

MDD alters the expression of sleep-affected cortical 
networks in the opposite directions
Since sleep disruptions are core symptoms in a range of psychiatric 
conditions, particularly MDD, we tested the hypothesis that MDD, like 
sleep loss, perturbs sleep and affective gene networks. To evaluate this, 
we investigated publicly available transcriptomic datasets collected 
from postmortem brain samples of MDD patients. Thirteen datasets 
were available in the cerebral cortex (GSE35977, GSE54562, GSE54563, 
GSE54565, GSE54567, GSE54568, GSE54570, GSE54571, GSE54572, 
GSE54575, GSE53987, and two sets from GSE92538), along with 
one dataset in the hippocampus (GSE53987; further dataset sum-
maries are provided in data file S5) (31–34). Both male and female 
subjects were included in each of these datasets. While differential 
expression analysis did not reveal significantly changed genes in 
the hippocampus (FDR < 0.1), a meta-analysis of the 13 datasets in 
the cerebral cortex identified 107 differentially expressed genes at 
FDR < 0.05 (Fig. 5A). The differentially expressed genes in the cere-
bral cortex of depressed patients highlighted pathways known to be 
involved in MDD (Fig. 5B), such as elevated expression of nitric oxide 
synthase regulator genes and decreased gene expression in serotonin 
signaling (35, 36). Although single datasets might be strongly biased 
by factors such as postmortem interval, medication, length of the 
agonal state, time of death, and population heterogeneity, a consensus 
signature obtained from a meta-analysis of multiple datasets is advan-
tageous as these dataset–specific biases are expected to be diluted or 
canceled out.

We then used GSEA to test which of the mouse coexpression 
modules were enriched with this consensus differential expression 
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signature of MDD in humans to understand how MDD may alter 
the network-level gene expression in functional modules associated 
with sleep and affective phenotypes. We found that network-level 
gene expression in four cortical modules was altered in depression 
(Fig. 5C). These include three of the modules (blue, green, and sky 
blue) that were also enriched with genes differentially expressed af-
ter SD (Fig. 4A), and the GSEA scores of these networks had oppo-
site signs for SD and MDD signatures, indicating that SD and MDD 

oppositely altered the network-level gene expression in these net-
works (Figs. 4A and 5C). The opposite effects of SD and MDD on 
network-level gene expression were most clearly visualized in the 
sky blue module, in which gene expression was up-regulated after 
SD and down-regulated in MDD (Fig.  6B). The sky blue module 
was enriched with cAMP-responsive IEGs that are known molecu-
lar markers of neuronal activity (data file S3). The module was cor-
related with a large number of sleep EEG power spectra phenotypes 
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Fig. 5. MDD-induced differential expression at the gene level and at the module level in the cerebral cortex. (A) The heat map shows expression of genes (rows) 
that were significantly changed in MDD in all samples (columns) across 13 datasets. Expression values were scaled within each dataset. Samples were hierarchically 
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(C) Module-level differential expression induced by MDD in the cerebral cortex, as determined by GSEA. For each module, the permutation-determined GSEA P values are 
plotted in log scale against GSEA scores. The dashed line indicates the Bonferroni-corrected P value threshold. A significant positive GSEA score indicates enrichment of 
genes up-regulated in MDD, while a significant negative GSEA score indicates enrichment of genes down-regulated in MDD. Only non–eQTL-enriched modules are 
shown. Each module is colored according to the module name.
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during baseline conditions (Fig. 3A). In particular, sky blue’s eigen-
gene was positively correlated with NREM sleep  power, the primary 
marker of the sleep homeostatic pressure that accumulates during wake 
and dissipates during sleep. The sky blue module was also enriched with 
genes regulating circadian rhythms (data file S3), a process known to 
be involved in MDD and the regulation of sleep (37–39). In addition 
to the sky blue module, SD and MDD also oppositely altered gene 
expression in the blue and green modules (Figs. 4A and 5C). The 
blue module, whose network-level gene expression was up-regulated 
in MDD and down-regulated by SD, was also linked to circadian 
rhythms. The module was enriched with diurnally regulated genes 
and tricarboxylic acid (TCA) cycle genes (data file S3) and was asso-
ciated with the timing of NREM sleep under baseline conditions, and 
its changes were induced by SD. The other MDD–up-regulated and 
SD–down-regulated network module (green) was enriched with genes 
associated with pre-mRNA processing and the mitochondrial inner 
membrane (data file S3). This module was also widely associated 
with EEG power spectra phenotype under baseline conditions but 
was mostly associated with EEG activities during the wake. Together, 
given their opposite expression patterns in SD and MDD, as well as 
their associated cellular functions and sleep/affective phenotypes, these 
cortical gene networks may suggest plausible mechanisms underlying 
the reduced sleep drive in MDD and the well-known antidepressant 
effects of acute SD (40).

Regulatory relationships among cortical functional 
networks suggest a pathway underlying the interactions 
between sleep and MDD
To better understand the regulatory relationships among modules 
affected by MDD and SD, we evaluated potential transcriptional reg-

ulatory relationships among all cortical coexpression network mod-
ules by constructing a TF protein-protein interaction (PPI) network 
for each module. We tested enrichment of TF-PPI networks in cor-
tical coexpression modules as an indication that a module may be 
involved in the transcriptional regulation of another module (or itself). 
In the resulting module-level transcriptional regulatory network, the 
top four most interconnected modules were the ones that were dif-
ferentially expressed in MDD (fig. S2A), highlighting a central role 
of depression-affected gene networks in cortical transcriptomic or-
ganization relevant to sleep and affective function.

In a second approach to study cortical intermodular regulatory 
relationships, we reconstructed a causal Bayesian network using our 
cis-eQTL data as a causal anchor to infer gene-gene regulatory rela-
tionships from transcriptomic data (41). We intersected the Bayesian 
network with the coexpression network modules and counted the 
number of causal relationships among genes within a module and 
between modules. As expected, regulatory interactions recovered by 
the Bayesian network were observed mostly among genes within the 
same module, although many intermodular relationships were also 
seen. A module-level regulatory relationship between two models 
was identified if their intermodular causal edges were significantly 
more than expected by random chance. Similar to the transcriptional 
regulatory network, significant regulatory relationships were observed 
in this module-level Bayesian network among sleep-affected and/or 
depression-affected functional modules, particularly the blue, green, 
pink, and turquoise modules (fig. S2B).

We then combined these two intermodular regulatory networks 
and produced a consensus network (Fig. 6A), which revealed high-
confidence intermodular interactions involving five of the six SD-
affected and/or MDD-affected coexpression modules. This analysis 
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Fig. 6. Regulatory network analysis revealed intermodular interactions and identified a key network regulator of both sleep and MDD. (A) A module-level regu-
latory network. Each node represents a coexpression network module in the frontal cortex of the (B6 × 129) F2 mice. A directed edge, representing a regulatory relation-
ship between two modules, is drawn if (i) the source node module is enriched in the TF-PPI network of the target node module and (ii) the gene-level regulatory edges 
defined by Bayesian network reconstruction are observed significantly more than random chance between the two modules. GO and cellular pathways associated with 
SD-affected or MDD-affected modules are noted. (B) Key driver analysis identified Arc and Egr2 as the upstream regulators in a subnetwork resulting from the intersection 
of sky blue module genes and the Bayesian regulatory network. Each node represents a gene, and each regulatory edge indicates regulatory relationships predicted by 
the Bayesian network reconstruction. Nodes are colored according to the meta–z score from meta-analysis of differential gene expression of SD (left) and MDD (right) 
datasets. Gray nodes represent genes that were not included in the meta-analysis of SD or MDD transcriptomic datasets.
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revealed that the circadian rhythm and cAMP-responsive IEG mod-
ule (sky blue) and a depression–up-regulated module involved in 
respiratory electron transport chain (pink) were the primary drivers 
of this complex network. Downstream of these networks were the 
TCA cycle and diurnally regulated gene module (blue), the pre-mRNA 
processing and mitochondrial inner membrane module (green), and 
the synaptic transmission module (turquoise). Together, these data 
suggest that a highly interactive pathway involving cellular energy 
metabolism, sleep/wake-dependent neuronal activity, circadian timing, 
and synaptic transmission underlies the interactions between sleep 
and MDD.

Analysis of network drivers identifies Arc as a key  
regulator of sleep and affective function
To identify key genes regulating sleep-affected and/or depression-
affected networks, we performed key driver analysis in the subnet-
works resulting from intersecting the cortical Bayesian network by 
the blue, cyan, green, pink, sky blue, and turquoise modules (data 
file S6). We ranked the key network drivers by the percentage of 
their respective module genes that are downstream of the driver. 
The top two key drivers, Arc and Egr2, were both found in the sky 
blue module, regulating 41 and 26% of the genes in the module, re-
spectively (Fig.  6B). In our mouse data, Arc was correlated with 
NREM  power, the electrographic hallmark of sleep homeostatic 
drive, during baseline sleep (r = 0.28, P = 0.005). We then investi-
gated the functional relevance of sky blue genes that are down-
stream of Arc by searching their mutant phenotypes noted in the 
Mammalian Phenotype Ontology of the Mouse Genome Informatics 
(MGI) database (42). The Arc-regulated subnetwork is overrepre-
sented by genes that are annotated in the MGI database to influence 
affective behavior (Arc, Dusp1, Fos, and Ptgs2; odds ratio = 7.56, P = 
0.0042) and sleep pattern (Fos, Per1, and Per2; odds ratio = 22.66, 
P = 6.02 × 10−4). The circadian clock gene Per2 itself is also involved 
in both homeostatic regulation of sleep (39) and the expression of 
behavioral despair, as Per2 mutant mice show decreased immobility 
in the forced swim test (43). Being the upstream driver of these sky 
blue network genes, Arc therefore is likely a key regulator of both 
sleep and affective functions.

DISCUSSION
Sleep/wake and affective behaviors are interactive and complex. 
Transcriptomic alterations that are associated with changes in 
sleep/wake and affective states have provided important clues to the 
mechanisms underlying sleep, affective functions, and neuropsy-
chiatric disorders. Here, we performed transcriptional profiling 
across four brain regions in a (B6 × 129) F2 mouse population that 
was extensively phenotyped for sleep and affective behaviors, eluci-
dating how interactions between sleep and affective functions emerged 
from multilevel transcriptomic organizations across brain regions. 
At the single-gene level, we showed that genetically regulated genes 
were associated with sleep and behavioral phenotypes across brain 
regions and that the number of eQTL genes associated with both 
sleep and affective behaviors was higher than expected by random 
chance, indicating a convergence of genes that are relevant to different 
domains of neurobehavioral functions. In particular, we highlighted 
a number of genes (for example, Grm7, Kcnj10, and Tspo) relevant 
to MDD in humans and a gene (Cdk5rap1) that was associated with 
sleep and depressive phenotypes key to the clinical manifestations 

of MDD. At the network level, we demonstrated that brain region–
specific gene networks were extensively associated with both sleep 
and behavioral phenotypes, suggesting that network-level transcrip-
tomic organizations are key to the interactions between sleep and 
affective functions. Finally, by integrating our dataset with publicly 
available transcriptomic datasets, we showed that SD in mice and 
MDD in humans affected a set of cortical networks in opposite di-
rections and identified Arc as a potential network driver of this re-
lationship, providing a mechanistic basis for the role of sleep/wake 
in MDD.

Our analyses also revealed insights into how the transcriptome is 
organized across brain regions. We demonstrated that genetic regu-
lation of gene expression acted in a “global” fashion across the frontal 
cortex, hippocampus, thalamus, and hypothalamus in mice. A pre-
vious study of diverse human tissues suggested that eQTLs tend to 
be either tissue-specific or act universally across the body, with few 
eQTLs regulating in some but not all tissues (7). Our data suggest 
that eQTLs across brain regions are much more likely to be universal 
rather than region-specific, which may reflect the relative anatomical 
and functional similarity of different brain tissues, as opposed to a 
wide range of diverse tissues throughout the body. We also demon-
strated that such conserved genetic regulation across brain regions 
had a strong impact on the network-level organization in our F2 
mouse population, producing brain region–conserved coexpression 
network modules. These genetically coregulated gene networks are 
likely due to extensive linkage across relatively large chromosomal 
regions in our F2 mice, although there were hints that some of these 
networks might also be transcriptionally coregulated by TFs.

Functionally, we show that phenotypic associations of genetically 
regulated gene expression were significantly conserved across brain 
regions, even after conditioning the phenotype-expression correla-
tion on the expression of the gene in other brain regions, indicating 
that these genes regulate or respond to sleep and affective functions 
in a similar manner in different brain regions. This is a surprising 
finding, as we expected brain region specificity in gene functions. 
However, it is interesting to note that a previous study of SD in rats 
has uncovered substantial overlap (~40 to 50%) of gene expression 
changes between the cerebral cortex and the cerebellum, a brain re-
gion that lacks electrographic characteristic of sleep (44). This sug-
gests that expression variations of individual genes may be involved 
in neurobehavioral functions in a regionally conserved fashion. Since 
this conservation of associations between eQTL genes and pheno-
types was found indiscriminately for sleep and affective behaviors, 
our observations suggest that the regulation of affective functions, 
in addition to sleep, may also involve altering the expression of in-
dividual genes in a region-conserved fashion across multiple brain 
regions. On the other hand, this conservation may also be partially 
due to the fact that we analyzed relatively large brain regions, each 
of which is composed of many diverse subunits. If one instead ana-
lyzes expression in individual nuclei or specific cell populations, less 
conservation of eQTL behavior associations may be seen.

In contrast to the gene-level conservation of functional relevance, 
gene networks were associated with diverse profiles of phenotypes in 
different brain regions. We demonstrated that gene networks in-
volved in the same molecular or cellular processes (exemplified by the 
myelination and extracellular matrix modules) exhibited distinctive 
network connectivity across brain regions, which was accompanied 
by brain region–specific phenotypic associations. These observations 
suggest an intriguing hypothesis that functional specificity of various 



Scarpa et al., Sci. Adv. 2018; 4 : eaat1294     25 July 2018

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 14

brain regions may arise from network reorganization and “rewiring” 
of cellular and molecular pathways, which may represent a previously 
underappreciated mechanism of functional differentiation of brain 
regions.

A prominent feature of our study is the integrated analysis com-
bining mouse functional gene networks and differential expression 
signatures observed for SD and MDD. Such integrated analysis over-
comes the limitations of a static snapshot of gene-network organi-
zation in our mouse data, as well as the lack of insights into the gene 
regulatory relationships in typical differential expression studies. Our 
analysis identified six cortical network modules that were differen-
tially expressed in sleep-deprived mice and/or patients with MDD. 
Notably, three modules were affected by both SD and MDD, and 
these were altered in opposite directions by the two conditions. These 
modules were associated with relevant sleep and affective phenotypes 
in our mouse dataset and were involved in specific molecular and 
cellular processes, including circadian rhythms, neuronal activity–
dependent IEGs, mitochondrial respiration, myelination, and syn-
aptic transmission. While these molecular and cellular processes have 
been previously implicated in sleep, affective functions, or MDD, 
our network analysis provided novel insights into the regulatory re-
lationships among these network functionalities by unbiasedly re-
constructing module-level regulatory networks. We show that the 
mitochondrial electron transport chain module (pink) and the clock/
IEG module (sky blue) were most upstream in the module-level reg-
ulatory network, highlighting a central role of mitochondrial func-
tion, IEGs, and the circadian clock in multiple neuronal processes 
involved in sleep and MDD (37, 45, 46).

It has been hypothesized that circadian timing and sleep homeo-
static processes, which interact with each other to drive sleep pro-
pensity and intensity, are both impaired in MDD, contributing to 
the disease pathology (3, 4). The clock/IEG module provides a po-
tential molecular basis for this hypothesis. In this module, the circa-
dian clock genes and regulators were expressed in concordance with 
molecular markers of neuronal activity. The module expression was 
correlated with electrographic hallmarks of sleep pressure and was 
sleep/wake-dependent. Thus, given its gene composition, phenotypic 
associations, and changes in response to SD, the clock/IEG module 
may function as an integrator of the homeostatic and circadian com-
ponents of sleep drive. It has indeed been established that the circa-
dian and homeostatic sleep drives are entangled with each other at 
the molecular level, involving the core circadian clock genes, including 
Per1 and Per2 in this module (39). Our findings suggest another layer 
of such molecular integration via coregulated expression of circadian 
regulators and neuronal activity markers.

It is important to note that MDD is associated with sex-specific 
characteristics, and recent studies have revealed interesting sex speci-
ficity in MDD-associated gene expression changes, which, in some 
cases, can even be in opposite directions in male and female patients 
(47, 48). Our MDD meta-analysis, however, focused on transcrip-
tomic changes that are general in both male and female patients by 
including data from both sexes and using sex as a covariate. By link-
ing this non–sex-dependent MDD signature with mouse sleep gene 
networks and SD signatures, our analysis identified molecular can-
didates underlying aspects of sleep-MDD interactions that are not 
prominently sex-specific, such as the antidepressant effects of SD 
(49). Our analysis particularly highlighted the clock/IEG module, 
and its role in linking sleep and MDD was supported by multiple 
observations. In addition to its cellular functions and associated sleep 

phenotypes, we demonstrated that the network-level expression of 
the clock/IEG module was up-regulated by SD and down-regulated 
in MDD. This observation is consistent with the hypothesis that 
sleep homeostatic drive is reduced in MDD, leading to nocturnal 
insomnia, and that acute SD leads to mood improvement due to 
increased sleep homeostatic pressure (4). A recent study of gene net-
works in multiple postmortem brain regions of MDD patients has 
identified a very similar clock/IEG network, which is enriched with 
genes showing decreased expression in female MDD patients (47). 
While this study did not evaluate whether this human clock/IEG 
network was also enriched with genes down-regulated in male MDD 
patients, our analysis combining mouse functional gene networks 
and human non–sex-specific transcriptomic signatures of MDD 
suggests that decreased expression in the clock/IEG network is like-
ly generalizable in both male and female MDD patients. The human 
clock/IEG network identified in female MDD patients did not show 
significant structural differences (measured by MDC) between male 
and female MDD patients or between MDD and control subjects 
(47), and this human network bears remarkable resemblance to the 
sky blue module identified in our mouse data. Eight of the 18 genes 
in the human network module have homologs in our sky blue mod-
ule. Since this very recent dataset was not included in our meta- 
analysis, our results provide an independent confirmation of this 
key MDD gene network, and, more importantly, our analysis linked 
the function of this network to the altered sleep regulation in MDD. 
Finally, we showed that the clock/IEG module appeared to be up-
stream of other sleep-affected or MDD-affected network modules, 
including the behavioral output module turquoise, which was en-
riched with genes known to influence various behaviors according 
to the GO analysis. Together, our results strongly support a role of 
the clock/IEG network at the center of sleep and MDD interactions.

We identified Arc as a key network driver of the clock/IEG module, 
regulating a large proportion of the module genes. Given the func-
tional importance of the module, its primary network driver represents 
an interesting candidate nexus linking sleep and MDD. Arc is an IEG 
and a crucial regulator of synaptic plasticity (50), a process influenced 
by sleep and perhaps an important component of sleep need (51, 52). 
One popular hypothesis posits that impaired synaptic plasticity is a 
major mechanistic cause of MDD, and this is supported by recent 
studies showing that ketamine rapidly alleviates MDD symptoms while 
triggering synaptogenesis (53, 54); perhaps the up-regulation of Arc 
transcription by SD could affect mood via a similar mechanism. In 
humans, a polymorphism mapped to the Arc gene region has been 
associated with commonalities in schizophrenia and bipolar disorder 
in a genome-wide association study (55), and it is a network hub gene 
in the clock/IEG network found in postmortem brains of MDD patients 
(47). During the preparation of this paper, a preliminary study (56) 
has found that deletion of Arc in mice impairs the homeostatic sleep 
rebound after SD, accompanied by a lack of SD-induced elevation in 
the expression of IEGs, many of which indeed overlap with the Arc 
downstream network identified in our study. Whether Arc also con-
tributes to MDD pathogenesis in humans and depressive behaviors in 
animal models remains an interesting question for future studies.

MATERIALS AND METHODS
Animals and phenotyping procedures
All animal studies were approved in advance by the Institutional 
Animal Care and Use Committee at Northwestern University and 
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were in compliance with the Federal Animal Welfare guideline. Male 
(C57BL/6J × 129S1/SvImJ) F2 mice (n = 232) were purchased from 
The Jackson Laboratory. The parental strains used in the present 
study were chosen on the basis of prior knowledge of strain differ-
ences in multiple phenotypes associated with sleep, affective behavior, 
and stress reactivity. Mice arrived at Northwestern University in 13 
separate cohorts at 4 weeks of age and were group-housed (two to 
four per cage) until sleep implant surgery at 10 weeks of age, after 
which animals were individually housed until necropsy. Mice were 
housed under a 12-hour light/12-hour dark cycle at room temperature 
(23° ± 2°C) with food and water available ad libitum.

All animals were subjected to a battery of behavioral tests and 
sleep measurements as outlined in Table 1, with three exceptions. 
First, the novel object recognition test was only applied to the first 
five cohorts (n = 90), after which the test was discontinued, and the 
data were not included in analyses because of the lack of robust object 
preferences demonstrated under our test settings. Second, only the 
last six cohorts of animals (n = 106) were tested for forced swim. 
Last, a subset of 121 animals in the last nine cohorts was studied for 
sleep phenotypes. Detailed phenotyping procedures for each test are 
included in the Supplementary Methods. Affective behavioral pheno-
types were categorized by the behavioral test (five categories), and 
sleep phenotypes were categorized into sleep/wake state amount, sleep 
fragmentation, REM sleep, EEG power band, and circadian organi-
zation based on prior knowledge (20, 57). Sleep phenotypes were 
measured under undisrupted baseline conditions, after 6 hours of SD 
(ZT2 to ZT8), and after 1 hour of restraint stress (ZT5 to ZT6), re-
sulting in 15 sleep phenotypic categories (data file S1).

Phenotypic data preparation
All phenotypic data were carefully inspected for outliers and covariates. 
Outliers were defined as those falling outside of six interquartile 
ranges from the first and third quartile, and up to two outlier values 
for each phenotype were removed. We then used the R/car package 
to inspect each measurement for normality, and when the data dis-
tribution is severely deviated from normal (P < 0.001 in a likelihood 
ratio test), a Yeo-Johnson power transformation was used to trans-
form the distribution to normal (fig. S1B). The influence of potential 
experimental covariates, such as animal cohorts and housing condition 
variations, was carefully evaluated by computing analysis of variance 
(ANOVA) P values of the covariate across all phenotypes and com-
paring the distribution of the P values against theoretical quantiles 
from a uniform distribution in a q-q plot. The animal cohort was found 
to have significant effects across phenotypes, and thus, all phenotypic 
data were adjusted for this covariate by fitting the data in a robust 
linear model and taking the intercept + residuals as the adjusted values.

Genotyping
DNA was extracted from small tail biopsies using the DNeasy Kit (Qiagen) 
and then stored at −20°C before genotyped using the Affymetrix 
MegAllele genotyping mouse 5K SNP Panel. Quality control and pro-
cessing of the genotyping data were performed according to the 
manufacturer’s guidelines. Of the ~5000 SNPs included on the chip, 
2458 were polymorphic between the C57BL/6J and 129/SvImJ in-
bred strains.

Expression profiling
For gene expression profiling, mice completing the behavioral and 
sleep phenotyping (that is, 121 animals in the last nine cohorts) were 

euthanized by decapitation at ZT6-7 (that is, 6 to 7 hours after light 
onset), and four brain regions (thalamus/midbrain, hypothalamus, 
frontal cortex, and hippocampus) were carefully dissected by hand. 
Tissues were immediately flash-frozen in liquid nitrogen and stored 
at −80°C before being shipped to Rosetta Inpharmatics in a single 
batch for microarray assays and data processing. At the Rosetta Gene 
Expression Laboratory, total RNA was isolated from homogenized 
brain tissue samples using TRIzol reagent (Invitrogen), and gene ex-
pression profiling was performed using the Affymetrix GeneChip 
Mouse Genome 430 2.0 Array according to the manufacturer’s guide-
lines. The data were processed separately for each tissue. Briefly, 
raw data were normalized using robust multiarray averaging with 
quantile normalization and log2-transformed. Using the same co-
variate investigation procedure as that used for the phenotypic data, 
we investigated and adjusted data for effects of technical covariates 
(such as RNA processing and array batches) and animal cohorts. We 
also used principal components analysis to capture the unknown 
source of variations in each tissue. For any principal component that 
is not associated with any genomic loci [logarithm of the odds (LOD) 
< 3], we further adjusted the data by treating those principal com-
ponents as covariates. The covariate-adjusted expression data at the 
probeset level were then collapsed to the gene level, using the median 
of all probesets that map to the same gene (58). We further trimmed 
the expression data in each brain region by removing the bottom 
10% genes with least variance and any sample whose interarray cor-
relation was two standard deviations away from the mean (59). The 
final set of expression data contains 98 samples from the frontal cor-
tex, 83 samples from the hippocampus, 94 samples from the hypothal-
amus, and 108 samples from the thalamus.

eQTL analysis and phenotypic associations
We used Matrix eQTL to identify genes regulated by genetic varia-
tions in each brain region (60), focusing only on cis-SNP located in 
proximity to the genes (<1 Mb from the transcriptional start site). 
Testing multiple SNPs per gene was controlled using a permutation-
based approach (7). We permuted samples in the gene expression 
matrix 1000 times and computed an empirical P value for each gene, 
as the fraction that the minimum nominal P value of its associations 
with all SNPs in the permuted set was lower than the true minimum 
nominal P value. Finally, we controlled FDR by calculating q values 
(61) from these empirical P values and called eQTL-regulated genes 
using a cutoff of minimum P value < 0.05 and q values < 0.05. To 
identify eQTL shared across brain regions, we used a multivariate 
Bayesian hierarchical model (8). This approach considers SNP-
probe pairs as the unit of analysis and uses the vector of Fisher-
transformed SNP-probe correlations across brain regions for each 
SNP-probe pair. Local FDRs were estimated for SNP-probe pairs, 
and we provide all significant pairs (local FDR < 0.05) in data file S2, 
which also contains the (1, 0) configuration of presence or absence 
of an eQTL in each brain region that yielded the maximum like
lihood, as well as the Bayesian posterior probability of eQTL not 
present in a brain region. The same multiple brain region approach 
was used to identify associations between eQTL-regulated genes 
and phenotypes. Genes identified in the multiregion eQTL analysis 
were included in this analysis, and the associations were condi-
tioned on eQTL genotypes. Significant (local FDR < 0.05) gene-
phenotype pairs, as well as the multiregion presence/absence 
configuration and Bayesian posterior probabilities, were included 
in data file S2.
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Gene-network analysis
We reconstructed two types of gene networks using the expression 
data from each brain region. We first used WGCNA to identify 
transcriptional coexpression networks of genes (17). In each brain 
region, we used Pearson correlations to capture linear relationships 
between genes and raised the Pearson correlation matrix to a posi-
tive power, , to define the “scale-free” adjacency matrix. The adja-
cency matrix was quadratically transformed into a TOM to account 
for nearest-neighbor links in the gene expression graph. Hierarchical 
clustering with dynamic branch cutting defined coexpression mod-
ules from the TOM. Modules were named by arbitrary colors, with 
“gray” denoting genes that failed to segregate into a specific module. 
In each brain region, we captured associations between modules 
and phenotypes by correlating the first principal component of each 
module (that is, the module eigengene) with each phenotype. Sam-
ple labels of the data were permuted 10,000 times, and a step-down 
procedure was used to calculate family-wise error rate (FWER) (62). 
Module-trait associations were considered significant when P < 
0.05 and FWER < 0.05. Pathway and GO enrichment analysis of each 
module was performed using Fisher’s exact test using gene sets from 
multiple databases downloaded from Enrichr (63) (last accessed on 
22 March 2017).

To infer regulatory relationships among genes in each brain re-
gion, we reconstructed a Bayesian regulatory network (19, 41). Briefly, 
we used significant cis-eQTL (FDR < 0.05) identified in each brain 
region as causal anchors to break Markov equivalent structures and 
infer causality. Monte Carlo Markov Chain simulations were used 
to introduce random changes into a null network, and a change will 
be accepted only if it improved the overall fit as assessed by Bayesian 
information criterion. The final network was generated as the con-
sensus from 1000 reconstructions, containing edges that were found 
in >30% of the reconstructions. To retain the directed acyclic graph 
from the consensus network, we removed network edges that were 
in a loop and found in the least number of reconstructions.

Key network drivers of the coexpression network modules were 
identified by intersecting the Bayesian network by coexpression 
modules. In each of the resulting subnetworks, all nodes (genes) be-
long to the same coexpression module, and network edges represent 
regulatory relationships inferred by the global Bayesian network 
reconstruction. We then searched through each gene in the subnet-
work for their downstream of the h-layer neighborhood (HLN), and 
key driver genes were defined as those whose HLN sizes () were 
greater than mean() + () (64).

Intermodular regulatory networks in the cortex were constructed 
using two different approaches. First, we constructed a module-level 
transcriptional regulatory network. We downloaded TF target gene 
sets compiled by the ChEA (ChIP-X Enrichment Analysis) and 
ENCODE (Encyclopedia of DNA Elements) databases from Enrichr (63) 
(last accessed on 22 March 2017), and we constructed a global PPI 
network by combining human and mouse interacting protein pairs 
downloaded from BioGRID (65) (accessed on 20 March 2017). For 
each cortical module, we identified TFs whose target genes were en-
riched in the module at Benjamini-Hochberg FDR < 0.05 and con-
structed a TF-PPI network by intersecting the global PPI network 
using the identified TFs and their immediate binding partners to 
include cofactor and regulators of the TFs. A transcriptional regulatory 
edge between two modules was established if a module was found to 
be enriched in the TF-PPI network of another module. As a second 
approach, we collapsed the global Bayesian network to the module 

level. A regulatory edge between two modules was established when 
the number of gene-level–directed edges from one module to an-
other in the Bayesian network was significantly larger than random 
(Benjamini-Hochberg FDR < 0.05) as determined by randomly per-
muting the module-gene assignments 1000 times.

Differential expression signature of SD and MDD
In all three mouse SD expression datasets, the data were collected from 
adult male C57BL/6J mice (24–27). Each of the human MDD dataset 
included data from both male and female subjects (31–34). The ex-
pression datasets were downloaded from GEO, and background-
corrected, quantile-normalized, and log2-transformed expression data 
from each dataset were used for differential expression analysis. For 
each dataset, data were adjusted for known covariates (such as sex in 
human MDD data) using an empirical Bayes method, ComBat, imple-
mented in the R/sva (surrogate variable analysis) package (66). Hid-
den covariates were estimated using sva (66). Each of the estimated 
hidden covariates and known numeric covariates (such as age and 
postmortem interval in human data) was evaluated for their effects 
on expression using robust linear models. Those that had widespread 
effects, as visualized on a q-q plot, were selected for further adjust-
ment by fitting the expression data with a robust linear model and 
taking intercept + residuals as the adjusted expression values.

For mouse SD and human MDD datasets in the cortex, we used 
meta-analyses to combine multiple datasets (67). Briefly, for each 
dataset, we computed the effect size (Hedges’ g) of MDD or SD and 
a z statistic for each probeset. We condensed the dataset and kept 
the probeset with the most extreme z score for each gene, as it was 
the least likely by chance (68). Genes that were assessed in all datasets 
(12,572 genes for human cortical MDD datasets and 13,444 genes for 
mouse cortical SD datasets) were included in the meta-analysis. We 
linearly combined the dataset–specific z scores to compute a meta–z 
statistic and estimated FDR using 1000 permutations. For brain re-
gions with only one SD or MDD dataset, dataset specific z statistics 
were computed.

To identify coexpression networks whose gene expression were 
concordantly affected at the network level by SD or MDD in a brain 
region, we rank-ordered the differential expression profile based on the 
z statistics and performed GSEA (28), which computes a Kolmogorov-
Smirnov–like statistic to test whether the gene set (for example, a 
module) was enriched at the top or bottom of the rank-ordered gene list. 
Genes in the differential expression profile were permuted 10,000 times 
to estimate FDR.

Enrichment of sleep and affective genes in the Arc-regulated 
clock/IEG subnetwork
To evaluate the functional relevance of the clock/IEG subnetwork 
regulated by Arc, we downloaded the full phenotype ontology an-
notation from MGI (42) (accessed 14 July 2017), which included 
mutant phenotypes of 11,298 genes. For genes that alter affective 
behavior, we searched for genes annotated with the ontology term 
“abnormal emotion/affect behavior” (MP:0002572) or its child on-
tology terms and found 125 genes. For genes that influence sleep, 
we searched for genes annotated with the ontology term “abnormal 
sleep behavior” (MP:0011396) or its child ontology terms and found 
544 genes. We then used Fisher’s exact test to investigate whether the 
Arc-regulated clock/IEG subnetwork (15 genes) was overrepresented 
by these sleep or affective genes. To avoid biases related to gene cov-
erage, we limited the test to consider only genes whose expression 
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was measured by microarray in our (B6 × 129) F2 dataset and whose 
mutant phenotypes were available in MGI. This gives a background 
of 8911 genes, and under this background, there were 486 affective 
genes, 119 sleep genes, and 13 genes in the Arc-regulated clock/IEG 
subnetwork.
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