Skip to main content
. 2018 Jul 10;7:e37624. doi: 10.7554/eLife.37624

Appendix 5—figure 2. Increase in population variance due to random weather conditions can be estimated from the phase shifts ΔΦ due to dark pulses (i.e., the Phase Response Curve).

Appendix 5—figure 2.

(a) A single dark pulse administered during the day shifts the phase of a clock (purple) relative to a clock that experiences no such dark pulse (black). (b) We can compute the phase shift ΔΦ due to such a dark pulse geometrically by computing the deviation in trajectory. Assuming a dark pulse of length τ, the clock evolves for a time τ according to the night cycle dynamics. At the end of such a pulse, we switch back to the day limit cycle and compute the resulting phase shift ΔΦ. (c) The resulting phase shift ΔΦ due to a pulse of length τ=2.4 hrs, depends on the time θ when it is administered but is generally smaller for larger R/L. (d) We find that ΔΦ2 for a specific τ=2.4 hrs dark pulse administered at the same time (8 AM) falls as (L/R)2 for large-R/L limit cycles. This trend matches the variance gain σclouds2 seen in stochastic simulations that average over random weather conditions (pulses of different length, intensity and time of application). The broken brown curve shows a theoretical prediction for such an average ΔΦ2, obtained by sampling the curve shown in (c) at different points of application and differing intensity. Despite the presence of a variance-reducing zero around mid-day in (c), σclouds2 drops as (L/R)2, much as ΔΦ2 for any particular pulse. (Brown theory curves translated together using one fitting parameter).