Skip to main content
. 2018 Jul 10;7:e37624. doi: 10.7554/eLife.37624

Figure 5. Internal fluctuations severely affect continuous attractors but not point attractors.

Figure 5.

(a) We model fluctuations due to finite copy number N as Langevin noise with mean zero and standard deviation ϵint, resulting in a diffusion constant ϵint21/N for the clock state. (b) The flat direction of limit cycles cannot contain diffusion, leading to large increases ϵint2Tday in population variance of clock state during each day (and night). In contrast, point attractor dynamics have constant curvature at all times, leading to a constant population variance over time. (c) The variance drops σ2σ2/s2 at dawn and dusk for limit cycles during the off-attractor dynamics between the day and night cycles. As with external noise, the variance drop is predicted by the slope dP(θ)/dθ of the circle map between the cycles. This dawn/dusk drop goes to zero for large R/L limit cycles but variance still increases during the day and night. (d) The variance for point attractors is Dτrelax, a constant determined by the curvature τrelax-1 of the harmonic potential. (e) Thus, with only internal noise present, the precision of limit cycle clocks increases with increasing separation L/R, asymptotically approaching the performance of point attractors.