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Information entropy of coding metasurface

Tie-Jun Cui1,2, Shuo Liu1,3 and Lian-Lin Li4

Because of their exceptional capability to tailor the effective medium parameters, metamaterials have been widely used to con-

trol electromagnetic waves, which has led to the observation of many interesting phenomena, for example, negative refraction,

invisibility cloaking, and anomalous reflections and transmissions. However, the studies of metamaterials or metasurfaces

are mainly limited to their physical features; currently, there is a lack of viewpoints on metamaterials and metasurfaces from

the information perspective. Here we propose to measure the information of a coding metasurface using Shannon entropy.

We establish an analytical connection between the coding pattern of an arbitrary coding metasurface and its far-field pattern.

We introduce geometrical entropy to describe the information of the coding pattern (or coding sequence) and physical entropy to

describe the information of the far-field pattern of the metasurface. The coding metasurface is demonstrated to enhance

the information in transmitting messages, and the amount of enhanced information can be manipulated by designing the coding

pattern with different information entropies. The proposed concepts and entropy control method will be helpful in new informa-

tion systems (for example, communication, radar and imaging) that are based on the coding metasurfaces.
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INTRODUCTION

The subwavelength nature of metamaterials and/or metasurfaces
enables them to be described by effective medium parameters (for
example, electric permittivity, magnetic permeability, index of refrac-
tion and impedance)1,2. Because of the flexible designs of meta-atoms
and their arbitrary arrangements, the effective medium parameters
can be tailored to have extreme values3,4, high inhomogeneity5,6 and
strong anisotropies7,8. Governed by the transformation optics9,10 and
other physical principles11, this unique flexibility in design makes
metamaterials and metasurfaces very powerful in controlling the
electromagnetic waves. Hence, many exciting and unusual phenomena
that do not occur in conventional media have been realized in
metamaterials and/or metasurfaces, such as negative refraction3, perfect
imaging12, invisibility cloaking9,10,13–17, optical and radar illusions18,19,
electromagnetic concentrators20 and rotators21, microwave and optical
black holes11,22,23, anomalous reflections and transmissions24,25, optical
vortex24,26, broadband light bending27, photonic spin Hall effect28,
polarization traffic controls29,30, and polarization rotations31. In
addition to the observation of exciting physical phenomena, metama-
terials have found wide applications in engineering due to their
excellent performance, including novel antennas32,33, microwave
components34 and satellite communications.
However, the current studies of metamaterials and metasurfaces

have been mainly limited to their physical features and the related
phenomena and functional devices, with a lack of viewpoints from the
information perspective. Recently, the concepts of coding, digital

and programmable metamaterials/metasurfaces have been introduced
and experimentally demonstrated35–37; such concepts can bridge
the gap between the metamaterial (or metasurface) and information
science. Instead of using the effective medium parameters to describe
metamaterials, ‘0’ and ‘1’ coding particles with opposite phase
responses have been used to characterize metamaterials. Hence, the
digital coding information (or messages) can be directly encoded to
the coding metamaterials, which can further be digitally controlled
and even programmable35. The manipulations of the electromagnetic
waves using the coding metasurfaces have been investigated at both
microwave and terahertz frequencies35–37.
Information theory originally evolved from physics but has since

developed rapidly as a new and independent science. Information
science is currently a broad interdisciplinary field. According to the
definition by Borko38, ‘information science is that discipline that
investigates the properties and behavior of information, the forces
governing the flow of information, and the means of processing
information for optimum accessibility and usability.’ Over the past
several decades, information science and technologies have experi-
enced huge improvements and have pushed the developments
of modern industries and societies. Hence, it is important to connect
information science with metamaterials or metasurfaces, which is one
of the most attractive topics in physics. In this article, the goal is to
answer the following questions: (1) How can one measure the
information of a metasurface? (2) How does one measure the
information of the physical features of metasurface? (3) Can a
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metamaterial or metasurface enhance information capacities?
(4) Finally, how does one manipulate information using a metasur-
face? Here we focus on studying coding metasurfaces because they can
directly interact with the coding information. However, the proposed
concepts, methods and interpretations can be easily extended to
general metasurfaces and metamaterials.

MATERIALS AND METHODS

In information theory, any system is composed of transmitters,
receivers and channels. The transmitter is used to generate messages,
which are modulated by the channel and finally sent to the receiver.
In this context, Shannon entropy is the average value of the
information carried in each message39. Without loss of generality,
we consider a reflection-type information system, as shown in
Figure 1a, in which the electromagnetic waves containing the messages
sent by the transmitter are reflected by a perfectly electrical conductor
(PEC). Through the free-space channel, the modulated electromag-
netic waves are captured by the receiver in the far-field region. Here
the PEC reflector is part of the channel for message transmission.
If the PEC reflector has infinite size, then total reflection will occur;
if it has a finite size, there will be a scattering effect, as discussed below.
In fact, we can use coding metasurfaces to replace the PEC reflector

to further modulate the channel and enhance the information carrier,
as demonstrated in Figure 1b. Through the coding metasurfaces,
we could control the information sent by the same transmitter.
To investigate the information modulation quantitatively, we

consider a general case of a 1-bit coding metasurface, whose electric
current density is expressed as J x; yð Þ ¼ J0eij0 , for coding digit ‘0’;
J(x,y)= J0e

i(j0+π), for coding digit ‘1’. Here J0 and j0 are constants.
After a simple derivation (Supplementary Information), we easily
show that the far electric fields can be written in a closed form as

Es r; y;jð Þ ¼ iom0
4pr

P ksinycosj; ksinysinjð Þ
in which r, θ and j indicate the distance, elevation angle and azimuth
angle in spherical coordinates, respectively, k is the wavenumber in
free space and P(ksinθcosj, ksinθsinj) is the Fourier transformation
of the electric current distribution on the coding metasurface.
Note that the far electric field of the coding metasurface (that is, the
physical information) is just the Fourier transform of the coding
pattern (that is, the geometrical information).
Next, we study the geometrical information and physical informa-

tion of coding metasurfaces quantitatively. To describe the geometrical
(or coding pattern) information, we adopt the normalized Shannon
entropy defined as H1=−N− 1∑xP(x)log2P(x), in which xAf0; 1gN ,
N is the number of coding units and P(x) represents the correspond-
ing probability. Clearly, the entropy H1 reaches its maximum value
of 1, as the appearances of digital states 0 and 1 on the coding units
have equal possibility of 1/2 independently. Usually, the metasurface
units are programmed in a clustered manner, and the neighboring
metasurface units are dependent on each other. For simplicity, we
adopt the anisotropic Markov random field to model the proba-
bility function P(x). As a consequence, the entropy reads
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Figure 1 A reflection-type information system and the information entropy. (a) A reflection-type information system composed of a PEC reflector.
(b) A reflection-type information system composed of a coding metasurface. (c) Scheme of the calculation of information entropy H2. (d) The process to
obtain the far-field pattern from the coding pattern of a metasurface using FFT.
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H2 ¼ �P2
i¼1

P2
j¼1 Pijlog 2Pij for a pair of units indexed by i and j, in

which Pij is the joint probability of a group G(i, j) representing two
adjacent coding elements, as shown in Figure 1c. For any coding
metasurfaces, there are four different cases: G(0, 0), G(0, 1), G(1, 0)
and G(1, 1). The probability of the appearance of these four cases
determines the two-dimensional (2D) information entropy of a coding
metasurface. From Figure 1c, we note that the adjacent code in
group G(i, j) can be on either the right side (GR(i, j)) or the upper side
(GU(i, j)) of the current code (indicated by the red color). Hence, we
should first calculate the 2D entropies of the coding pattern when the
adjacent pixel is considered in the row (H2R) and column (H2U), after
which we can arrive at the information entropy approximated by
H2ave= (H2R+H2U)/2 up to a constant.
Figure 1d presents the processes to calculate the physical entropy of

a coding metasurface from its far-field pattern. As discussed above, the
far-field pattern can be directly obtained by the fast Fourier transform
(FFT) of the coding pattern. However, a coordinate transformation
is required to obtain the image of final far-field pattern in the
2D polar coordinate system from the original FFT image (see
Supplementary Information for details). On the basis of the
image of far-field pattern, the physical entropy of a coding metasurface

is expressed as H2 ¼ �1
2

P256

i¼1

P256

j¼1
Pijlog 2Pij, in which Pij represents the

joint probability of a group G (i, j): the gray level i of the current pixel
and the gray level j of its adjacent pixel. The physical entropy of a
coding metasurface can directly estimate the average amount of
information of each pixel in its far-field pattern image.

RESULTS AND DISCUSSION

Using the above-defined geometrical and physical entropies, we
reconsider the reflection-type information system. The PEC reflector
is in fact a full-‘1’ coding metasurface35, as shown in Figure 2a(i),
which has zero geometrical entropy due to the constant coding
sequence. The FFT, polar far-field images and three-dimensional
(3D) far-field pattern of the PEC reflector are illustrated in Figure 2a
(ii)–2a(iv), from which the physical entropy is calculated as 0.9273.
Here the electric size of the PEC reflector is 14.93× 14.93 λ2 (λ is the
free-space wavelength). This physical entropy can be considered the
basic far-field information of the reflection system with a certain size.
We remark that the physical entropy of the PEC reflector will decrease
as the size increases. Ideally, in the case of infinite PEC reflector, the
far-field pattern will be a Dirac delta function, and the physical entropy
will thus approach zero.
For the same-sized coding metasurface, we use different coding

sequences to control both the geometrical and physical entropies.
Figure 2b–2d demonstrates three cases of periodic coding patterns
and their far-field features. In both Figure 2b(i) and 2d(i), ‘0’ and ‘1’

(i) (ii) (iii) (iv) a

b

c

d

Figure 2 Periodic coding metasurfaces and their far-field patterns. (a) PEC reflector (or full-‘1’ coding metasurface). (b) 010101… periodic coding
metasurface. (c) 01110111… periodic coding metasurface. (d) (0,1;1,0) chess-board periodic coding metasurface. (i) Coding patterns. (ii) FFTs of the
coding patterns. (iii) 2D polar far-field patterns. (iv) 3D far-field patterns.
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coding particles appear equally in quantity; hence, the geometrical
entropy will be 1 if the original Shannon’s definition (H1) is adopted.
However, such two coding distributions are apparently different, and
we should thus use H2 entropy to measure their geometrical
information. For the case in Figure 2b(i), if the probabilistic model
considers individual codes to be independent, then H2= 0.7028.
Nevertheless, if the coding sequence is considered a 2× 2 matrix
(0,1; 0,1) periodically with four codes as a symbol, then the entropy
becomes zero. Therefore, there are only four independent codes
in this periodic case, and the total geometrical information is
4× 0.7028= 2.8112. Because the total number of periodic blocks on
the coding metasurface is 8× 8= 64, the average geometrical entropy
should be 2.8112/64= 0.0439. The corresponding FFT image and
far-field patterns are demonstrated in Figure 2b(ii)–2b(iv), and the
physical entropy is calculated as 1.3923. Compared with the case of

Table 1 The geometrical and physical entropies of different coding

patterns on a metasurface

Coding pattern Geometrical entropy Physical entropy

Figure 2a 0.0000 0.9273

Figure 2b 0.0439 1.3923

Figure 2c 0.0369 1.8047

Figure 2d 0.0566 2.0467

Supplementary Fig. S2a 0.2474 1.5996

Supplementary Fig. S2b 0.3522 1.7200

Supplementary Fig. S2c 0.4798 2.1795

Supplementary Fig. S3a 0.5744 2.4144

Supplementary Fig. S3b 0.5111 2.3485

Supplementary Fig. S3c 0.6193 3.2114

Figure 3c 0.7780 4.6413
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Figure 3 Non-periodic coding metasurfaces and their far-field patterns. (a) Jerusalem-cross coding metasurface. (b) Circular-ring coding metasurface.
(c) Random coding metasurface. (i) Coding patterns. (ii) 2D polar far-field patterns. (iii) 3D far-field patterns.
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PEC reflector shown in Figure 2a, we notice that the physical entropy
of the coding metasurface is increased. This is apparent because the
metasurface in this case radiates two beams (Figure 2b(iv)), which

naturally have more information than the single beam radiated by the
PEC reflector (Figure 2a(iv)). For the other two periodic coding cases
presented in Figure 2c and 2d, the average geometrical entropy and
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physical entropy are given in Table 1. We clearly observe that the
coding sequence 011101110111… (with the average geometrical
entropy of 0.0369) produces three far-field beams (Figure 2c(iv)),
which contain more information (with the physical entropy of 1.8047)
than the two-beam pattern; the chess-board coding (with the
average geometrical entropy of 0.0566) generates four far-field beams
(Figure 2d(iv)), which possess more information (with the physical
entropy of 2.0467) than the three-beam pattern.
We further study the information entropies of non-periodic coding

metasurfaces. Figure 3a–3c(i) shows three typical non-periodic coding
patterns, that is, Jerusalem-cross, circular-ring and random codes,
in which the probabilistic model of individual code is independent,
resulting in larger geometrical entropy. Here the white and black
areas indicate ‘0’ and ‘1’ coding particles, respectively. Interestingly,
Figure 3a and 3b shows that the 2D polar far-field pattern (Figure 3a(ii))
of the Jerusalem-cross coding also looks like a Jerusalem cross; in
contrast, the 2D polar far-field pattern (Figure 3b(ii)) of the circular-ring
coding is composed of a series of circular rings and a Jerusalem cross.
The 3D far-field patterns shown in Figure 3a–3b(iii) present clearly
designed functionalities: the Jerusalem-cross coding produces a main
beam and four side beams directing to different angles, and the circular-
ring coding produces four main beams and surrounding sides beams.
In a specific non-periodic coding metasurface, the areas of ‘0’ or ‘1’

particles will also have significant impact on the information entropy.
Supplementary Fig. S2 illustrates three Jerusalem-cross codes, in which
the ‘0’ coding particles gradually increase from Supplementary Fig. S2a
to S2c; the corresponding geometrical entropies are 0.2474, 0.3522 and
0.4798, respectively. The results indicate an increase in the amount of
geometrical information. In all three cases, the 2D polar far-field
patterns look like three Jerusalem crosses of different dimensions
(Supplementary Fig. S2a–2c(ii)), and the 3D far-field patterns always
have a main beam surrounded by multiple side beams with different
levels (Supplementary Fig. S2a–2c(iii)), in which the corresponding
physical entropies are 1.5996, 1.7200 and 2.1795. The study of
circular-ring codes with increasing ‘0’-particle areas is presented in
Supplementary Fig. S3, in which the geometrical entropies for cases a,
b and c are 0.5744, 0.5111 and 0.6193, respectively, and the physical
entropies are 2.4144, 2.3485 and 3.2114, respectively. It is interesting
to find that the information entropy in this specific case does not
increase monotonically as the ‘0’ area increases. However, when the
geometrical entropy decreases, the physical entropy also decreases, as
clearly illustrated in Table 1.
An extreme example for non-periodic coding is the random pattern,

as depicted in Figure 3c(i), in which the geometrical entropy reaches
the very high level of 0.7780. For the random coding pattern, the 2D
polar far-field pattern is also randomly distributed (Figure 3c(ii)),
which results in a large physical entropy of 4.6413 and implies
significantly enhanced information. The 3D far-field pattern in Figure
3c(iii) clearly demonstrates the diverse beam radiations or scattering,
which carry much more information than the above-described regular
(or simple) patterns with fewer beams. For comparison, the geome-
trical and physical entropies for the random coding pattern are listed
in Table 1. Considering all examples shown in Table 1, we observe that
the physical entropy and geometrical entropy have an approximately
monotonic relation. In most cases, when the geometrical entropy for
coding pattern increases, the physical entropy for far-field pattern
becomes higher.
To quantitatively explore the relationship between the geometrical

and physical information entropies, we consider a large number of
random coding patterns, which are generated by the model of cellular
automata machine40, mimicking the diffusion process of gas molecules

(Supplementary Information). At the initial state shown in Figure 4a(i),
the coding metasurface is composed of 64×32 coding particles of ‘1’
(on the left side) and 64×32 coding particles of ‘0’ (on the right side)
that are totally separated from each other, forming a 64×64 coding
metasurface with the minimum geometrical entropy. The diffusion of
coding patterns is realized by each time randomly selecting two adjacent
coding particles and then interchanging them. We set 500 steps of such
interchanging operations as one iteration cycle. Figure 4b(i) and 4c(i)
gives the random coding metasurfaces generated at the 50th and 99th
iterations. Together with the initial state, the far-field patterns are
demonstrated in Figure 4a–4c(ii–iii). As the number of iterations
increases, from Figure 4a–4c, we note that the coding pattern becomes
more random, the 2D polar far-field pattern becomes more diffuse and
the 3D far-field pattern has increasing amounts of radiation or
scattering beams. The detailed generation process of the random coding
metasurfaces is presented in Supplementary Fig. S5. When the iteration
increases from 1 to 99 (or the step of interchanging operation increases
from 0 to 49 500), the geometrical and physical entropies of the coding
metasurfaces are depicted in Figure 4d. As expected, as the number of
iterations increases, the geometrical entropy roughly becomes larger
(similar to the gas molecules, see Supplementary Information), and the
physical entropy generally becomes larger.
It is very important to realize the proposed coding metasurfaces and

verify their far-field patterns by full-wave numerical simulations.
Hence, we design a metamaterial element, as shown in Figure 5,
to realize the ‘0’ and ‘1’ particles. Figure 5a shows the structure of the
coding particle, which is composed by printing a metallic square
sheet with length L on the top of a substrate with period p= 7 mm
and thickness d= 1.6 mm. The thickness of metallic layer is set as
0.018 mm. The permittivity and loss tangent of the dielectric substrate
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(FR4) are εr= 4.3 and δ= 0.03. Using the frequency-domain solver in
commercial software, the CST Microwave studio, we obtain the
amplitudes and phases of eight coding particles at 10 GHz in
Figure 5b. These coding particles are labeled as 3-bit coding digits
000, 001, 010, 011, 100, 101, 110 and 111, when the length L equals 7,
6.16, 5.67, 5.38, 5.15, 4.88, 4.43 and 1.26 mm, respectively. Here the

adjacent coding particles have a phase difference of π/4, forming a 3-
bit reflection-type coding metasurface. Because the backside of the
substrate is fully covered by a PEC, the amplitudes of all eight coding
particles are beyond 0.84, thus providing a good approximation to
ideal coding particles with unity amplitude of reflection. We note that
such a 3-bit coding metasurface can be utilized as a 2-bit or 1-bit
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coding metasurface by simply selecting the coding particles with
corresponding phase differences of π/2 and π, respectively.
To validate the performance of the proposed metasurfaces and

the accuracy of far-field pattern calculated theoretically by FFT, we
consider three metasurfaces encoded with the periodic coding
sequences 010101…, 01110111… and (0,1;1,0) chess-board, as shown

in Figure 2b–2d, respectively. In real structures of coding metasurfaces,
the electromagnetic coupling between adjacent unit cells with different
geometries will result in different reflection responses from the ideal
reflections obtained for a single unit cell placed in the infinitely
periodical boundary condition. To minimize this effect, we combine
M×M identical coding particles to form a super unit cell, as can be
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observed from the coding patterns shown in Figures 6,7 and 8b(i).
For the first and third cases (Figures 6 and 8), each coding digit
includes 4× 4 identical coding particles; whereas for the second case
(Figure 7), each coding digit includes 2 × 2 identical coding particles.
Therefore, all three metasurfaces have the same size as 64× 64,

equivalent to 448× 448 mm2. Figures 6, 7 and 8b(ii) illustrate
the numerically simulated far-field patterns in the 2D polar coordinate
system for such three cases, all of which are in excellent agreement
with the theoretically calculated results given in Figures 6, 7 and 8a(ii).
Similarly, the 3D far-field patterns of the theoretically calculated
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results (Figures 6, 7, 8a(iii)) and the numerically simulated results
(Figures 6, 7, 8b(iii)) are in excellent agreement. The full-wave
simulations of the realistic coding metasurface structures validate
the accuracy of the far-field patterns that are calculated theoretically
by FFT.
As experimental verification of the concept proposed in this work,

a sample encoded with periodic sequence ‘010101…’ was fabricated
using the standard printed circuit board process on the FR4 substrate
(εr= 4.3+0.129i), as shown in Figure 9a; the sample is composed
of 32× 32 coding particles and covers an area of 224× 224 mm2.
All other parameters of the fabricated sample are kept the same as
those in numerical simulations in Figure 6. The photograph of the
experimental setup for the measurement of far-field scattering pattern
in the horizontal plane is shown in Figure 9b. A horn antenna with
working bandwidth from 9.48 to 15 GHz was employed as the feeding
antenna to generate the quasi-plane wave for the coding metasurface.
Both the feeding antenna and sample were coaxially mounted on a
board at a distance of 1.8 m and could automatically rotate 360° in
the horizontal plane with high precision. We chose the distance based
on the consideration that the feeding antenna should be placed inside
the Fraunhofer region of the coding metasurface, which can be
calculated by R= 2L2/λ, where L is the maximum electric length of
the antenna and λ the working wavelength. Substituting L= 317 mm
and λ= 30 mm into the formula, we obtain the required distance R as
3.34 m. This distance ensures that the optical path difference between
the center and the edge of the coding metasurface is less than λ/16,
providing a quasi-plane wave illumination for the coding metasurface,

as is considered in the far-field simulations in CST. As R grows with
L2, the distance between the feeding antenna and coding metasurface
will become too large for our microwave chamber; thus, the size of the
fabricated sample is reduced to half of the model in the simulations.
One may notice that the distance 1.8 m in experiment is smaller than
the minimum distance R calculated from the formula. We remark that
the aforementioned distance of the far-field region was obtained from
the assumption of point source excitation, whereas in our experiment
the wavefront generated from the horn antenna is relatively flat. Thus,
the corresponding distance R could be reduced accordingly.
In the experiment, the receiving antenna (not shown in the

photograph) automatically recorded the electric fields in the horizontal
plane (E-plane) every 0.1° as the board carrying both the feeding
antenna and sample rotated from 0° to 360°. Although it is designed to
operate at 10 GHz, we obtained a better performance at a slightly
larger frequency of 10.5 GHz, as shown in Figure 9c. The frequency
shift could be caused by the inaccurate permittivity of the substrate
of the fabricated sample. For comparison, we have also provided
the corresponding simulation result in Figure 9d at 10 GHz. Note
that both the measured and simulated radiation patterns have been
normalized to each of their maximum values. We observe that the
centers of the scattering peaks of the measured results appear at
± 34.1°, in very good agreement with the simulations (±32.1°). In
addition, the scattering patterns of the measured and simulated results
are highly consistent with each other under the dB scale. Limited by
the current experiment condition, we could not measure the 3D
scattering patterns for the calculation of entropy. However, given the
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highly consistency between simulated and measured results, we believe
that all the theoretical calculations and predictions are reliable.
The coding metasurface resembles the phase-array antenna or the

conventional reflectarray antenna that are widely used in the
microwave41,42 and terahertz spectra43, in the sense that both of them
are composed of an array of discrete elements with controllable
excitation amplitude and phase, and are capable of producing desired
radiation/scattering beams in a flexible manner. However, the
metasurface and the phase-array antenna are different in several
important aspects. First, the coding metasurface functions as not only
an active radiation antenna but also a controllable communication
channel. We provide the perspective of information entropy on
the coding metasurface and establish theoretically and experimentally
the link of information capacity between the coding pattern and its
resultant physical response. Our finding indicates that coding patterns
with larger entropy could produce more diffuse scattering patterns, that
is, possessing more information. This conclusion will serve as a central
role in many cutting-edge imaging systems, such as a compressive
imaging system, in which the coding metasurface is used as
a programmable and expressible lens. Second, the coding metasurface
is usually designed with smaller unit cells, that is, typically, λ/8 to λ/4, as
opposed to the conventional reflectarrays with the requirement on the
size of unit cell not less than half free-space wavelengths. Such a unique
property provides the coding metasurface with several advantages over
the conventional reflectarray. On one hand, suppose that the size of
unit cell of coding metasurface is λ/6; in this case, the whole 6× 6
identical coding particles could be arranged in a square area of λ× λ,
whereas reflectarrays can only accommodate 2×2 unit cells in the same
area. Thus, the coding metasurface is more powerful than the
conventional reflectarray in the sense that we could obtain an accurate
expression of the electromagnetic response, which is specially desired in
many computational imaging systems. On the other hand, the coding
metasurface can be used to perform controllable conversion from the
propagating wave to the surface wave (SW) by applying the ‘00 01 10
11…’ coding sequence25 because the size of coding particle is smaller
than λ/4. However, the reflectarray is unable to provide sufficient
momentum compensation for the normal incidence to be converted to
SW because the length of the gradient phase across 2π exceeds λ.

CONCLUSIONS

We showed that the far-field pattern of a coding metasurface is just the
Fourier transform of the coding pattern, which provides an analytical
connection between the geometrical (coding) and physical (far field)
worlds of metasurfaces. This connection was validated by using
realistic structures through full-wave simulations. We proposed the
use of geometrical entropy to measure the information of the coding
pattern and the use of physical entropy to measure the information of
far-field pattern. Three types of coding metasurfaces (periodic coding,
non-periodic coding and random coding) were presented, demon-
strating that the coding metasurfaces can enhance the transmission of
information, and the information can be controlled by the coding
patterns. We also showed that, as the geometrical entropy increases,
the physical entropy generally increases. The proposed concepts and
entropy manipulations can find applications in new functional devices
and information systems. For example, controlling multi-beam radia-
tions is beneficial to multi-channel communications and multi-target
radars, and large amounts of random-beam radiations or scattering are
essential to the single-source imaging system44.
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