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Optically sizing single atmospheric particulates with a
10-nm resolution using a strong evanescent field

Xiao-Chong Yu1, Yanyan Zhi1,2, Shui-Jing Tang1,3, Bei-Bei Li1, Qihuang Gong1,2,3, Cheng-Wei Qiu4,5,6 and
Yun-Feng Xiao1,2,3

Although an accurate evaluation of the distribution of ultrafine particulate matter in air is of utmost significance to public health,

the usually used PM2.5 index fails to provide size distribution information. Here we demonstrate a low-profile and cavity-free

size spectrometer for probing fine and ultrafine particulate matter by using the enhanced particle-perturbed scattering in

strong optical evanescent fields of a nanofiber array. The unprecedented size resolution reaches 10 nm for detecting single

100-nm-diameter nanoparticles by employing uniform nanofibers and controlling the polarizations of the probe light. This size

spectrometry was tested and used to retrieve the size distribution of particulate matter in the air of Beijing, yielding mass

concentrations of nanoparticles, as a secondary exercise, consistent with the officially released data. This nanofiber-array probe

shows potential for the full monitoring of air pollution and for studying early-stage haze evolution and can be further extended to

explore nanoparticle interactions.
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INTRODUCTION

The global environment is suffering from air pollution due to excess
particulate matter, resulting in huge societal and economic costs1–5.
Air quality is usually characterized by the mass concentration of fine
particulate matter with aerodynamic diameters o2.5 μm (PM2.5),
which is mainly contributed by micron-sized particles, whereas the
hazard induced by ultrafine particulates (with diameters smaller than
hundreds of nanometers) remains seriously underestimated. For
instance, ultrafine particles are believed to have even more aggressive
health implications than larger particulates because they can penetrate
the lungs, causing lung cancer, and can also penetrate the air–blood
barrier6, entering the circulation system and resulting in respiratory
illness and even organ dysfunction7–13. Therefore, more attention
should be paid to the ultrafine particles, and their size distribution, in
addition to their mass distribution, is becoming increasingly important
for the evaluation of air hazards.
Various techniques have been developed for measuring the size

distribution of particulate matter. Compared with the conventional
aerosol techniques such as the use of a scanning mobility particle sizer,
an electrical low pressure impactor and a tapered element oscillation
microbalance14,15, optical methods show great potential due to their
non-destructive nature, electromagnetic noise immunity and real-time
in situ detection capability16–19. The typical optical methods mainly

utilize absorption or scattering methods. However, the absorption
methods are only applicable for lossy targets20–22, while the scattering
methods, including dynamic light scattering and static light
scattering23,24, either require ensemble analytes with high enough
concentrations25–28 or suffer from low accuracy in particle size
estimation29–31. In addition, the conventional scattering methods
using free space laser light must be operated in a closed cavity to
avoid disturbance from environmental light, thus making the system
rather complicated. Interferometric scattering microscopy and photo-
thermal microscopy have both achieved single nanoparticle
detection32–34 but require a highly stable light source and extra
imaging systems, thus also making the detection system quite
complicated. The recently developed optical microcavity sensing
systems19,35–44 using scattering methods have removed the require-
ment for a closed cavity and achieved an unprecedented low detection
limit. However, microcavity-based sizing typically requires a tunable
laser source and the strict control of near-field coupling. In this work,
we propose and demonstrate a low-profile, high-accuracy, cavity-free
and real-time size probing system working in an open environment
using a nanowaveguide array structure with a strong evanescent field
(Figure 1a and 1b). The spectrometry capability of the new system is
first characterized by measuring the size distribution of single standard
polystyrene (PS) nanoparticles, and a sizing resolution of 10 nm is
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achieved for 100-nm-diameter nanoparticles by controlling the
polarizations of the probe light. Then the size spectrometer is applied
to monitor the fine and ultrafine particulate matter in Beijing from
11 December 2015 to 12 January 2016 and from 25–26 December
2016 when the first red alert on air pollution was issued in Beijing.
In addition, the mass concentrations are obtained from the size
information on the size distributions, for which the evolution
trend agrees with the official data presented by the Beijing
Municipal Environmental Monitoring Center (see Supplementary
Information).

MATERIALS AND METHODS

Fabrication of the nanowaveguide structure and the nozzle
To increase the sensing area, we fabricated a nanowaveguide structure
consisting of five nanofibers instead of one (see Figure 1a) with a long
joint fiber loop to minimize the polarization change. A single fiber
arranged into a serpentine pattern with five turns is pulled at the same
time using a home-built heat-and-pull system containing a ceramic
microheater (NTT-AT, CMH-7022, Kawasaki, Japan) and a step
motor (Shanghai-Lianyi, Model XXM80H-50, Shanghai, China). The
temperature of the heater is set to be 41200 °C over the length of
9 mm to obtain a nanofiber of uniform diameter along the length of
several millimeters. By controlling the fabrication parameters, such as
the heating temperature, the pulling rate and the pulling time period,
the nanofibers can be repeatedly fabricated with reproducible dia-
meters. A glass nozzle is fabricated by heating and pulling a glass
capillary to a final inner diameter of B50 μm using the same
microheater and the step motor.

Particle preparation
The standard PS nanoparticles (Thermo Fisher Scientific) used as the
benchmark analytes are first diluted to tens of picomoles and then

atomized using an ultrasonic atomizer to prevent particle aggregations.
As the ultrafine particulate matter in the air samples is examined, a
filter membrane is used in front of the syringe to eliminate the
influence of the particles with diameters 41.0 μm. The Rayleigh–Gans
theory can thus be applied to calculate the particle size (see Section I of
Supplementary Information).

Measurement system
A syringe pump (Harvard, Model PHD22/2000) is used to inject the
nanoparticles into a gas pipe and then to the nanowaveguides via the
glass nozzle. The probe light source is a 680-nm diode laser (New
Focus, Model TLB6309), and a photodetector (Newport, Model 918D)
is used to monitor the transmitted power in real time. A polarization
controlling system consisting of a quarter wave plate, a polarizer and a
polarization controller was built to generate a circular polarized
probe light.

Data acquisition and analysis
The transmission power collected by the photodetector is analyzed by
a data acquisition system (National Instruments, Model USB-6251
BNC) with an acquisition rate of 100 kS s− 1. A 2000-point average is
first applied to suppress the relative noise level (i.e., the ratio of the
noise of the power to the absolute power) from 10− 3 to B10− 4.
A step-finding algorithm is applied to determine the step drops in the
transmission power following Yu et al45, corresponding to the single
nanoparticle-binding events on the nanowaveguide.

RESULTS AND DISCUSSION

The nanowaveguide structure consists of serpentine patterned nano-
fibers (with a 250-μm separation between each two adjacent nanofi-
bers), fabricated using a home-built heat-and-pull system including a
ceramic heater and a step motor (see Supplementary Information and
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Figure 1 Size probing system. (a) Schematic set-up of nanowaveguide-based size spectrometry. The analyte nanoparticles are blown onto the nanowaveguides
via a glass nozzle. DAQ, data acquisition system; PLC, polarization controller. (b) Optical image of the nanowaveguides, consisting of five in-serial identical
nanofibers with a distance of 250 μm between each adjacent two. (c) Comparison of the diameter distribution of a nanowaveguide from the theoretical
prediction (blue curve) and scanning electron microscopic (SEM) measurements (red stars). Inset shows SEM images of three segments, with diameters of
392, 363 and 349 nm from left to right. The shadow marks the waveguide range with the length of 3 mm, for which the diameter variation is approximately
10%. Note that the scale of the horizontal axis in the range of −1.5 to 1.5 mm is different from the other range.
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Refs. 46,47). The optical image is shown in Figure 1b. As the heating
temperature is highly uniform in a large area, the five nanowaveguides
are almost identical and the diameter of each one is uniform within
the range of a few millimeters, thus significantly decreasing the
uncertainty of the nanoparticle sizing measurements. Experimentally,
the diameter of the waveguides is determined by controlling the
elongation length and the heating temperature. The profile of the
resulting nanowaveguides can be predicted using the thin filament
equation (the blue solid curve in Figure 1c), which is confirmed by the
results from the scanning electron microscopic measurements (the red
stars in Figure 1c). These result shows that the size variation of a
nanowaveguide (with a waist diameter of B350 nm) is B10% within
the 3-mm length, confirming the reasonable uniformity of the
sensing area.
The analyte nanoparticles are blown onto the nanowaveguide

structure using a glass nozzle (shown in Figure 1a) via a syringe
pump (see Supplementary Information). The flow rate is set at
20 mLmin− 1, so that individual nanoparticles bind on the waveguide
separately, and the multi-particle-binding event probability is o2%
(see Supplementary Information). A 680-nm wavelength diode laser is
used as the probe light source, and the transmitted power is monitored
by a photodetector in real time. The transmission change transduces
the particle-induced scattering, providing the information on the
nanoparticle size.

Considering the inhomogeneous evanescent field across the nano-
particle, the Rayleigh–Gans scattering theory (see Supplementary
Information) is employed to determine the scattering efficiency Psca,
defined as the scattering power divided by the pump power45,48,49. The
interaction between the nanoparticle and the guided light is in the
perturbation regime, and strong coupling is absent50. In addition to
the transverse fields, the longitudinal field is also considered in the
calculation51. The scattering efficiency depends on the properties of
the nanowaveguide (evanescent field distribution), the analyte nano-
particle (size and refractive index) and the surrounding medium
(refractive index). Note that the fundamental HE11 modes of a
cylindrical dielectric waveguide are degenerate with different
polarizations52. The field distribution becomes homogeneous in the
angular direction only when the probe light is circularly polarized, and
the scattering efficiency induced by a nanoparticle in the vicinity of the
nanowaveguide does not depend on the binding position, as verified
by the finite-element-method simulation results (see the inset of
Figure 2a). Using circularly polarized probe light, the solid curve of
Figure 2a presents the analytical result for the scattering efficiency Psca
induced by a single nanoparticle on a 350-nm-diameter waveguide as a
function of the nanoparticle diameter. The analytical calculations of
scattering efficiencies obtained using the Rayleigh–Gans theory are
confirmed by the three-dimensional finite-element-method simulation
results (symbols, Figure 2a)52.
Using the Rayleigh–Gans scattering method, we further study the

scattering efficiency Psca as a function of both the nanosphere and
nanowaveguide diameters (shown in Figure 2b). As expected, the
scattering efficiency Psca shows a monotonic dependence on the
nanoparticle size for a given nanowaveguide diameter and reaches a
maximum at the diameter of B250 nm due to the trade-off between
the intensity and confinement of the optical evanescent field53. In the
experiment, we use the waveguide with a diameter slightly 4250 nm,
such as 350 nm in our case, for the following reasons. First, the
waveguide with a larger diameter is more robust and shows higher
transmission54,55. Second, a slightly lower scattering efficiency, in fact,
allows us to observe more particle-binding events before the wave-
guide transmission drops to the noise level. In addition, only the
fundamental mode is supported in the 350-nm-diameter waveguide,
and multiple guiding modes will invalidate the spectrometry
performance due to the mode interference. Therefore, we conduct
the sensing experiment using nanowaveguides with diameters of
B350 nm. The scattering efficiency is obtained from the step change
in the transmission, and then the size of a single nanoparticle is
directly derived from the scattering efficiency using the provided
information regarding the nanowaveguide size and index of the
nanoparticle.
A typical transmitted power of the nanowaveguide in real time is

shown in Figure 3a for the single PS nanospheres generated using
an ultrasonic atomizer binding onto the nanowaveguides (see
Supplementary Information). The particle-binding events are clearly
recognized by the stepwise drop in the transmitted power. The
statistical distribution of the scattering efficiencies for single nanopar-
ticles with a diameter of 89.4± 5.3 nm is shown in Figure 3b. It can be
seen that the full width at half maximum of the distributions is
0.019% for the circularly polarized light, whereas the full width at half
maximum is B0.033% for the linearly polarized probe light (see
Supplementary Information). The reduced full width at half max-
imum ensures a lower uncertainty for the size measurement of single
nanoparticles. In the following sizing experiments, the circularly
polarized light is thus used as a probe. The nanoparticle size
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distribution is derived from the scattering efficiency distribution, given
that the refractive index of the PS nanoparticle is 1.59.
To further evaluate the sizing capability of the nanowaveguide

probe, standard PS nanospheres with diameters of 100, 130, and
200 nm are tested. The histograms of the particle diameters obtained
using Gaussian fitting show that the measured nanoparticle sizes fall
into the ranges of 100± 10 nm, 130± 12 nm and 200± 15 nm for the
diameters, indicating the high resolution of the nanowaveguide-based
size spectrometry (see Figure 3c). The experimental resolution is
limited by the particle size distribution and the particle–particle

interaction mediated by the guided mode (see Supplementary
Information).
We then tested our system using local air samples collected in real

time from the urban atmosphere in the winter, when the haze
problem is most severe. The effective sizes of particulate matter are
derived from the scattering efficiency using the Rayleigh–Gans theory
(see Supplementary Information), assuming that the refractive index is
1.5 (the particulates in air are mainly nitrates and sulfides, with
refractive indices ranging from 1.45 to 1.55). The change in the
refractive index will induce a size uncertainty of o10% (see
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Supplementary Information). For instance, the nanoparticle size is
derived to be 235.7± 14.5 nm for a measured scattering efficiency of
1%. The derived size distribution of the nanoparticles is plotted in
Figure 4a for six typical samples collected from 10 am on 11 December
2015 to 5 am the next day.
Using the size distributions, we also obtain the mass concentration

distributions of the nanoparticles with a diameter step of 20 nm, as
plotted in Figure 4b. The PM1.0 (PM0.3) index, defined as the mass
concentration of particulate matter with effective diameters o1.0 μm
(0.3 μm), is further obtained and reported in Figure 4c. The trend in
evolution of the experimental PM1.0 agrees with the official PM2.5 data
from Beijing Municipal Environmental Monitoring Center. The
ultrafine particulate matter o300 nm only contributes approximately
half of the PM1.0 index most of the time, but its counts are dominant,
as observed from the size distribution presented in Figure 4a. The size
distribution provides information that cannot be obtained from the
typical PM2.5 (PM1.0) index. We note that the measured PM1.0 has a
different amplitude from the official PM2.5 data because the experi-
mental PM1.0 index is obtained by analyzing the particle-binding
events onto the nanowaveguides, and not all particulate matter in the
air samples is detected. Future experiments could estimate the
probability of the nanoparticles being captured by nanowaveguides,
and the absolute value of the PMx index, with x= 1.0, 0.3 and 0.1, for
example, can be provided definitely.
The particulate matter in the Beijing atmosphere from 11 December

2015 to 12 January 2016 is monitored, with the size distribution and
the mass concentration plotted in Figure 5a and 5b, respectively. On
clear days, for example, from 15 to 17 December 2015, the counts of
the nanoparticles are quite low (Figure 5a), and the mass

concentration remains o50 μg m− 3 (Figure 5b). On the days with
severe haze, such as 3 and 4 January 2016, the counts of ultrafine
particles are much higher. The trend in the evolution of the
experimental PM1.0 results is consistent with that of the official
PM2.5 data shown in Figure 5b. For instance, there are five peaks in the
PM2.5 data that are also observed in the experimental PM1.0 data. We
note that large deviations appear on the haze days because larger
particulates contribute to the mass concentration of the PM2.5 index,
for example, on 26 December. The PM index shows better agreement
on clear days, for example, from 15 to 20 December, because smaller
particulates are the main contributors to both the PM1.0 and PM2.5

indices. The particulate matter was also monitored from 25 to 26
December 2016, when the Beijing municipal government issued the
first red alert for air pollution in 2016, and the experimental results are
also confirmed by the official data (see Supplementary Information).

CONCLUSION

To summarize, we have developed a portable, real-time and ultra-
sensitive nanoparticle size spectrometer with a size uncertainty as low
as 10 nm. This cost-effective and reliable probe system was adopted to
monitor the ultrafine particulate matter in urban atmospheres, and
both the size and mass concentration distributions were obtained,
providing important information for environmental monitoring and
pollution control. In future experiments, several improvements could
be developed. First, a well-designed nozzle will increase the capture
rate and decrease the detection time. Second, the sensitivity of a
nanowaveguide sensor can be significantly improved by building a
ring-structure microcavity, by utilizing plasmonic field localization to
enhance the light–matter interaction19 or by applying heterodyne
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interferometry to achieve a quantum noise level56. Finally, several light
sources can be simultaneously coupled into the nanowaveguide,
enabling specific detection of nanoparticles. The nanofiber-array-
based probe can further be extended to study nanoparticle interactions
and quantum electromagnetic dynamics38,57–60, and the scattering
effects can also be used in microscopic techniques61–65.
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