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Bifunctional gap-plasmon metasurfaces for visible
light: polarization-controlled unidirectional surface
plasmon excitation and beam steering at normal
incidence

Fei Ding, Rucha Deshpande and Sergey I Bozhevolnyi

Integration of multiple diversified functionalities into a single, planar and ultra-compact device has become an emerging

research area with fascinating possibilities for realization of very dense integration and miniaturization in photonics that requires

addressing formidable challenges, particularly for operation in the visible range. Here we design, fabricate and experimentally

demonstrate bifunctional gap-plasmon metasurfaces for visible light, allowing for simultaneous polarization-controlled unidirec-

tional surface plasmon polariton (SPP) excitation and beam steering at normal incidence. The designed bifunctional meta-

surfaces, consisting of anisotropic gap-plasmon resonator arrays, produce two different linear phase gradients along the same

direction for respective linear polarizations of incident light, resulting in distinctly different functionalities realized by the same

metasurface. The proof-of-concept fabricated metasurfaces exhibit efficient (425% on average) unidirectional (extinction ratio

420 dB) SPP excitation within the wavelength range of 600–650 nm when illuminated with normally incident light polarized in

the direction of the phase gradient. At the same time, broadband (580–700 nm) beam steering (30.6°–37.9°) is realized when

normally incident light is polarized perpendicularly to the phase gradient direction. The bifunctional metasurfaces developed in

this study can enable advanced research and applications related to other distinct functionalities for photonics integration.
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INTRODUCTION

The ability to manipulate light at will is tantalizingly attractive,
promising numerous applications. Conventional methods for molding
the flow of light typically rely on gradually accumulated phase
variations during light propagation, with the resulting devices featur-
ing curved surfaces and complex shapes. These rather bulky config-
urations do not comply with current trends aiming at very dense
integration and miniaturization in photonics. In recent years, optical
metasurfaces, that is, optically thin planar arrays of resonant sub-
wavelength elements arranged in a periodic or aperiodic manner, have
attracted increasing attention because of their planar profiles and
relative ease of fabrication while enabling unprecedented control over
optical fields by modifying boundary conditions for impinging optical
waves1–4. As such, numerous fascinating applications have been
proposed, and promising ultra-compact devices have been accordingly
demonstrated by designed metasurfaces, including beam-steering
devices5–10, surface waves or waveguide couplers11–18, focusing
lenses19–23, optical holograms24–29, coding metasurfaces30–32,
waveplates33–36 and polarimeters37–41.

However, most state-of-the-art metasurfaces are designed for a
single functionality or identical/similar functionalities (for example,
polarization-dependent beam steering9,10, surface waves coupling13–15

and holograms24,27–29), not quite reaching the desired goal of realizing
distinctly different functionalities. Metasurfaces that facilitate efficient
integration of multiple diversified functionalities into a single ultrathin
device with a compact footprint have become an emerging research
area. Recently, Hasman and colleagues proposed a generic approach to
realizing multifunctional metasurfaces via the synthesis of shared-
aperture antenna arrays and geometric phase concepts42. By randomly
mixing optical nanoantenna subarrays, where each subarray provides a
different phase function in a spin-dependent manner, multiple wave
fronts with different functionalities can be achieved within a single
shared aperture40,42,43. However, the implemented approach suffers
from intrinsic crosstalk between different subarrays, and the efficiency
of each functionality is inevitably limited. To design multifunctional
metasurfaces for linear polarization, particularly bifunctional devices,
metasurfaces composed of anisotropic meta-atoms with polarization-
sensitive phase responses have been found to be promising for
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realizing distinct functionalities with very high efficiencies and low
crosstalk44. While bifunctional metasurfaces have been successfully
demonstrated in the microwave range44, metasurfaces processing
multiple distinct functionalities at visible wavelengths still remain
largely unexplored.
In this paper, we design, fabricate and experimentally demonstrate

bifunctional gap-plasmon metasurfaces for visible-light operation that
enable simultaneous polarization-controlled unidirectional surface
plasmon polariton (SPP) excitation and beam steering at normal
incidence. The bifunctional metasurfaces, consisting of anisotropic
gap-plasmon resonator arrays, produce two different linear phase
gradients along the same direction for the respective linear polariza-
tions of incident light, resulting in distinct functionalities realized with
the same metasurface. The proof-of-concept fabricated metasurfaces
exhibit efficient (425% on average) unidirectional (extinction ratio
420 dB) SPP excitation within the wavelength range of 600–650 nm

when illuminated with normally incident light polarized in the
direction of the phase gradient. At the same time, broadband (580–
700 nm) beam steering (30.6°–37.9°) is realized when normally
incident light is polarized perpendicularly to the phase gradient
direction.

MATERIALS AND METHODS

Simulation
All three-dimensional (3D) simulations were performed using the
commercially available software Comsol Multiphysics (ver. 5.2) based
on the finite element method (FEM). For the periodic homogeneous
gap-plasmon metasurfaces (Figure 1a), we modeled one unit cell by
applying periodic boundary conditions on the vertical sides of the cell.
The complex reflection coefficients were determined with respect to
the nanobrick top surfaces with linearly polarized light normally
incident on the metasurface. The permittivity of silver (Ag) was
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Figure 1 Working principle of the bifunctional gap-plasmon metasurface for visible light. (a) Artistic rendering of the working principle: different polarization
components are selectively coupled into SPPs (x-polarization) or anomalously reflected (y-polarization). The gray region represents the supercell composed of
six unit cells. The top panel shows the schematic of the unit cell consisting of an Ag nanobrick on top of a spacer and Ag substrate. The fixed geometrical
parameters are p=190 nm, d=150 nm, ts=35 nm, and tm=40 nm. (b) Top view of the metasurface supercell composed of six nanobricks. (c and d) The
corresponding reflection amplitudes and phases of the associated six nanobricks at λ=633 nm for x-polarization (c) and y-polarization (d).
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described by the Drude model fitted with experimental data45, and the
damping constant ωd was increased by a factor of three to consider the
additional losses caused by surface scattering and grain boundary
effects in thin films (Supplementary Information Section S1). The
silicon dioxide (SiO2) spacer layer was considered a lossless dielectric
with a constant refractive index n= 1.45. The medium above the
metasurface was chosen to be air and truncated using the perfectly
matched layer (PML) to minimize reflection. For an SPP coupler
consisting of four supercells in the x-direction and infinitely extended
in the y-direction (Figures 2 and 3), the x-polarized Gaussian input
beam was considered invariant along the y-direction, and PMLs were
used in the x- and z-directions. The SPP power was obtained by
integrating the x-component of Poynting’s vector on a vertical plane
10 μm away from the SPP coupler. Then, we calculated the corre-
sponding coupling efficiency and extinction ratio. Note that the
coupling efficiency was corrected for the exponential damping of the
excited SPPs over the propagation distance between the coupler and
the evaluation plane. Regarding beam steering (Figure 4a), the y-
polarized plane wave was considered to be normally incident on the
metasurface supercell with periodic boundary conditions set in both
the x- and y-directions.

Fabrication
All investigated samples were fabricated using standard thin-film deposi-
tion and electron-beam lithography (EBL) techniques. First, successive
layers of 3 nm Ti, 150 nm Ag, 3 nm Ti and 35 nm SiO2 were deposited
onto a silicon substrate using electron-beam evaporation (Ti and Ag) and
RF-sputtering (SiO2). Then, the metasurface was defined using EBL
employing a 100-nm-thick PMMA (2% in anisole, Micro Chem) layer at
an acceleration voltage of 30 keV. After development in a 1:3 solution of
methyl isobutyl ketone (MIBK) and isopropyl alcohol (IPA), a 3-nm Ti
adhesion layer and a 40-nm Ag layer were deposited subsequently using
electron-beam evaporation. The Ag patterns were finally formed on top
of the SiO2 film after a lift-off process.

Optical characterization
The performance of SPP couplers was studied using a homemade
spatially resolved linear reflectance spectroscopy device featuring an
IX71 microscope (Olympus) equipped with a broadband super-
continuum white light source (NKT), spectral filters, polarizers,
CCD, and a fiber-coupled grating spectrometer QE65000 (Ocean
Optics). The light from the two decoupling gratings was collected in
the backscattering configuration using an MPlanFL (Olympus)
objective with 100× magnification (numerical aperture (NA)= 0.9).
The image area analyzed by the spectrometer was limited by a
homemade pinhole, resulting in a circular probing area with a
diameter of ~ 15 μm. By positioning the pinhole, the light from the
right- and left-side gratings could be selectively chosen. Prior to
measurements, the incident Gaussian beam was focused onto a
35-nm-thick SiO2-coated Ag substrate to check the beam waist and
the incident power. The incident power on the SPP coupler was
determined using the formula Pin=PR/R, where PR is the reflected
power and R is the reflectivity of the planar SiO2–Ag film. After
normalizing the collected light from the decoupling gratings by the
incident power, the total coupling efficiency of the three-component
device was finally determined.

RESULTS AND DISCUSSION

The working principle of the proposed visible bifunctional gap-
plasmon metasurface, which is simultaneously capable of efficiently
and unidirectionally exciting SPPs under the x-polarized illumination

and anomalously steering the reflected y-polarized light, is schemati-
cally illustrated in Figure 1. In contrast to previously reported
polarization-controlled metasurfaces processing two orthogonal phase
gradients upon reflection for orthogonal linear polarizations15, here
two different linear phase gradients, ζx and ζy, are introduced along
the same direction (that is, the x-direction) for respective orthogonal
linear polarizations of incident light, resulting in two different
functionalities in the x–z plane. Specifically, the reflection phase
gradient for x-polarization is equal to the wave vector of SPPs
propagating along the air-dielectric-metal interfaces (that is, ζx= kSPP),
while the magnitude of the phase gradient is smaller than the light
wavenumber in free space when the incident light is y-polarized (that
is, ζyok0). Thus, the metasurface can simultaneously convert the x-
polarized normally incident light into SPPs propagating along the x-
axis (in the direction determined by the sign of the phase gradient)
and anomalously reflect the y-polarized (normally incident) light at an
oblique angle.
To design the gap-plasmon-based phase gradient metasurface, we

first consider the metal–insulator–metal configuration without phase
gradients. Similar to the design procedure of our previous work on
polarization-controlled SPP excitation15, the period p of the unit cell is
predominantly determined by the corresponding SPP wavelength λSPP
and the number of discretized phase steps N, namely, p= λSPP/N. For
normally incident light at the design wavelength of λ= 633 nm and a
35-nm-thick SiO2 film on top of a thick Ag layer, the SPP wavelength
is estimated to be ~ 570 nm (Supplementary Information Section S2).
To avoid nanometer-sized dimensions and thereby relax the fabrica-
tion requirements, we discretize the 2π phase range into three equal
steps and select six elements with a center-to-center distance of
p= 190 nm to create a supercell to be periodically repeated in the
x- and y-directions (Figure 1a and 1b). By tailoring the dimensions
(lx and ly) of the top Ag nanobrick, we can independently control the
amplitude and phase of reflected light for a homogeneous (that is,
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Figure 2 Simulated performance of the unidirectional SPP excitation for
x-polarization at λ=633 nm. (a) Side view of the SPP coupler composed of
four supercells along the x-axis. An x-polarized Gaussian beam is
propagating normal to the surface. (b) The electric field of the incident x-
polarized Gaussian beam (w0=2 μm). The offset of Gaussian beam from the
center of the SPP coupler is Dist= xc− x0=1.71 μm. (c) The z-component of
the electric field, corresponding to the transverse electric field component
of SPPs.
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without gradients) metasurface at the design wavelength of λ= 633 nm
for two orthogonal linear polarizations (Supplementary Information
Section S3). In Figure 1c, the solid black and dashed blue curves
correspond, respectively, to the co-polarized reflectivity and reflection
phase for the six selected nanobricks and the x-polarized incident
light. The supercell composed of six nanobricks provides a 4π phase
span with a constant phase shift of 2π/3 between the neighboring
elements, resulting in unidirectional SPP excitation because of the
phase gradient ζx that compensates for the momentum mismatch
between the propagating light and SPPs11,15. At the same time, the
supercell provides only a 2π phase span for y-polarization, which is
achieved by maintaining a similar y-dimension for two neighboring
nanobricks (that is, for nanobricks 1 and 2, 3 and 4, and 5 and 6, as

shown in Figure 1b) that thereby provide the same phase in reflection
(Figure 1d). Therefore, the incident y-polarized light at a wavelength
of 633 nm will anomalously be reflected at an angle of 33.7° in the x–z
plane according to the generalized Snell’s law5. It should be noted that
we disregard variations in reflection amplitudes produced by different
elements comprising the supercell, which could slightly affect the
performance. In addition, although the linear phase gradient is
designed for a nominal wavelength of 633 nm, the gradient exhibits
only a weak wavelength dependence, thus allowing for broadband
unidirectional SPP excitation and beam steering.
In the following, we first numerically evaluate the performance of

the designed bifunctional metasurface as an SPP coupler for
x-polarization. The considered metasurface consists of four supercells
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Figure 3 Optical characterization of the SPP coupling for x-polarization. (a) SEM image of the SPP coupling device (scale bar 10 μm) and part of the SPP
coupler (scale bar 1 μm). (b) Optical image of the SPP excitation with a broadband excitation source where the right-coupling efficiency Cr is maximized
(scale bar 10 μm). (c) Schematic of the sample layout for deriving the coupling efficiencies incorporating the SPP coupler and two identical decoupling
gratings. (d and e) Measured (d) and simulated (e) coupling efficiencies and extinction ratio with an optimally positioned incident laser beam. (f and g)
Measured (f) and simulated (g) SPP excitation efficiencies versus the position of a scanned laser beam at the design wavelength of λ=633 nm. Exp-Effl,
Experimental Efficiency to left side; Exp-Effr, Experimental Efficiency to right side; Exp-ER, Experimental ER; Sim-Effl, Simulated Efficiency to left side; Sim-
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in the x-direction, corresponding to an overall lateral dimensional of
Lc= 24p= 4.56 μm, and is assumed to extend infinitely in the y-
direction (the side view is shown in Figure 2a). In the simulations, an
x-polarized Gaussian beam with the waist w0 equal to 2 μm propagates
normal to the surface (see Materials and Methods section for details).
It is noted that the number of supercells constituting the SPP coupler
can be varied, and in principle, both this number and the incident
beam size should be adjusted coherently to maximize the SPP coupling
efficiency. To maximize the excitation efficiency of SPPs in the +x-
direction, the incident Gaussian beam is displaced with respect to the
coupler center in the direction of the desired SPP propagation
(Figure 2b). The calculated distribution of the normal to the surface
electric field component (Figure 2c) clearly indicates that the SPPs are
predominantly excited and routed into the +x-direction while the
unwanted SPPs propagating in the opposite direction are strongly
suppressed. The well-pronounced unidirectional SPP excitation is
ascribed to the realization of the appropriate quasi-linear reflection
phase gradient as well as to the off-center positioning of the incident
beam, which reduces the excited SPP attenuation inside the SPP
coupler while further suppressing the oppositely propagating SPPs. It
should be emphasized that, while the maximum unidirectionality in
the SPP excitation (in the +x-direction) is achieved by positioning the
incident beam away from the coupler center, the SPP coupler does
exhibit intrinsic unidirectional SPP excitation when the Gaussian
beam is normally incident at the center of the SPP coupler
(Supplementary Information Section S4). To quantitatively describe
the performance of the SPP coupler, we integrate the power of excited
SPP signals propagating in the +x- and − x-directions (see Materials
and Methods section for details). After normalization, the coupling
efficiency Cr (Cl) is determined; Cr≅29.4% (Cl≅0.34%) in our case.

The corresponding extinction ratio (ER) between the right- and left-
propagating SPPs, defined as ER= 10× ln (Cr/Cl)

46, is found to be
~ 44.4 dB, which is in excellent agreement with our visual observation
(Figure 2c).
Finally, it is worth noting that the performance of the SPP coupler is

inherently limited by the propagation attenuation as well as by the
scattering due to intra- and intersupercell discontinuities12. For
example, the generated SPPs are partially absorbed by the gap-
plasmon elements and scattered out because of surface discontinuity
when propagating along the metasurface. Additionally, the SPP
wavelength in the coupler region is slightly smaller than the outside
air-SiO2–Ag interface region, implying a non-optimal phase-matching
condition for the chosen supercell period. Furthermore, the calculated
coupling performance depends considerably on the permittivity of the
metal47. Taking all the above mentioned factors into account, it
becomes clear that the performance of the SPP coupler can further be
improved by iteratively optimizing the supercell period and geome-
trical parameters of the nanobricks15, as well as by using epitaxial Ag
with intrinsically lower loss to construct the top nanobricks48.
To experimentally validate the functionality of unidirectional SPP

excitation, a sample was fabricated using standard electron-beam
lithography (EBL) and a lift-off process (see more details about the
fabrication process in the Materials and Methods section). Figure 3a
displays the scanning electron microscopy (SEM) image of the whole
device for SPP characterization, which consists of the central SPP
coupler (MSS1) and two identical decoupling gratings on the right and
left sides for coupling the SPPs into free-space photons. The SPP
coupler has a lateral dimension of 4.56 μm (4 supercells along the
x-direction), and its length is ~ 15 μm. Each decoupling grating
features ten ridges, with the period and width equal to 570 and
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285 nm, respectively. The distance between the central SPP coupler
and the decoupling gratings is d= 15 μm, which is sufficient to
eliminate scattering within the coupler region.
Following fabrication, we characterized the SPP excitation of MSS1

using a homemade spatially resolved linear reflection spectroscopy
device that can selectively capture the decoupling light from the
gratings on both sides (see Materials and Methods section for more
details). Using an x-polarized Gaussian beam with the waist estimated
to be ~ 2 μm and optimally positioned to maximize the coupling
efficiency of the right-propagating SPPs, Figure 3b shows the
corresponding CCD image with a broadband excitation source,
verifying the unidirectional excitation of SPPs over a wide spectrum.
Strongly scattered light is observed only from the decoupling grating
sitting on the right side, whereas practically no light is coupled out and
observed from the left grating, implying that the right-propagating
SPPs are dominant while the left ones are strongly suppressed. In
contrast, no light is coupled out and observed from the two gratings
when the incident light is y-polarized; validating that SPP excitation
only exists with x-polarized excitation (Supplementary Information
Section S5).
By normalizing the collected power of the scattered light from the

two-sided gratings to the incident power, we can determine the total
coupling efficiencies of the whole device composed of the SPP coupler
and gratings, namely, Ctot=P/Pin, where P is the power collected from
the grating and Pin is the incident power. Given the coupling of the
SPP coupler, the damping of launched SPPs over the distance d, and
the decoupling of gratings, we can derive the coupling efficiencies of
the central SPP coupler. As sketched in Figure 3c, the total coupling
efficiencies of the three-component device can be expressed as
Ctot=C× exp(− d/Lp) ×Cde=P/Pin, where Lp is the propagation length
of the SPPs supported on the air-SiO2-Ag interface and Cde is the
decoupling efficiency of the gratings. To calculate the coupling
efficiency C, we first measured the propagation length Lp using the
established method4; the values closely matched the calculated SPP
propagation length (Supplementary Information Section S6). Here-
after, we assume that the experimental value of the decoupling
efficiency of the gratings Cde is equal to the theoretical value.
Numerical simulations showed that the non-uniform decoupling
grating profiles degrade the decoupling efficiencies Cde. Thus, we
can expect that the experimental decoupling efficiency Cde is less than
its computed value, for example, 78.5% at λ= 633 nm (Supplementary
Information Section S7). As such, we can reasonably obtain the lower
bound of the coupling efficiency C (Ref. 49). On the basis of this
assumption, the measured maximum launching efficiency for the
right-propagating SPPs Cr is found to be at least equal to ~19.6% at
the design wavelength of λ= 633 nm, which is slightly lower than the
theoretically predicted value of ~ 29.4%. Figure 3d shows the
measured coupling efficiencies over the wavelength range from 600
to 650 nm, where an averaged coupling efficiency Cr of 425% has
been achieved, superior to values reported for a metasurface-based
SPP coupler at visible and near-infrared wavelengths13,14. Compared
with the slightly varied simulation results (Figure 3e), the experimental
coupling efficiencies are more sensitive to the incident wavelength. In
addition to the hypothesis regarding the coupling efficiencies, we
believe the discrepancy is related to imperfections and the surface
roughness of the fabricated nanobricks, different excitation conditions,
and the uncertainty in the material properties of the evaporated Ag
film as well as the increased damping related to the Ti adhesion layer
between the Ag and SiO2 layers. To further characterize the unidirec-
tional coupling properties, we extracted the corresponding ER as a
function of incident wavelength. As shown in Figure 3d (black curve),

the measured ER is greater than 20 dB between 600 and 650 nm.
Moreover, the measured ER is in qualitative agreement with the
calculated ones, as shown in Figure 3e (black curve). However,
because of the increased unwanted SPP signal propagating to the left
side in the experiment, the measured ER is ~ 15 dB lower than the
calculated value.
As previously mentioned, the coupling efficiency Cr is sensitive to

the position of the excitation beam. To gain more insight into the
position dependence, we scanned the laser beam across the SPP
coupler and evaluated the power carried with the SPPs propagating in
opposite directions (Figure 3f). When the beam is well positioned in
the center, the measured coupling efficiencies of the SPPs propagating
to the right and left are, respectively, ~ 6.6% and ~2.1%, indicating
that the unidirectional SPP excitation is in good agreement with the
simulations predicting Cr= 7.2% and Cl= 1%, respectively
(Supplementary Information Section S4). While the beam is scanned
from the center toward the increasing coordinate (that is, Dist 40),
the left excitation efficiency Cl decreases monotonically. In contrast,
the coupling efficiency Cr of the right-propagating SPPs increases first,
reaching the maximum at the position with the offset Dist≅1430 nm,
and then decreases when the beam moves outward, which is attributed
to the fact that the generated SPPs always suffer from non-negligible
scattering caused by intra- and inter-supercell discontinuities. When
the beam moves further and nears the right edge of the SPP coupler,
although the generated right-propagating SPPs experience less scatter-
ing loss, the interaction between the incident light and SPP coupler
becomes weaker, as only part of the structure is effectively illuminated
by the incident light; thus, the value of Cr is reduced. If the laser beam
moves to the left side from the center (that is, Disto0), the left
excitation efficiency Cl increases first and then decreases, while the
right coupling efficiency Cr decreases monotonically, approaching 0.
Compared with the simulated position-dependent SPP excitation
(Figure 3g), there is a reasonable agreement between the experimental
and simulated position dependencies with respect to their shape;
however, the optimal position is slightly shifted, and the simulated SPP
excitation is more unidirectional than that observed in the experiment,
ensuring ~ 85 times more efficient SPP excitation to the right than to
the left. There is also a discrepancy in the absolute value of the
coupling efficiency. These differences can be explained by the
inaccuracy of the laser beam position, together with the aforemen-
tioned imperfections of the fabricated nanobricks, different excitation
conditions, and the uncertainty in the material properties. More
experimental results pertaining to the position-dependent coupling
efficiencies at other wavelengths are presented in Supplementary
Information Section S8, validating the broadband unidirectional SPP
excitation. As a final comment, it should be emphasized that the
coupling efficiencies Cr and Cl show asymmetrical position depen-
dencies when the laser beam is scanned from the coupler center to the
edges, which are distinctly different from the symmetrical position-
dependent SPP excitation induced by a regular grating (Supplementary
Information Section S9)50. This drastic difference is ascribed to the
unidirectional phase gradient in reflection by the designed
metasurface.
In addition to supporting unidirectional SPP excitation under x-

polarization, our metasurface can function as a broadband beam
steerer for y-polarized light. In the following, we discuss the
functionality of beam steering for y-polarization. For a supercell with
a periodicity of 1140 nm, a 2π phase span is introduced for y-polarized
light along the x-direction at λ= 633 nm, resulting in an anomalous
reflection peak at an angle of 33.7° in the x–z plane. To verify the
broadband beam steering, 3D full-wave numerical simulations were
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first performed by modeling the periodic supercell shown in Figure 1b
(see Materials and Methods section). The reflected electric fields Eyr at
several wavelengths (580, 633 and 700 nm, respectively) are plotted in
Figure 4a, showing well-defined wave fronts. As expected, ~ 90% of
the reflected light is contained within the +1 diffraction order at the
design wavelength of λ= 633 nm, while the other diffraction orders are
strongly suppressed (Figure 4b). Therefore, the reflected beam at
λ= 633 nm has less distortion, and the wave front closely resembles an
ideal plane wave. When the working wavelength deviates further from
the designed value, for instance, λ= 700 nm, the unwanted diffraction
orders increase, resulting in a more undulatory and inhomogeneous
wave front. Although there is a slight disturbance, the broadband light
steering is sustained over the wide spectral range of 580–700 nm, and
the corresponding steering angle is varied from 30.6° to 37.9°,
respectively. In contrast to the case of y-polarization, there is
practically no anomalous reflection, and nearly all the reflected light
goes to zero order once the incident polarization is switched to x-
polarization (Supplementary Information Section S10), in accord with
the previous part of the SPP excitation. As a final comment, we note
that the total reflectivity is limited because of ohmic losses in the
metals.
To experimentally investigate the beam-steering property, we

fabricated another sample (MSS2) following the same procedure as
before (see Materials and Methods section). The overall lateral size of
MSS2 was approximately 45× 45 μm2, comprising 40× 240 supercells
(Figure 4c). In principle, we could use MSS1 shown in Figure 3 to
characterize the beam steering for y-polarization. However, in our
homemade experimental setup for diffraction characterization51, the
beam spot size was ~ 15 μm, which exceeds the MSS1 area. Illuminat-
ing MMS2 by a y-polarized wave at normal incidence, we measured
the zero- and first-order diffraction efficiencies, as shown in Figure 4d.
In general, reasonable agreement is observed between the measured
and calculated diffraction efficiencies, verifying the broadband steering
for y-polarized light, albeit with some discrepancies regarding the
efficiencies, particularly at short wavelengths. Specifically, the mea-
sured efficiencies of the total reflection and +1 order diffraction are
reduced by ~ 10% compared with the calculated values near the design
wavelength, and the unwanted zero-order diffraction is not completely
suppressed over the investigated wavelength range, which we ascribe to
the imperfections of the fabricated nanobricks (the SEM image of
Figure 4c), together with the uncertainty in the practical optical
constants of the evaporated Ag film and Ti adhesion layer.

CONCLUSION

In this work, we have proposed and demonstrated bifunctional gap-
plasmon metasurfaces for operation at visible wavelengths. The
metasurfaces consist of anisotropic gap-plasmon resonator arrays
providing two different linear phase gradients along the same direction
for respective linear polarizations of incident light, thereby allowing
for simultaneous polarization-controlled unidirectional SPP excitation
and beam steering at normal incidence. The proof-of-concept
fabricated metasurfaces exhibit efficient unidirectional SPP excitation
over the wavelength range of 600–650 nm with an average coupling
efficiency of 425% and extinction ratio exceeding 20 dB under
normal illumination with an x-polarized beam. Moreover, broadband
(600–650 nm) beam steering has been experimentally realized for y-
polarization. Although the aforementioned functionalities are demon-
strated at normal incidence, it should be noted that the designed
metasurface can also operate rather well at oblique incidence
(Supplementary Information Sections S11 and S12). Finally, it should
be noted that higher degrees of functionality, for example, three

different functions, can be realized by designing more complex unit
cells or using segmented or interleaved configurations40,41. Owing to
compactness and integration compatibility, we believe that the
proposed visible-wavelength bifunctional metasurfaces promise high
performance, low crosstalk, and polarization-controlled distinct func-
tionalities for more advanced applications related to integrated hybrid
plasmonic and photonics circuits52,53.
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