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Non-contact mechanical and chemical analysis of
single living cells by microspectroscopic techniques

Sara Mattana1, Maurizio Mattarelli1, Lorena Urbanelli2, Krizia Sagini2, Carla Emiliani2,3, Mauro Dalla Serra4,
Daniele Fioretto1,3 and Silvia Caponi5

Innovative label-free microspectroscopy, which can simultaneously collect Brillouin and Raman signals, is used to characterize

the viscoelastic properties and chemical composition of living cells with sub-micrometric resolution. The unprecedented statis-

tical accuracy of the data combined with the high-frequency resolution and the high contrast of the recently built experimental

setup permits the study of single living cells immersed in their buffer solution by contactless measurements. The Brillouin signal

is deconvoluted in the buffer and the cell components, thereby revealing the mechanical heterogeneity inside the cell. In parti-

cular, a 20% increase is observed in the elastic modulus passing from the plasmatic membrane to the nucleus as distinguished

by comparison with the Raman spectroscopic marker. Brillouin line shape analysis is even more relevant for the comparison of

cells under physiological and pathological conditions. Following oncogene expression, cells show an overall reduction in the elas-

tic modulus (15%) and apparent viscosity (50%). In a proof-of-principle experiment, the ability of this spectroscopic technique

to characterize subcellular compartments and distinguish cell status was successfully tested. The results strongly support the

future application of this technique for fundamental issues in the biomedical field.
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INTRODUCTION

In the vast research area of cellular biology, a largely followed
approach consists in attempting to connect cell function with its
complex architectural structure and the intricate hierarchy of its
dynamic processes. However, cellular complexity prevents any
single technique or experiment from revealing the details of the
structure and active processes, which can span several decades
in length and time. A multidisciplinary approach and the com-
bined use of complementary techniques is an essential require-
ment to provide novel insights in this field. Bio-photonics and
light-based technologies working in a contact-less configuration
have been increasingly utilized to gain comprehension of funda-
mental biological issues. Thanks to recent improvements, confocal
laser scanning microscopy, immunohistochemistry and fluores-
cence techniques1–5 allow for the acquisition of functional images
that are pivotal for the characterization of the processes and
distribution of molecular species in cells and also overcome the
diffraction limit. Despite their impact, these approaches require
chromophores and/or fluorescent dyes that selectively bind sub-
cellular components and could ultimately interfere with the
natural biological structures and processes under examination. A

preferable label-free approach is offered by spectroscopic methods,
such as Raman and Brillouin, based on inelastic light scattering
processes. These two techniques provide complementary informa-
tion. The characteristic Raman vibrational frequencies in the THz
region provide information at the molecular level about the
chemical composition and the structural molecular arrangement.
Recently, the potential of the Raman approach has been clearly
verified in in vitro cell analyses6,7, as well as in medical
applications8 that anticipate its future disruptive impact. For
example, intraoperative tests have demonstrated unambiguous
spectroscopic recognition of the cancer cell distribution in brain
tissues9. More recently, Brillouin spectroscopy has been proposed
as a novel imaging technique with potential application for the
mechanical characterization of cells and tissues10–16. Based on the
interaction of light with spontaneous acoustic phonons in the GHz
frequency range, Brillouin spectroscopy is sensitive to the viscoe-
lastic properties of the materials that probe the collective dynamics
mediated over the acoustic phonon wavelength.
For many years the complementarity of these two techniques has

been well exploited in material science and condensed matter physics
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to characterize both the structural and dynamical properties of a large
variety of samples17–20.
To analyze biomaterials that are intrinsically spatially heterogeneous

and often affected by time dependent processes, the key requirements
are in situ analysis and the simultaneity of the investigation. These
strict requirements are now accessible by a recent evolution in the
experimental setup which permits the light coming from a single
scattering volume to be analyzed simultaneously by two different
spectrometers21–23.
Extending the single Brillouin analysis11,13, we propose the use of

such combined spectroscopic approach to study the mechanical
properties correlated with the biochemical composition of living
fibroblasts (i) in label-free conditions, (ii) in a non-invasive manner
and (iii) under physiological conditions. An interesting attempt in this
direction was recently presented on erythrocytes24 which, lacking the
cell nucleus and most organelles, are considered one of the simplest
cell models.
The results presented in this work significantly expand upon

previous investigations by analyzing complex and structured cells that
may also undergo oncogenic transformation. Thanks to the unprece-
dented contrast and the unique frequency resolution of the newly
developed homemade Brillouin spectrometer, we were able to analyze
in detail not only the position but also the shape of the Brillouin peaks
to provide a complete viscoelastic characterization. In particular, we
found a mechanical modulation inside the cell that strongly correlates
with the biochemical composition: a key role for proteins that
aggregate into complex structures to form the cytoskeleton is clearly
identified in this work.

Moreover, the ability of our technique to demonstrate small
modifications of the elastic properties was successfully exploited,
revealing a clear transition in both the elastic modulus and apparent
viscosity following oncogenic expression. Our results demonstrate how
the proposed method is not only of great interest for the analysis of
fundamental biophysics, but also represents a strategic tool for future
diagnostic studies.

MATERIALS AND METHODS

Experimental setup
Figure 1a shows the layout of the experimental setup for the
simultaneous Brillouin-Raman characterization. A single mode
diode-pumped-solid state Spectra-Physics Excelsior laser operating at
λ= 532 nm was employed. The laser beam passes through the
temperature controlled etalon, (TSED) TCF-1 from JRS Scientific
Instruments (Tablestable Ltd., Mettmenstetten, Switzerland), which is
designed to reduce the intensity of spurious secondary laser modes
that lie in the region of interest for Brillouin measurements. Once
filtered by neutral density filters, the laser beam is focalized on the
sample using a customized CM-1 confocal microscope from JRS
Scientific Instruments with a coaxial LED illuminator used to
illuminate the sample surface and to select the investigation zone.
An infinity-corrected apochromatic water immersion objective

UPLSAPO 60XW from Olympus was used both to focalize and to
collect the back-scattered light. It is capable of capturing high quality
images and intense spectra thanks to its high numerical aperture
(NA= 1.2). The excitation source has a power less than 3.5 mW and is
focused onto a single cell through the objective, which is directly
immersed into the cellular buffer solution. The collected scattered
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Figure 1 (a) Layout of the setup. The laser beam, once cleaned by the temperature stabilized etalon device (TSED), is focused onto the sample by the same
microscope objective used to collect the backscattered light. Thanks to the three-axis piezo translation stage, the sample can be moved with a spatial
resolution of ~0.01 μm. A polarizer can be used to select the polarization of the backscattered light and a short-pass tunable edge filter transmits the quasi-
elastic scattered light (green beam) to the Brillouin spectrometer (TFP-2 HC) and reflects the inelastic scattered light (red beam) towards a Raman
monochromator (a Triax Jobin-Ivon). (b) Measure of the lateral spatial resolution in the x–y plane. The light image has a Gaussian shape in both directions
with a full width at half maximum Δx=Δy= (0.50±0.01) μm. (c) Edge spread function of the Brillouin peak intensity (I) of a vitreous silica slab acquired
while crossing the interface with water. Inset: the derivative dI/dz has a full width at half maximum Δz= (8.0±0.5) μm, providing the depth resolution of the
experimental setup.
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intensity is selected according to its frequency by a tunable ultrasteep
short-pass filter (TEF, Semrock SP01-561RU), which transmits the
anti-Stokes quasi-elastic scattered light to a Tandem Fabry Perot
interferometer (TFP-2 HC) while it reflects the Stokes inelastically
scattered light towards the Raman Spectrometer (RM- Horiba iHR320
Triax). To improve the rejection of the elastic contribution on the
Raman spectra, a RazorEdge ultrasteep longpass edge filter (LPF
LP02561RE—Semrock) was also used. The Raman spectra presented
herein were acquired using the 600 grooves mm− 1 grating and an N2

cooled CCD detector (1024× 256 pixels) allowing the simultaneous
acquisition of a 3000 cm− 1 Raman shift in a single spectrum with a
resolution of ~ 10 cm− 1. The acquisition time for the whole spectrum
is 300 s. The same time is used to acquire the Brillouin spectra through
a TFP-2 HC, the high contrast variant of the original Sandercock type
tandem multi-pass interferometer25.
The final spectral resolution of the Brillouin microscope is described

in the details in the data analysis section. The in-plane spatial resolution
of the optical arrangement is 0.5 μm×0.5 μm, measured on the x–y
surface by the laser spot diameter (Figure 1b). The spatial resolution
along the z axis, parallel to the laser beam, is ~ 8 μm. It was measured,
by exploiting the linear dependence of the Brillouin signal on the
excitation power, from the edge spread function (ESF) of the Brillouin
peak intensity of a reference flat sample (a transparent silica slab)
acquired while crossing the interface with a different, equally transpar-
ent medium (water). The resolution was estimated as the FWHM of the
line spread function obtained by the first derivative of the ESF26–29. This
value could be further reduced by decreasing the size of the entrance
pinhole (PH) to the spectrometer at the cost of increasing the
acquisition time. In fact, given our optical components, in order to
completely fulfill the confocal condition, the entrance pinhole should be
not greater than 25 μm30. Conversely, we chose a pinhole size of 70 μm
to increase the collected intensity to ensure an excellent spectrum
quality with an acquisition time compatible with cell viability.

Cell culture, oncogene expression and sample environments
The NIH/3T3 murine fibroblast cell line was purchased from the
American type culture collection (ATCC). Cells were seeded onto

silicon substrates that were sterilized using 70% ethanol and UV
irradiation for 40 min. Cells were grown in Dulbecco’s modified eagle
medium (DMEM) containing 10% (v/v) heat-inactivated fetal bovine
serum (FBS), 100 U ml− 1 penicillin, 100 Uml− 1 streptomycin (Sigma
Aldrich, St Louis, MO, USA) and maintained at 37 °C in a 5% CO2

humidified atmosphere.
Some of the cells were transfected using Lipofectamine LTX with

the expression vector pcDNATM6/myc-His encoding the constitutively
active mutant H-RasV12. The vector expressing the Ras mutant was
previously described31. This mutation replaces the amino-acid glycine
with a valine, which makes the GTPase constitutively GTP bound.
Transfected fibroblasts were selected using 4 μg ml− 1 Blasticidin-S for
5 days. The expression of H-RasV12 was assessed by immunoblotting
detected by chemiluminescence using the ECL system (GE Bios-
ciences). Cells were lysed at 4 °C in RIPA buffer (50 mM Tris-HCl pH
8, 150 mM NaCl, 1% (v/v) NP-40, 0.1% (w/v) SDS, 0.5% (w/v)
sodium deoxycholate) and proteins (30 μg for cell extract) were
electrophoresed on SDS-PAGE and transferred to a PVDF membrane.
The rabbit polyclonal anti-H-Ras antibody was from Santa Cruz
Biotechnology (Santa Cruz, USA). As an internal control, the
membrane was probed with mouse monoclonal anti-β-actin (Sigma-
Aldrich, St Louis, MO, USA). Donkey anti-rabbit and sheep anti-
mouse HRP-linked secondary antibodies (GE Biosciences, Piscataway,
USA) were used according to the manufacturer’s instructions.
For the fluorescence microscopy analysis, fibroblasts were seeded

onto glass cover slips. After 24 h, cells were washed three times with
phosphate-buffered saline (PBS) and fixed with 3.7% formaldehyde/
PBS for 15 min at RT. Cover slips were rinsed three times with PBS,
permeabilized with 0.1% Triton X-100/PBS for 15 min at RT, blocked
with 5% FBS/0.1% Triton X-100/PBS for 30 min at RT and then
incubated with 1 unit ml− 1 of Alexa Fluor 488 Phalloidin (Thermo
Fisher Scientific, Waltham, MA, USA) for 30 min at RT. Cells were
then washed with PBS and mounted on glass slides using Vectashield
with DAPI (Vector Laboratories Inc, Burlingame, CA, USA). Fluor-
escence microscopy analysis was performed using a Nikon TE2000
microscope with a 60× objective.
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Figure 2 (a) Schematic micro-Brillouin scattering diagram. Incoming light interacts with acoustic phonons within the scattering volume to yield the Brillouin
scattering effect. L1, L2 and L3 denote the relevant length scales for this interaction, given by acoustic wavelength, acoustic attenuation and scattering
volume, respectively. (b) Sketch of the collection geometry. Because of the high NA of the optics, the exchanged wavevector q has a significant spread. The
maximum value |qBS| corresponds to the back-scattering condition while the minimum value (|qmin|~0.85|qBS|, for NA=1.2) corresponds to photons collected
by the external region of the microscope lens. (c) Tyrode spectrum (cyan dots) compared with the spectrometer ω-resolution (blue dashed line) as measured
from the elastically scattered light and with the optics induced q- enlargement (red line). The q-enlargement was measured on a sample with negligible
intrinsic linewidth (a SiO2 slab) and rescaled to the Tyrode frequency by the sound velocities ratio. The reported fit (black line) takes into account the light
scattered at different wave-vectors according to their measured weight (Equation (2) in the text).
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For the spectroscopic measurements, the cells were washed twice in
phosphate-buffered saline (PBS), and for all experiments the substrate
was immersed in a Petri dish containing HEPES-buffered standard
physiological solution (NaCl 136.4 mM, MgCl2 0.53 mM, KCl
5.4 mM, CaCl2 1.8 mM, glucose 5.5 mM and HEPES 5.5 mM pH
7.4) to ensure an appropriate volume of buffer and optimal pH
conditions for the cells during the measurement session. The
thermalization at 37 °C was guaranteed by a temperature controlled
copper cell surrounding the Petri dish. The sample environment was
assembled on a translation stage (a PI 611-3S Nanocube XYZ closed
loop) which reached a resolution of 10 nm in a motion range of
100 μm for each axis thanks to the piezoelectric control. This allowed
the observation of single live cells using a water-immersion objective
directly immersed in solution.

Data analysis
Raman microspectroscopy. The data analysis was performed using
in-house software that eliminates spikes from the affected spectra,
subtracts the weak luminescence background using a sp-line algorithm
and subtracts the buffer signals from the spectra. It should be noted
that the shape of Raman spectra changes by analyzing different points
of a chemically heterogeneous system. In particular, if the frequency
position of any given peak is the signature of a chemical bond of a
specific molecule, the intensity of the Raman peak is proportional to
the concentration of that species multiplied by its optical activity.
Therefore, Raman spectra are able both to probe the relative changes
in the concentration of the same species in different points and to
follow the changes in the relative concentrations between two different
species.

Brillouin light scattering. The three main spatial scales involved in
the Brillouin scattering experiments are outlined in Figure 2a. They are
provided by the wavelength and attenuation of the acoustic modes
responsible for the scattering of green laser light focused and collected
by the microscope objective within the finite scattering volume. The
smallest spatial scale is L1 ~ 0.1 μm, which is the wavelength of
acoustic modes responsible for the scattering process; the intermediate
scale is L2 ~ 1 μm, which is the attenuation length of acoustic modes;
the largest scale is L3 ~ 1–10 μm, which is the size of the scattering
volume. From this simple scheme, it is apparent that the spatial
resolution in Brillouin mapping is limited by L2 since, even in the case
of a more stringent confocal condition for the optical microscope,
acoustic modes would make an average of the mechanical properties
over such a distance.
For inhomogeneous samples, a condition quite common in

biological matter, mechanical inhomogeneity on a length scale much
smaller than L1 is hidden by the acoustic field and an effective
homogeneous medium is revealed with average elastic constants.
Conversely, inhomogeneity at a length scale approaching L1/10 or

larger is the most challenging, since acoustic scattering effects can
become important and give rise to anomalous dispersion and
attenuation of acoustic modes (see, for instance, Refs. 32,33).
Finally, for samples which are inhomogeneous at length scales larger

than L2, an inhomogeneous broadening of Brillouin peaks can be
expected, which can be treated as described as follows. A more detailed
discussion on the effect of spatial and temporal inhomogeneity in the
sample on the results of Brillouin scattering from biological matter can
be found in Ref. 34.
Within a homogeneous portion of the sample, that is, for

inhomogeneity much smaller than L1, the scattered light is shifted
in frequency by an amount that is proportional to V, the velocity of

the acoustic modes through the relationship ωB= 2 π νB=±V·q,
where q=n (kf− ki) is the momentum exchanged in the scattering
process, n is the refractive index of the sample and ki (kf) is the
wavevector of incident (scattered) light. Longitudinal sound velocity is
directly related to the longitudinal elastic modulus M= ρ V2.
In case of disordered materials, damping mechanisms give rise to

attenuation of acoustic modes, and the spectrum can be described by a
damped harmonic oscillator (DHO) which presents peaks of ~ 2ΓB

width:

IðoÞ ¼ I0
p

oB
2GB

o2 � oB
2ð Þ2 þ o2GB

2
ð1Þ

Note that similar to the peak position, the linewidth ΓB is also not an
intrinsic property of the material but is rather dependent on the
exchanged wavevector. The kinematic viscosity of the sample, D, can
be obtained by the relationship D=ΓB/q

2 Ref. (35,36).
Apart from its intrinsic width due to the attenuation of acoustic

waves, the broadening of the Brillouin peak has two spurious sources:
(i) the finite resolution of the spectrometer, which can be estimated
from the elastic scattering peak, and (ii) the range of the exchanged
wave vectors, Δq, collected by the finite acceptance angle of the
detection optics, which reflects the frequency of the scattered light. In
contrast to the usual macro Brillouin setups, the use of a high
numerical aperture (NA) microscope objective for the focusing of the
laser and collection of the scattered radiation induces a relevant q
indeterminacy in a backscattering configuration too37 as shown in
Figure 2b. As an example, for a standard 50× objective, the NA in air
is ~ 0.6, which translates into a Δq/qBS ~ 5%, qBS as a backscattered
wavevector. This is even more relevant for the 60× immersion
objective in our setup where Δq/qBS is greater than 10%.
The a priori evaluation of the broadening would require knowledge

of the actual response of the objective and the spectrometer optics.
This is usually a complex task. However, the collected intensity can be
considered as a sort of convolution between the q-dependent
spectrum and the q-dependent optical response. Therefore, measuring
the spectrum of a material with a negligible intrinsic broadening,
approximated to a Dirac delta function, allows for the direct
evaluation of the whole response of the optical setup, R(q).
We followed such a procedure to characterize our setup using a

vitreous silica sample immersed in distilled water as a reference (the
data are shown in Figure 2c); a further correction was indeed required
to take into account the refractive index mismatch between v-SiO2

and water.
The spectrum collected by the Brillouin spectrometer is therefore

given by the integral:

I oð Þ ¼
Z

I0
p

Vqð Þ2Dq2
o2 � Vqð Þ2� �þ o2 Dq2ð Þ2R qð Þdq ð2Þ

The resulting function was used to fit the collected data. The good
fit quality obtained using Equation (2) is shown in Figure 2c for the
buffer solution. As the scattering volume is occupied by more than one
material whose characteristic size is greater than L2, the scattered
intensity is calculated from the sum of the contributions of each
component.

RESULTS AND DISCUSSION

Typical raw Brillouin and Raman spectra acquired by focalizing inside
the cell are reported in Figure 3a and 3b, together with those acquired
on the free substrate (red and blue spectra, respectively). The substrate
spectrum is dominated by the buffer signals.
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From the comparison of the raw data, we found that the Brillouin
peak of the cell is located at a higher frequency with respect to the
buffer. Furthermore, its spectral shape, in particular the width and the
presence of a quasi-elastic component highlights the presence of a
phonon damping processes41. This is the first key result of this study.
The unprecedented contrast joined with the high-frequency resolution
and the extreme statistical accuracy allow the detailed study of the
shape of the Brillouin spectrum in a living cell: a micro-system rich in
water immersed in a buffer environment.
The combined simultaneous Raman and Brillouin analysis allows a

greater understanding of the investigated systems. Thanks to the high
chemical specificity of the Raman spectroscopy and its sensitivity to
the local environment, the distribution of the chemical species and
their supramolecular structural arrangement can be correlated with
the modulation of the biomechanical properties as we move across
different cell compartments. The selected cells are adherent murine
fibroblasts that mainly develop in the x–y plan. To assess the
spectroscopic ability to monitor biomechanical and biochemical
modifications in a single living cell, we performed a linear scan
crossing the cell as shown in Figures 4 and 5 and acquired Brillouin
and Raman spectra.
From the Raman spectra, markers of different chemical species can

be obtained by analyzing the frequency region below 1650 cm− 1,
termed the fingerprint region, as well as the high-frequency range,
where the characteristic band of the CH2 and CH3 stretching
vibrations are located (at ~ 2950 cm− 1). Raman imaging of selected
spectral regions are shown in Figure 4b and 4d, as a function of the
position inside the cell. The changes in the intensity of the peaks
intensities, evidenced by the pseudo-colors in the maps, highlight the
different concentrations of chemical species and their distribution in
the cellular regions.
In Figure 4b, once the buffer solution was removed, the variations

in the DNA peak centered at approximately 1580 cm− 1 and the amide

1 peak centered at ~ 1650 cm− 1 are easily visible. The former appears
only in the central part of the cell in a region whose size is comparable
to the size of the nuclei as measured by fluorescence microscopy. In
the following, the DNA peak will be used as the Raman spectroscopic
marker of the nucleus position, while the amide 1 peak will be used as
an evaluation of the protein concentrations.
In addition, the high-frequency band can be exploited to monitor

the relative concentration of lipids and proteins39. The broad-band of
the carbon–hydrogen (CH) stretching vibrational mode (2800–
3050 cm− 1) is composed of the overlap from multiple contributions,
in particular, the CH2 stretching vibration primarily arising from lipids
at ~ 2850 cm− 1, and the CH3 stretching vibration primarily arising
from proteins at ~ 2935 cm− 1. Recently, by exploiting this frequency
difference, the ability to separate protein-rich from lipid-rich regions
in cells has been demonstrated. Using stimulated Raman scattering at
two specific Raman shifts within the stretching vibrational mode, the
map of protein and lipid distributions in cells and tissues has been
obtained40,42–45. These experiments inspired our method: the main
difference is that, instead of exploiting the resonance effect, we
estimated the amount of a given species by a deconvolution procedure.
As we move from the external part towards the inner part of the cell
(Figure 4d and 4e), the low frequency side of the CH stretching profile
assigned to the lipid component (2855 cm− 1 and 2880 cm− 1)38,39

reduces its intensity with respect to the prominent band maximum
assigned to the proteins38,39 centered at ~ 2935 cm− 1. In fact, while
lipids are mainly localized in bio-membranes, proteins are present in
many compartments and structures of the cell. The deconvolution
procedure can be used to obtain indications of the relative variation of
the protein and lipid components in the cells. In particular, the
complex network that forms the cytoskeleton of the cell, which is
mainly composed of crosslinked protein filaments that spread through-
out the cytoplasm, will appear as a maximum in the intensity of the
protein signals obtained from the low- and high-frequency regions.
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Figure 3 (a) Brillouin spectra (left) (b) and Raman spectra (right) acquired by focalizing inside the cell (red dots) and in the buffer solution (blue line). The
acquisition time for the whole spectrum is 300 s. The Raman spectra show the characteristic peaks of the local biochemical constituents of the cell: the
lower frequency region, below 1650 cm−1, is the ‘fingerprint’ region where the characteristic peaks of any cellular compound are present. The CH band in
the high-frequency region ~3000 cm−1 is composed of different contributions: lipids (centered at ~2855 cm−1 and 2880 cm−1)38,39 and proteins
(centered at ~2935 cm−1)39,40. The important contribution of the water vibrational modes (centered at approximately 1600 cm−1 and 3400 cm−1) is
mainly due to the presence of the buffer solution inside the scattering volume (as shown in Figure 2a) as well as the hydration water, which is abundant in
the total cellular composition. (c) Microscope image of the investigated sample with the two measured points evidenced by blue and red dots.
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Selected Brillouin spectra relative to the same positions investigated
by Raman scattering are reported in Figure 5a. We moved from
outside the cell (first spectrum referring to the buffer solution), then
entered through the membrane, the cytoplasm, the nucleus and finally
exited from the opposite side. From the raw data, clear modifications
of the Brillouin line shape are visible and, especially for the spectra
acquired in the central part of the cell, one can visually infer the
simultaneous presence of two excitations. To obtain quantitative
information on the frequency of the acoustic excitation and the
viscoelasticity of different parts of the cell, data were fitted by the
convolution of the measured resolution function R(q) with two DHO
functions. The first peak can be safely assigned to the spectral
contribution of the buffer component that is always present in the
scattering volume. Only its intensity changes during the scan. As
shown in Figure 5a, the results of the fit show that the frequency
position of the second DHO changes while probing different cell parts,
highlighting its sensitivity to the local cell elastic moduli. While the
buffer contribution was easily subtracted from the raw Raman spectra,
for the Brillouin spectra the careful data analysis performed herein was
required in order to isolate the cell features. As shown, this procedure
allowed the correct evaluation of the cellular biomechanics modula-
tion, which, due to cellular morphology, is principally expected along
the x–y plane.

Thanks to the deep characterization of the spectrometer response
function and to the innovative analysis method, we report for the first
time the accurate tracking of modifications of both the position and
shape of the Brillouin peak in different cell positions, which are clearly
distinguished from the contribution of the surrounding buffer
medium.
The obtained longitudinal elastic modulus as a function of the

position in the cell is reported in the upper panel of Figure 5c. A
strong increase of ~ 20% in the elastic modulus occurs in the central
region of the cell.
To correlate this evolution with the corresponding biochemical

composition, we report the relative variation of selected Raman bands
in the lower panel of the same figure. In particular, the area of the
amide 1 peak and the proteins vs lipids ratio, which can both be
considered as spectroscopic measures of the protein concentration,
appear strictly correlated with the cell elasticity. Indeed, a linear
dependence was observed (Figure 5e). This purely spectroscopic result
confirms the key role of protein structures in conferring rigidity to the
cell. Moreover, by analyzing the DNA signal vs. the elastic modulus,
we found that the nucleus occupies the stiffer cell zone.
The ability of our technique to monitor biomechanical modifica-

tions was also tested by comparing the Brillouin data acquired in the
control cells (NIH/3T3) with those obtained in the same cells after
transfection (H-RASV12). In fact, NIH/3T3 are known to undergo
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oncogenic transformation upon the expression of constitutively active
H-Ras by activating multiple downstream signaling pathways46.
Figure 6a shows the comparison between the Brillouin spectra

acquired in the two cases while probing the nucleus of the cell. A clear
decrease in the peak frequency accompanied with a decrease in its
width was measured in cells expressing the H-RasV12 oncogene. The
biomechanical changes are quite visible along the whole cell dimen-
sion revealing that the transfected cells present a generally lower
longitudinal apparent viscosity and lower elastic moduli values with
respect to healthy cells (Figure 6b). These properties are in agreement
with the invasive potential observed in cancer cells; their increase in
deformability enhances their squeezing ability through narrow spaces
of the extracellular matrix, favoring in vivo dissemination and
metastasis.
Aberrations in nuclear morphology, including size, shape47 and

stiffness48, are documented in the literature and have been assigned to
the deregulation of protein expression in several cancer types.
However, the contribution of aberrant regulation in cancer progres-
sion remains unclear, and the study of its correlation with biophysical
parameters, such as nuclear stiffness and deformability, appears to be
of great importance. Our findings indicate that the stiffness of the
nucleus and its eventual mechanical integration into the cytoskeleton

through nuclear lamins are altered in cancer cells as observed by the
overall reduction in cell elastic moduli and apparent viscosity.
The softening of cancer cells with respect to healthy cells has already

been observed in the literature49,50, even suggesting that this property
could be a new bio-marker for cancer diagnosis51–53. Our results
significantly extend to the bulk, the previous analysis performed by
atomic force microscope (AFM), which probed the system at lower
frequencies and primarily on the surface54. In this regard, it is worth
noting that the viscoelastic nature of biological materials is responsible
for the order-of-magnitude increase in the elastic moduli measured in
the high-frequency regime by Brillouin scattering. This evidence is
explained and formally justified in the framework of generalized
hydrodynamics, which introduces a complex frequency dependent
elastic modulus M(ω)41. Recent Brillouin characterization of tissues
and cells (see, for instance, Refs. 11,55) verified the existence of a
scaling law between the elastic moduli in the GPa range measured by
Brillouin and those in the kPa range measured by quasi-static
techniques, proving that BLS is able to properly visualize the existence
of elastic heterogeneities during the mapping of biological matter.
Moreover, as a non-invasive and contactless technique, the applic-
ability of the microspectroscopy Brillouin analysis can be extended in
the future to in vivo analysis.
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CONCLUSIONS

The present work represents a proof-of-concept investigation to test
the capabilities of the joint Raman-Brillouin microspectroscopy
approach for key applications in the field of cellular biology. This
novel technique covers a wide frequency range, from a fraction of a
GHz to hundreds of THz, and, through a multiscale analysis, provides
access to the collective vibrational properties of the cell as well as its
molecular modes. As a multispectral technique, it represents a unique
tool to reveal the biomechanical modulation of subcellular compart-
ments correlated with their biochemical composition in a contactless
manner, i.e., without indentation while still probing the sample in
depth. The accurate study of the Brillouin line shape proposed herein
provides a complete and deep characterization of the viscoelastic
properties of living cells, offering a new method with respect to force
microscopy techniques. In fact, although it possesses higher spatial
resolution, AFM is unable to probe the chemical composition and
internal elasticity of cells.
From a biological perspective, the role played by the cytoskeleton in

the effective elasticity of the cell is obvious from this study. The
considerable reduction in both the elastic modulus and apparent
viscosity measured in living cells after oncogene expression can therefore
be explained by a general modification of the cytoskeletal properties
assigned to the deregulation of protein expression. In this regard, the
invasive potential of cancer cells is clearly correlated to the modification
of their mechanical properties, favoring their diffusion into tissues.
The ability of this technique to follow the spatial and eventual

temporal modulations of cellular mechanical properties, which are
intimately related to physiological or pathological processes, could
have a disruptive impact on future biomedical applications.
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