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Spectroscopic stimulated Raman scattering imaging of
highly dynamic specimens through matrix completion

Haonan Lin1,*, Chien-Sheng Liao2,*, Pu Wang3, Nan Kong4 and Ji-Xin Cheng1,2

Spectroscopic stimulated Raman scattering (SRS) imaging generates chemical maps of intrinsic molecules, with no need for

prior knowledge. Despite great advances in instrumentation, the acquisition speed for a spectroscopic SRS image stack is funda-

mentally bounded by the pixel integration time. In this work, we report three-dimensional sparsely sampled spectroscopic SRS

imaging that measures ~20% of pixels throughout the stack. In conjunction with related work in low-rank matrix completion

(e.g., the Netflix Prize), we develop a regularized non-negative matrix factorization algorithm to decompose the sub-sampled

image stack into spectral signatures and concentration maps. This design enables an acquisition speed of 0.8 s per image stack,

with 50 frames in the spectral domain and 40,000 pixels in the spatial domain, which is faster than the conventional raster

laser-scanning scheme by one order of magnitude. Such speed allows real-time metabolic imaging of living fungi suspended in a

growth medium while effectively maintaining the spatial and spectral resolutions. This work is expected to promote broad appli-

cation of matrix completion in spectroscopic laser-scanning imaging.
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INTRODUCTION

Coherent Raman scattering imaging1–3, including stimulated Raman
scattering (SRS) microscopy4–8 and coherent anti-Stokes Raman
scattering (CARS) microscopy9–12, is a burgeoning non-linear optical
imaging technique that enables visualization of molecules in cells,
tissues and functional materials. In SRS microscopy, two laser pulses,
one at Stokes frequency (ωs) and the other at pump frequency (ωp),
are tightly focused at the sample to generate images in a scanning
manner. Speed and chemical specificity are two most important
metrics in evaluation of an SRS imaging system. By focusing the beam
energy at a single vibration mode, SRS has reached a speed of up to
video rate13, opening doors for a plethora of applications including
(but not limited to) observing drug delivery pathways to better
engineer target-specific medicine14 and supplying contrast of cancer
tissues for real-time histopathological analysis15. To improve chemical
specificity, spectroscopic SRS imaging has been developed by either
successively stacking a series of SRS images at different Raman shifts
(frame by frame)16–23 or recording a complete spectrum at each spatial
location (multiplex)24–28. The extensive spectral information offered
by spectroscopic SRS makes it possible to resolve molecules through
overlapped Raman bands. Nevertheless, such improvement comes at
the price of reduced imaging speed. Several previous designs suffer
from a long adjustment time for frequency tuning due to the use
of a translational stage, resulting in an acquisition time of several

minutes16–18,21. In the most recent frame-by-frame designs, frequency
tuning via control of the angle of a scanning mirror was reported and
reached an acquisition speed of a few seconds per stack19,20,22. Similar
performances were also reported for multiplexed designs24–26 in which
a spectrum was recorded within several microseconds at each spatial
location. Currently, the speed of SRS imaging has reached video rate
with four spectral channels29. However, further extending the speed
limit while maintaining a sufficient number of spectral frames is a
challenging task because each spectroscopic image stack requires tens
to hundreds of times more pixel measurements than a single-color
image. Increasing the speed by reducing the pixel dwell time is
expected to significantly downgrade the sensitivity of the system
because the SRS signal intensity decreases and is eventually over-
whelmed by shot noise and thermal noise.
Several computational methods have been proposed to break the

speed limit of spontaneous Raman imaging bounded by signal
integration time. With use of the sparsity of natural images, increasing
speed via compressed sensing has been reported to record a Raman
image from a few random projections of the original data. Random
projection measurements were experimentally implemented by either
coding in the spectral domain using a spatial light modulator30 or
collectively in the spatial and spectral domains using a digital
micromirror device31 to modulate wide-field illuminated Raman
images.
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For spectroscopic imaging, the number of major spectral compo-
nents is usually much smaller than the number of spectral frames, or
in other words, a spectroscopic image can be treated as a low-rank
matrix. The low-rank property implies significant information redun-
dancy, and theories have shown that, for such a low-rank unknown
matrix, one can accurately reconstruct the data from only a set of
randomly sampled entries32,33. The problem, known as matrix
completion, arises in a plethora of areas, including collaborative
filtering34, radio signal analysis35 and global positioning in sensor
networks36, among others. By harnessing the idea of matrix comple-
tion, we demonstrate an effective method of improving the speed
without harming the pixel dwell time by randomly sampling a small
portion of pixels throughout the spectroscopic image stack. A
regularized spectral unmixing (i.e., matrix factorization) algorithm is
used to decompose the sparse spectroscopic image into spectral
signatures and concentration maps. This algorithm is selected because
the two output matrices can be used in direct visualization, and the
reduced dimensions of the variables (due to the low rank of the
spectroscopic image) make it faster than algorithms focusing on the
completion of the original image stack. It is worth noting that similar
regularized matrix factorization algorithms have been proven effective
in solving complex real-world matrix completion problems37,38, e.g.,
the Netflix Prize.
Our sparse spectroscopic stimulated Raman scattering (SS-SRS)

imaging technique benefits from several innovations. First, we

developed a uniform pseudo-random scanning scheme by designing
a three-dimensional (3D) triangular Lissajous trajectory with a high
least common multiplier (LCM) for the axis frequencies. Second, we
designed a sparse spectroscopic image unmixing algorithm, which
introduces regularizations based on the generalized Gaussian Markov
random field (GGMRF)39, to make the solutions match the properties
of natural images and spectra. Third, by tuning the beat frequency
(ωp−ωs) through an off-axis galvo-mirror22, we experimentally
implemented SS-SRS by scanning three galvo mirrors to guide the
scanning path along the designed Lissajous trajectories. Using this
framework, we successfully recovered spectral profiles and concentra-
tion maps from ~20% of pixels measured in a spectroscopic image
stack. Consequently, at a pixel dwell time of 2 μs, we acquired a
50-frame spectroscopic SRS stack within 0.8 s. Such speed allows high-
fidelity imaging of chemical compositions in highly dynamic
fungal cells.

MATERIALS AND METHODS

Determination of the uniform random sampling pattern
As indicated by the literature on matrix completion, the sampled
entries in the data matrix must be spread out randomly to avoid
information loss32. In the context of scanning systems, the comparison
between conventional scanning and random scanning is illustrated in
Figure 1. Figure 1a shows a typical frame-by-frame design in which a
complete image is scanned in raster order at each excitation
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Figure 1 Comparison of data acquisition schemes for scanning spectroscopic imaging. (a) Conventional frame-by-frame raster-scanning design for a laser-
scanning spectroscopic imaging system. (b) Sparse sampling by random collection of measurements throughout the entire spectroscopic image stack. The
random sampling scheme fulfills the theoretical requirement for accurate reconstruction of a sub-sampled low-rank matrix (i.e., spectroscopic image).
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wavelength to generate a spectroscopic image stack. As a comparison,
Figure 1b shows a sparse sampling scheme in which a small portion of
pixels is randomly and uniformly measured. The under-sampled
image stack is subsequently used to computationally recover the
complete image.

For SRS, the pixel dwell time is a few microseconds, which leaves a
notably short time interval between two consecutive pixel measure-
ments. The time constraint makes positioning and stabilizing the laser
extremely challenging. Therefore, it is more practical to make a series
of measurements that follow a continuous trajectory. To implement
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Figure 2 Practical sparse sampling design for spectroscopic SRS via the Lissajous trajectory. The 3D Lissajous trajectory with high least common multipliers
for the scanning frequencies can generate a complicated pattern to achieve pseudo-random sampling. Panels (a) and (b) demonstrate the output waveforms
of three axes by sinusoidal waves and triangular waves, and the corresponding spatial distributions of the one million measurements is shown in panels (c)
and (d), respectively. Comparison of the two designs suggests that the triangular wave is advantageous because it supplies a more balanced sampling density.
By dividing the non-repeating trajectory into sub-trajectories per the fill rate, each sub-trajectory forms a sparsely sampled spectroscopic image stack, panel
(e) illustrates the 3D view of one sparsely sampled spectroscopic image with a 15% fill rate. (f) Projection of sampled pixels in a small spatial region from
three consecutive frames (labeled as red, green and blue) shows that, at each spectral frame, the 3D trajectory can sample a subset of pixels that scatter
throughout the entire scene and largely differs from frame to frame.
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random sampling with the abovementioned constraints, we propose a
3D Lissajous trajectory, which can be generated by setting all three
axes (X, Y, Ω) to follow replicating waveforms. Different from raster
scanning, which moves to the next pixel by changing only one index
among all of the axes, the Lissajous scanning trajectory changes all of
the axis indices simultaneously. Such a pattern guarantees that, when
the image is under-sampled, the measured pixels are still scattered
across the entire image stack. Moreover, the trajectory is practical in
that its complexity positively correlates with the LCM of the axis
frequencies. In other words, a high-LCM Lissajous trajectory follows a
complicated pattern which, given sufficient time, covers nearly all of
the pixels in the stack and never repeats itself. Several two-dimensional
sampling designs based on sinusoidal Lissajous trajectories have been
reported for applications, such as two-photon fluorescence excitation
microscopy40,41, atomic force microscopy42,43 and second harmonic
generation microscopy44. However, the sinusoidal wave fails to create
a uniform sampling pattern. Figure 2a and 2b, depicts the time series
waveforms of the X, Y and Ω axes for two different designs, namely,
sinusoidal and triangular. By mapping the 3D location of the sample at
each time point, a trajectory is generated. After sampling 1 million
pixels, the spatial distribution of the samples for the sinusoidal wave
Lissajous trajectory is illustrated in Figure 2c. Clearly, more samples
are located at the edge of the image, which consequently leads to an
undesirable biased image reconstruction quality with a lower quality
towards the center. In comparison, the triangular wave design supplies
a much more uniform sampling density (Figure 2d), thus alleviating
the problem. Based on this analysis, we selected the 3D triangular
Lissajous trajectory to generate random measurements.
To generate a stream of under-sampled spectroscopic image stacks,

the continuous yet complex trajectory is divided into a time series of
sub-trajectories, each of which constitutes an individual stack. Thus
each stack contains a random portion of the sampled pixels taken
along the sub-trajectories. The length of each sub-trajectory deter-
mines the number of sampled pixels in the stack. We define the ratio
of the sampled pixels over the total number of pixels as the fill rate,
which indicates the achievable speed increase (the inverse of fill rate).
A sub-trajectory with 15% fill rate is illustrated as a 3D view of the
stack in Figure 2e. To show that our proposed sampling trajectory
takes uniform and random samples in each spectral frame, we crop a
small spatial region, project the sampled pixels in three adjacent
spectral frames and differentiate them using different colors
(Figure 2f). Consequently, limited sampled pixels spread out in the
stack to supply sufficient information for reconstruction.

Regularized sparse spectroscopic image unmixing
We adopted a regularized matrix factorization algorithm to recon-
struct the image from raw measurements. First, we define Nx, Ny and
Nλ as the dimensions of the spectroscopic image, N=NxNyNλ as the
total number of pixels and M as the number of sampled pixels.
Treating xARNas the true image and yARMas incomplete and noisy
measurements, the relationship between x and y can be expressed as
follows:

y ¼ Ax þ w ð1Þ

where AARM ´N represents the modulation matrix describing how
each measurement in y is mapped to x, and wARM is assumed to be
additive Gaussian noise. In addition, we use a linear mixing model to
represent the spectroscopic image as a linear combination of spectral
signatures. Assuming that K spectral signatures exist, the complete

spectroscopic image can be described as follows:

x ¼ ðS#IÞC ð2Þ
where SARNl ´K is the matrix containing the spectra of all spectral
signatures. We arrange CARKNxNy as a column vector that stores the
concentrations of all spectral signatures in raster order. In addition, I is
the identity matrix of size RNxNy ´NxNy , ⊗ represents the Kronecker
product and thus S#IARNxNyNl ´NxNyK . Combining Equations
(1) and (2), the imaging process is formulated as follows:

y ¼ AðS#IÞC þ w ð3Þ
The developed algorithm aims to solve the inverse of Equation (3) to
reconstruct S and C. Because the inverse problem is not jointly convex
for S and C, we select an alternating optimization approach that
iteratively optimizes one variable while holding another fixed.
With the alternating optimization approach, we first fix S and

subsequently derive a maximum a posteriori (MAP) estimation for C.
Let H ≡ A(S⊗I) be a modified modulation matrix when S is fixed, and
thus Equation (3) is transformed into y=HC+w. Modeling the
additive noise as an independent and identically distributed zero-
mean Gaussian distribution with variance s2w, we can formulate the
forward model P(y |C) as follows:

P y jCð Þ ¼ 1

2ps2w
� �M=2

exp � 1
2s2w

8y � HC82
n o

ð4Þ

The prior model P(C) is used to describe the prior knowledge of C,
which is a flexible approach to introducing regularizations. We split C
into K channels such that Ck ¼ ½Ck

1;1;y;Ck
Nx ;Ny

�T for all
k ¼ 1;y;K. A GGMRF39 model is used to correlate neighboring
pixel values while maintaining the sharp edges of an image:

P Ck
� � ¼ 1

zc
exp � 1

pcs
pc
Ck

X
fðm;nÞ;ði;jÞAOg

gm�i;n�j C
k
m;n � Ck

i;j

���
���pc

8<
:

9=
; ð5Þ

where zc is a normalizing constant, OARNx ´Ny is the set of spatial
indices, spc

Ck is the hyper-parameter, gm− i,n− j represents the neighbor-
hood weight and pc∈ (1,2) is a predefined constant used to control the
level of penalty for adjacent intensity change. Combining Equations
(4) and (5), we can derive a convex optimization problem with respect
to C that achieves the optimal estimate Ĉ:

Ĉ ¼ arg min
C

1

2s2w
8y � HC82 þ

X
k¼1;y;K

1

pcs
pc
Ck

X
fðm;nÞ;ði;jÞAOg

gm�i;n�j C
k
m;n � Ck

i;j

���
���pc

8<
:

9=
;
ð6Þ

subject to the non-negativity constraint.
Similarly, we derive a MAP-GGMRF framework for S while holding

C fixed. For notation simplicity, we reshape the spectral signatures S
into a column vector S0ARNlK , and concentration maps C into a
matrix C0ARNxNy ´K such that each row in C0 includes concentrations
of all K spectral signatures at a particular spatial location. Defining
I 0ARNl ´Nl , we formulate another modulation matrix J � AðC0#I 0Þ,
and subsequently, the original Equation (3) is rewritten as
y ¼ JS0 þ w. Based on the modified equation, the forward model
for S0 is given by the following:

P y jS0ð Þ ¼ 1

2ps2w
� �M=2

exp � 1
2s2w

8y � JS082
n o

ð7Þ

We use a prior model to phrase the assumption that, for each
spectral signature, the spectral signature is more likely to smoothly
change shape. For each of the K channels, the prior model is given by
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the following:

P S0k
� � ¼ 1

zs
exp � 1

pss
ps
S0k

X
fu;vgAL

ru�v S
0k
u � S

0k
v

�� ��ps
8<
:

9=
; ð8Þ

where zs is the normalizing constant, S
0k
u represents the value of kth

spectral signature at channel u, Λ is the set of spectral channels, sps
S0k

is
the hyper-parameter for the spectral prior model, ps∈ (1,2) is a
constant with the same effect as pc and ru− v specifies spectral
neighborhood weights. Combining Equations (7) and (8) yields the
convex optimization problem, which solves the optimal estimate Ŝ

0
:

Ŝ0 ¼ arg min
S0

1

2s2w
8y � JS082 þ

X
k¼1;y;K

1

pss
ps
S0k

X
fu;vgAL

ru�v S
0k
u � S

0k
v

�� ��ps
8<
:

9=
;
ð9Þ

Given an initialization to one of the variables, the joint optimization is
achieved by solving Equations (6) and (9) in an alternating and
iterative manner. An iterative coordinate descent optimization45,46 is
used to solve the equations in a pixel-by-pixel manner (see
Supplementary Information).

Instrumentation strategy
Based on the analysis in previous sections, we chose the 3D triangular
Lissajous trajectory as the optimal pattern of sparse sampling. Such a
pattern requires three axes to follow triangular waveforms simulta-
neously with precisely controlled frequencies. The waveforms
for spatial axes (X, Y) can be achieved by sending triangular wave-
forms to a pair of galvo mirrors for laser positioning (labeled as GM2
and GM3 in Figure 3). To generate a triangular waveform in the
frequency domain (Ω), a stable and high-speed frequency tuning is

required and was achieved using the home-built delay-line tuner
(Figure 3) reported in our previous work22, which introduced the
optical path difference for the Stokes beam using a galvo mirror
(labeled as GM1 in Figure 3). In brief, the Stokes beam was directed to
the edge of the galvo mirror. After reflection, the beam was focused by
an achromatic lens to a flat mirror and was subsequently reflected to
the same optical path. Consequently, the movement of the galvo
mirror introduced an optical path difference of a few millimeters for
the retroflected Stokes beam. The introduced path difference was used
to tune the frequency difference after chirping both beams. Experi-
mentally, the three waveforms at carefully selected frequencies were
generated by a multifunction data acquisition card and sent to the
three galvo mirrors, and thus a high-LCM triangular Lissajous
trajectory was generated.
The set-up for SS-SRS is illustrated in Figure 3. A tunable laser

generates two synchronized outputs as the pump and Stokes beams at
a repetition rate of 80MHz. The Stokes beam was fixed at a 1040 nm
wavelength, and the pump beam was tunable from 680 to 1300 nm.
With modulation by an acousto-optic modulator operating at
2.4 MHz, the Stokes beam was engineered to add a path difference
via our home-built delay tuner by which the Stokes beam was directed
to the edge of the galvo mirror. After reflection, the beam was focused
by an achromatic lens to a flat mirror and was subsequently reflected
to the same optical path. Consequently, the movement of the galvo
mirror introduced an optical path difference of a few millimeters for
the retroflected Stokes beam. The introduced path difference was used
to tune the frequency difference after chirping both beams. Experi-
mentally, the three waveforms at carefully selected frequencies were
generated by a multifunction I/O card (PCIe 6363, National Instru-
ment) and sent to the three galvo mirrors, and thus a high-LCM
triangular Lissajous trajectory was generated.

Laser source
AOM PBS QWP

L

M
HWP

Rod

GM 1

GM 2

GM 3Lock-in amp

PD F

Sample

C OBJ

Stokes
1040 nm

Pump
798 nm

Figure 3 Optical setup for SS-SRS. Spectroscopic SRS imaging is achieved by tuning the temporal delay of the chirped Stokes beam and pump beam. A
glass rod is applied for the chirping pulses. Temporal delay is added by directing the Stokes beam at the edge of GM1. Together with GM2 and GM3 for
spatial positioning of the combined laser beams, the 3D high-LCM triangular Lissajous scanning trajectory is generated. AOM, acousto-optic modulator; C,
condenser; F, filter; HWP, half-wave plate; L, lens; M, mirror; OBJ, objective; PBS, polarizing beam splitter; PD, photodiode; QWP, quarter-wave plate.
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The combined use of a quarter-wave plate and a polarizing beam
splitter separated out the retroflected Stokes beam. The pump beam
first passed through a half-wave plate to match the polarization of the
Stokes beam. The two beams were combined and chirped by glass rods
to stretch in the time domain and focus the energy in the spectral
domain. Eventually, the chirped pulses were sent to a laser-scanning
microscope. A 60× objective (UPLSAPO 60XW, Olympus) was used
to focus the laser on the sample. The maximum laser powers were
12 mW for 800 nm and 80 mW for 1040 nm. The output SRS signals
were filtered and collected by a photodiode (S3994, Hamamatsu),
which was incorporated using a home-built resonant circuit with a
central frequency of 2.4 MHz with a 300-kHz bandwidth. The
collected data were sent to a digital lock-in amplifier with a time
constant of 1 μs (HF2LI, Zurich Instrument). Finally, a digitizer (PCI
6110, National Instrument) was used to record the data at a 1.5 MHz
sampling rate.

Preparation of microsphere mixture
A mixture of polystyrene (PS) and poly(methyl methacrylate)
(PMMA) beads (5 μm diameter, Phosphorex) was prepared by the
mixing microsphere solutions together with water. A droplet of
solution was placed on a coverslip and sealed for imaging.

Preparation of live fungal cells
Candida albicans isolates (strain number 55) were cultured in yeast
extract peptone dextrose overnight at 37 °C with 250 r.p.m. shaking.
The 500 μl Candida suspension was centrifuged, washed three times
with phosphate-buffered saline and diluted in phosphate-buffered
saline. A droplet of solution with diluted Candida was placed on a
coverslip and sealed for imaging.

RESULTS AND DISCUSSION

SS-SRS imaging of microbeads in Brownian motion
To demonstrate the advantage of SS-SRS over a conventional frame-
by-frame SRS system, we imaged 5-μm diameter PS and PMMA beads
mixed in water at a pixel dwell time of 2 μs. Using the proposed sparse
sampling trajectory, we generated 200× 200× 50 SS-SRS image stacks
with a 2 μs pixel dwell time. Approximately 20% of pixels were
sampled, resulting in an acquisition speed of 0.8 s per stack. Figure 4a
illustrates one spectral frame at 2915 cm− 1, from which the random-
ness of sampling in spatial dimension is confirmed. In addition, a
frame-by-frame view of the entire raw image stack is shown in
Supplementary Video 1 to further demonstrate the randomness of
sampling in a 3D sense. After applying the unmixing algorithm to the
raw image, both the spectral signatures and concentration maps are
generated. For comparison, we recorded a 50-frame raster-scanned
spectroscopic image stack at a speed of 2 frames s− 1. One spectral
frame taken at 2915 cm− 1 is shown in Figure 4b, and a frame-by-
frame view of the stack is presented in Supplementary Video 2. The
video clearly indicates that certain beads changed positions drastically
from one spectral frame to another, showing high motility due to the
Brownian motion in second scale. The stacks were decomposed as
spectral signatures and concentration maps using the same unmixing
algorithm. The spectral signatures output using the sparsely sampled
image (solid line) and raster-scanned image (dotted line) are depicted
in Figure 4e. The concentration map (Figure 4c) for the sparse image
is free of motion artifacts and maintains desirable image resolution
from which we can clearly distinguish the morphology and spatial
distributions of two types of beads. In contrast, the output concentra-
tion maps for the raster-scanned spectroscopic image (Figure 4d)
show significant motion artifacts (circled in yellow). To further

demonstrate the speed advantage of SS-SRS system, we recorded 6
consecutive spectroscopic stacks at a speed of 0.8 s per stack, and the
video of concentration maps generated from the stream of recon-
structed image stacks can be found in Supplementary Video 3, which
demonstrates the sample dynamics with a desirable spectral and spatial
resolution. In the above analysis, we selected a 20% fill rate because a
higher fill rate did little to improve the quality. We also tested lower fill
rates and found that PS and PMMA particles can be well separated at
less than a 5% fill rate (See Supplementary Fig. S1). Under such
condition, we were able to acquire the entire stack within 0.16 s.
It is important to compare the spatial resolution of the sparsely

sampled image with that of raster-scanned images. Comparison
between Figure 4c and 4d, shows that, although we reduced the
number of sampled pixels by 5 times, the spatial resolution decreased
only by ~ 1.5 times, from 758 nm to 1.12 μm (detailed quantification
of spatial resolution can be found in Supplementary Information). The
spatial resolution is effectively maintained because sampling in the
spectroscopic domain is used in reconstruction of the final chemical
maps. The slight decrease is likely caused by the GGMRF prior model,
which stabilizes the output when certain pixels lack information by
making the neighboring pixels follow Gaussian-like distributions with
similar means. In the future, the resolution in the sparsely sampled
images can be further improved from a hardware aspect by optimizing
the sampling trajectory using polygon scanners and from an algorithm
aspect by applying more advanced prior models that consider non-
local neighborhood information (e.g., non-local means47, block-
matching 3D filtering48).

SS-SRS imaging of living fungal cells
Our imaging system can resolve chemical compositions in a more
complex environment, such as highly dynamic living cells, to enable
fast detection of pathogens (e.g., fungi or bacteria) in natural
environments. To demonstrate the performance, we used the same
configuration to perform SS-SRS imaging of fungal cells C. albicans in
a growth medium. Compared with beads, the irregular shape of the
cells and the small lipid droplets within the cells imposed additional
challenges. Using the same fill rate as in the previous experiment, we
acquired an SS-SRS spectroscopic image stack at a speed of 0.8 s per
stack. Figure 5a shows one frame of the sparsely sampled raw image at
2920 cm− 1. A frame-by-frame view of the stack can be found in
Supplementary Video 4. In comparison, a raster-scanned frame-by-
frame spectroscopic image stack was taken at a speed of 2 frames s− 1

(see Figure 5b for one frame taken at the same excitation wavelength
and Supplementary Video 5 for a frame-by-frame view). Similar to the
previous bead imaging case, we observed from Supplementary Video 4
that the cell motility was significant from frame to frame. By running
the singular value decomposition and evaluating the number of
significant eigenvalues, we identified four major components from
the image stack. After applying the unmixing algorithm to both the
sparse data and the reference data, we generated the corresponding
concentration maps of the nucleus, cytoplasm, lipids and medium
(Figure 5c and 5d). Figure 5c indicates that most of the small lipid
droplets were clearly captured using our platform. In comparison,
selected lipid droplets in Figure 5d are located outside the cell body
and are colored incorrectly due to cell motility. Figure 5e shows the
output spectral signatures of the nucleus, lipid, cytoplasm and
medium for both the sparsely sampled image (solid line) and raster-
scanned image (dotted line), which confirms that our system could
resolve the four components in the sparsely sampled condition. A
video of the concentration maps for 6 consecutive spectroscopic image
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stacks was recorded within 4.8 s (Supplementary Video 6) in which we
can observe the motion of C. albicans.
The above experimental results show that, under a pixel dwell time

of 2 μs and a sampling fill rate of ~ 20%, a 200×200× 50 spectroscopic

image stack can be recorded within 0.8 s. This speed was achieved
without sacrificing pixel dwell time by drastically reducing the sampled
pixels in the spectroscopic image. Currently, the speed is limited by the
low speed (~1 kHz) of the galvo mirrors. Under such a speed, the
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Figure 4 Experimental results for PS and PMMA microbead mixture in water. (a) One frame of the sparsely sampled raw spectroscopic image at 2915 cm−1

with a pixel dwell time of 2 μs; the entire spectroscopic SRS data cube with 50 frames was captured in 0.8 s. (b) One frame of the raster-scanned
spectroscopic SRS image at 2915 cm−1; the stack was captured at a speed of 2 frames s−1. Output concentration maps using regularized spectroscopic
image unmixing for the (c) sparsely sampled image and (d) raster-scanned image, respectively. Motion artifacts induced by high bead motility are shown in d

(selected examples are highlighted by yellow circles). (e) Output spectral signatures for sparsely sampled image (solid line) and raster-scanned image (dotted
line). Scale bars, 10 μm.
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mirrors could not closely follow triangular waves at the crests and
troughs, rendering the sampling less uniform than expected. To
overcome this limitation, the galvo mirror could be replaced with a
polygon scanner in a future project. Because a polygonal scanner can
produce a continuous linear sawtooth scanning pattern by rotating the

mirror facets at notably high speeds, the generated sampling pattern
is expected to be more uniform. By driving the pixel dwell time to
0.1 μs, which has been proven feasible in video-rate single-color SRS
imaging13, it is expected that SS-SRS can ultimately push the speed
limit of spectroscopic SRS imaging to video rate.

a

c d

b

e 1.0

0.5

In
t. 

(a
.u

.)

0.0
3000

Lipid

Cytoplasm

Nucleus

PBS

2925

Raman shift (cm–1)

2850

Figure 5 Experimental results for living C. albicans in PBS buffer. (a) One frame of the sparsely sampled raw spectroscopic image at 2920 cm−1 with a pixel
dwell time of 2 μs; the entire spectroscopic SRS data cube with 50 frames was captured in 0.8 s. (b) One frame of a raster-scanned spectroscopic SRS
image at 2920 cm−1; the stack was captured at a speed of 2 frames s−1. Output concentration maps using regularized spectroscopic image unmixing for (c)
sparsely sampled image and (d) raster-scanned image, respectively. Motion artifacts in d severely distort the spatial distributions and the concentrations of
multiple components. (e) Output spectral signatures for sparsely sampled image (solid line) and raster-scanned image (dotted line). Scale bars, 10 μm.
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For reconstruction of a single spectroscopic image, the Matlab
version of the algorithm required approximately 1 min to complete on
a personal laptop with an Intel i7-4700MQ CPU. As previously
proved, the algorithm can be implemented in parallel without affecting
the results if an appropriate surrogate function is applied to the
original GGMRF model49. Thus the speed of the algorithm can be
greatly enhanced if the program is written in a parallel manner and
run on GPUs or clusters of CPUs.

CONCLUSIONS

We reported a sparsely sampled SRS system that could capture a high-
resolution spectroscopic image stack covering a 200 cm− 1 window
within 0.8 s. Such a distinct advantage in speed and resolution enables
resolution of chemical components in a highly dynamic environment.
Real-time imaging of freely moving microbeads and fungi were
demonstrated, proving that our system enables the use of spectro-
scopic Raman imaging for real-time detection of microorganisms and
chemical mapping of organelles in living cells and tissues. Although
not demonstrated in this paper, the trajectory design has the potential
for coupling to a variety of high-dimensional laser-scanning imaging
modalities.
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