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Entanglement beating in free space through spin–orbit
coupling

Eileen Otte1, Carmelo Rosales-Guzmán2, Bienvenu Ndagano2, Cornelia Denz1 and Andrew Forbes2

It is well known that the entanglement of a quantum state is invariant under local unitary transformations. This rule dictates, for

example, that the entanglement of internal degrees of freedom of a photon remains invariant during free-space propagation.

Here, we outline a scenario in which this paradigm does not hold. Using local Bell states engineered from classical vector vortex

beams with non-separable degrees of freedom, the so-called classically entangled states, we demonstrate that the entanglement

evolves during propagation, oscillating between maximally entangled (purely vector) and product states (purely scalar). We out-

line the spin–orbit interaction behind these novel propagation dynamics and confirm the results experimentally, demonstrating

spin–orbit coupling in paraxial beams. This demonstration highlights a hitherto unnoticed property of classical entanglement and

simultaneously offers a device for the on-demand delivery of vector states to targets, for example, for dynamic laser materials

processing, switchable resolution within stimulated emission depletion (STED) systems, and a tractor beam for entanglement.
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INTRODUCTION

Under local unitary operations, for example, when propagating
through a unitary channel, the degree of entanglement does not
change. This finding is true for both non-local entanglement, that is,
light fields (including single photon, multi-photons or coherent light)
that simultaneously exist in physically separated locations, and for
local entanglement, that is, between the internal degrees of freedom of
a single photon. Recently, it has become of interest to study the latter
and to mimic the former using vector states of classical light1–10.
This approach is possible because the central feature of entanglement,
non-separability, is not limited to quantum systems: classical vector
beams are likewise non-separable, for example, in their polarization
and spatial modes. However, whether such fields can be
called ‘classically entangled’ is an open question1,7, in practice,
this property has been exploited for real-time quantum error
correction11, communication12–16, laser materials processing17–19 and
metrology20–22. In addition, in imaging23–26, where tightly focused
radially polarized fields are known to produce the narrowest spot
size27–30, classically entangled light fields allow super-resolution
microscopy techniques31,32.
Here, we demonstrate that entanglement can evolve during

propagation in free space using classically entangled vector vortex
beams, which are non-separable in orbital and spin angular momen-
tum. We engineer superpositions of these beams to prove the dynamic
change of entanglement upon propagation through spin–orbit
(SO) coupling. Such SO coupling33 has been observed through the

spin-Hall effect of light at planar interfaces, by non-paraxial light
(tightly focused by high numerical aperture lenses), and with paraxial
light in anisotropic and inhomogeneous structures, for example, using
geometric phase34. Here, we show that it is possible with paraxial light
in free space. Through this SO coupling, we demonstrate entangle-
ment beating from fully entangled (completely non-separable) to no
entanglement (fully separable), and by a phase adjustment, we evince
the possible transport of entanglement, which is reminiscent of tractor
beams for particle transport35–38. This realization may open new
avenues in quantum and classical communication as well as in
improved materials processing (where vector beams and scalar
polarized beams are crucial) and enhanced switchable imaging in
stimulated emission depletion (STED) microscopy.

MATERIALS AND METHODS

Concept
Consider a vector beam that is composed of a superposition of

two orthogonally polarized Laguerre–Gaussian modes jLGc
pðx; yÞi

given by9

C7
VB

�� � ¼ 1ffiffiffi
2

p eia LGc1
p1

��� E
Rj i þ e�ia LGc2

p2

��� E
Lj i

� �
e7 ikz z ð1Þ

where we assume a propagation in the ± z-direction, approximated by

the factor e7 ikzz , where k
!¼ ðkx; ky; kzÞ is the wave vector expressed

in terms of the wavelength λ, as k= 2π/λ. The kets Rj i and Lj i
represent the unit vector of right- and left-handed circular polarization
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states, respectively, and α defines the phase relation between the two
states. The indices c and p denote the azimuthal and radial degrees of
freedom, respectively, the former being related to the orbital angular
momentum (OAM) of the Laguerre–Gaussian (LG) beam. In the
following description, we will restrict ourselves to the case in which
c1 ¼ �c2 ¼ c and p1= p2= p, but it can be extended to other cases.
Equation (1) can be conveniently written as39

Cj i ¼ ffiffiffi
a

p
uRj i Rj i þ

ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
uLj i Lj i ð2Þ

where LGc
p

��� E
eið7 a7 kzzÞ ¼ LGc

p

��� E
eiBR;L are represented by the ket juR;Li

and the relative weightings of uRj i and uLj i by a. Moreover, uR;L
�� �

satisfies the normalization condition uL;R
� ��uR;Li ¼ 0.

The degree of non-separability (classical entanglement)
E Cj ið ÞA 0; 1½ � of a vector field as defined by Equation (2) can be
computed using tools from quantum mechanics. Here, we consider
the entanglement entropy, originally derived for quantum states40,41

and later extended to classical non-separable states39 as

E Cj ið Þ ¼ � alog 2ðaÞ þ ð1� aÞlog 2ð1� aÞ½ � ð3Þ
Consequently, if we analyze a vector beam C7

VB

�� �
under a unitary

transformation, that is, propagation in free space along the
± z-direction (Equation (1)), where a= 1/2 for all z values, we observe
a spatially invariant degree of entanglement E C7

VB

�� �� 	 ¼ 1.
Remarkably, we can engineer a light field Cðx; y; zÞj i with a

z-dependent degree of entanglement E Cj i; zð Þ by combining two
orthogonal vector beams jCþ

VB1
i and jC�

VB2
i, coaxially propagating in

opposite directions, as illustrated in Figure 1a. For example, these
orthogonal fields can be generated by setting aVB1 ¼ 0 and aVB2 ¼ p=2

in Equation (1), namely,

Cþ
VB1

��� E
¼ 1ffiffiffi

2
p LGc

p

��� E
Rj i þ LG�c

p

��� E
Lj i

� �
�eikz z ð4Þ

and

C�
VB2

��� E
¼ 1ffiffiffi

2
p eip=2 LGc

p

��� E
Rj i þ e�ip=2 LG�c

p

��� E
Lj i

� �
�e�ikzz ð5Þ

with a phase distribution as a function of z as shown in Figure 1b, top
and bottom, respectively, for the case c ¼ 1; p= 0. The normalized
field that results from such a superposition takes the form

Cj i ¼ 1

2
eikzz þ ie�ikzz
� 	

LGc
p

��� E
Rj i

þ 1

2
eikzz � ie�ikzz
� 	

LG�c
p

��� E
Lj i ð6Þ

whose polarization evolution upon propagation for the regarded
example is shown in Figure 1c and 1d, respectively. Here, Figure 1c
includes the change in the relative phase between the superimposed
beams, which represents the origin of the resultant z-variant polariza-
tion structure. The new engineered state Cj i undergoes an oscillatory
transition between fully vector and fully scalar modes of light,
which can be described by the SO interaction33. The total angular
momentum of our field always satisfies Jz= 0 (for superposition
beams constructed from the c ¼ 71 subspace) but with oscillatory
spin and orbit components that vary as Szpsin(2kzz) and
Lzp� cj jsinð2kzzÞ, respectively. As a result of the out-of-phase
oscillation for opposite helicities, as the OAM component increases,
the spin component decreases concomitantly to conserve the total
angular momentum (see Supplementary Information).
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Figure 1 Schematic representation of the investigated field with a z-dependent degree of entanglement. (a) Concept, (b) phase change of the radial/azimuthal
beam (top/bottom) relative to the initial phase, (c) absolute value of the relative phase difference between the radial and azimuthal beam, (d) change in
polarization upon intensity (top) with the corresponding degree of entanglement E (bottom) for superimposed counter-propagating radial and azimuthal vector
beams, all depending on the propagation distance z (kzz∈ [0,π]). Further, b and c include the respective polarization distributions per distance.
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This variation between the scalar and vector modes manifests itself
through a change in the degree of entanglement, as defined by
Equation (3), which for the new light field Cj i takes the form

E Cj i; zð Þ ¼ 1� 1
2 1þ sinð2kzzÞ½ � � log 2 1þ sinð2kzzÞ½ �

� 1
2 1� sinð2kzzÞ½ � � log 2 1� sinð2kzzÞ½ � ð7Þ

(details with respect to the calculations can be found within the
Supplementary Information). Thus, the state undergoes a periodic
variation in the degree of entanglement as a function of z, as illustrated
in Figure 1d, bottom, while the intensity profile remains constant. Full
entanglement, that is, maximal non-separability E Cj i; zð Þ ¼ 1ð Þ; is
achieved at z=nλ/4, nAN, whereas non-entanglement, that is,
complete separability E Cj i; zð Þ ¼ 0ð Þ; is observed at z= (2n+1)λ/8,
nAN. Note that space-variant entanglement of the form E Cj i; zð Þ can
be realized by any OAM subspace c by the superposition of orthogonal
vector fields jCþ

VB1
i and jC�

VB2
i; as long as they carry the same radial

order p1,2(VB1,2)= p. In contrast, if we superimpose two counter-
propagating scalar modes of opposite helicity and orthogonal polar-
ization, the degree of entanglement will remain constant (see
Supplementary Information).
This unique property of the field Cj i provides a means to facilitate the

transport of a chosen degree of entanglement across arbitrary distances,
by simply applying a phase adjustment ϕ, which is reminiscent of tractor
beams35–38. To illustrate this approach, we can replace the propagation
factor in Equation (1) by the factor e7 iðkzzþfÞ. In this way, the
maximum degree of entanglement Emax Cj ið Þ ¼ 1ð Þ, for example, can
be transported to a position zmax according to the expression

zmaxðfÞ ¼ l
4

m� 2f
p


 �
;mAZ ð8Þ

This means that any chosen state can be conveyed to a specific position in
space, along the propagation axis, by simply adjusting the phase ϕ.
Moreover, by applying a time-dependent phase shift ϕ(t), it is possible to
impart a time-dependent movement of a regarded maximum with an

axial velocity given by

vmaxðtÞ ¼ � l
2p

∂fðtÞ
∂t

ð9Þ

Experimental details
A simple method to generate a light field Cj i with local entanglement
beating is via an interferometric approach. An exemplary system is
sketched in Figure 2a. By combining a Sagnac interferometer with a
half-wave plate (diagonally oriented), a single incident vector beam,
for example, radially polarized, can be used for the generation of a
standing wave according to Equations (4)–(6), whose local degree of
entanglement E oscillates upon propagation. Note that in each arm of
the interferometer, counter-propagating (green arrows) vector modes
of orthogonal polarization will give rise to a classically entangled
standing wave, as indicated by a red curve in one of the arms.
Even if this approach of counter-propagating beams is very

intuitive, the investigation of the light field Cj i would be challenging
because any measuring device inserted in the path would destroy the
oscillatory behavior of the light field Cj i. Here, we propose an
alternative approach that allows us to quantify the spatially varying
degree of entanglement. This approach is based on the engineered
superposition of co-propagating orthogonally polarized vector modes,
as visualized in Figure 2b. By applying digital propagation, we can
artificially counter-propagate the two modes (red arrows), which
physically co-propagate in the same direction (green arrows), enabling
us to investigate the light field Cj i along the beam path.
The digital propagation of a light field Uð r!; zÞ propagating in the

z-direction is based on the angular spectrum42,43, according to which
Uð r!; zÞ ¼ F�1 F Uð r!; 0Þ� 
�eikzz� �

, where r!¼ ðx; y; zÞ are the
coordinates in real space, and F , F�1 are the Fourier and inverse
Fourier transforms, respectively. Next, by the application of Fourier
holograms in combination with a phase shift ± kzz, encoded on a

BS

a b

c d

e

M

M

M

SLM1

SLM1
BS1

[U(r,z)]

BS2

L1

M

I II

III IV

SLM2

CCD

L2

Ent
an

gl
em

en
t a

na
lys

is

BS1

BS2

L1

M

1
2

3 4

M

M

BS
D

E
E

Counter-propagating vector modes

Generation of vector modes

Co-propagating vector modes

�/2

�/2
4

2+4
1+3

2+4
1+3

3
2
1

�/4

�/4

�/4

�=514 nm

�/2

U(r,z)

Figure 2 Sketch of the experimental concept: approach of (a) counter- and (b) co-propagating vector modes for the realization/investigation of the light field
Cj i. (c) Applied system for generation (red box) and analysis (blue box, (e)) of Cj i with experimental steps indicated in (d). λ/2, half-wave plate; λ/4, quarter-
wave plate; BS1,2, beam splitter; CCD, camera; L1,2, lens; M, mirror; SLM1,2, spatial light modulator.
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spatial light modulator (SLM), we were able to digitally propagate a
light field in the ± z-direction. To independently control the phase
shift of each vector mode, for the artificial generation of counter-
propagating vector modes, we developed a new method that facilitates
the generation of any vector beam using a multiplexing approach
enabled by an SLM44. This method allows not only simultaneous
generation of multiple vector modes, but also their independent
manipulation, such as digital propagation.
The idea behind our method is to encode a superposition of

different holograms, each with a different spatial carrier frequency
(blazed grating), on a single SLM. Thus, each beam is sent to different
transverse positions in space, which allows manipulation of their
polarization independently, as required for vector beam generation.
For example, to generate a radially polarized vector beam, we
multiplexed the corresponding holograms to create two helical LG
beams with opposite topological charges c ¼ 71ð Þ on the SLM. A
half-wave plate placed in the path of one beam changes its polarization
from horizontal to vertical. Both beams were then recombined and
passed through a quarter-wave plate to change the horizontal and
vertical polarizations into left- and right-circular polarizations, respec-
tively, thus generating the desired vector beam45.
In the present case, where we realized a superposition of two

cylindrical vector beams VB1,2 (see Figure 2c, red box, and Figure 2d),
four vortex beams were multiplexed in the SLM (SLMl; Fourier
holograms), manipulated accordingly and (counter-) propagated
digitally (Fourier relation between SLMl and SLM2 by lens L1) to
investigate the desired field Cj i within the observation plane (SLM2).
In this way, the detection system can remain static while the created
vector beams artificially propagate in opposite directions. Beyond this,
digital propagation, encoded on the SLM as a phase shift ϕ, facilitates
the realization of a chosen degree of entanglement at the observation
plane, which is similar to the case of tractor beams.

Theory of entanglement entropy
For the analysis of the light field Cj i, we determined the degree of
classical entanglement, that is, the degree of non-separability, in
different (x, y)-planes. An appropriate tool for this concern is the
quantum mechanics entanglement entropy39,40

E ¼ h
1þ s

2


 �
ð10Þ

with hðrÞ ¼ �rlog 2ðrÞ � ð1� rÞlog 2ð1� rÞ. Here, s is the length of
the Bloch vector, given by s ¼ Si sih i2� 	1=2

with i= {1, 2, 3}, where
〈σi〉 are the expectation values of the Pauli operators. These values are
obtained by a set of 12 normalized, on-axis intensity measurements or
six identical measurements for two different basis states39,41.
We chose circular polarization as a basis. As a consequence, the

projection measurements are given by two modes that carry the OAM
of topological charge c and �c, in addition to four superposition
states represented by eicj þ eige�icj with g ¼ 0; p=2c; pc; 3p=2cf g
(φ: azimuthal angle in polar coordinates). In the case at hand, we
investigate the vector modes of first order (cf. Results and Discussion
section), and hence, the projection measurements are performed
for c ¼ 1.
According to Table 1, the expectation values 〈σi〉 are calculated from

s1h i ¼ ðI13 þ I23Þ � ðI15 þ I25Þ ð11Þ

s2h i ¼ ðI14 þ I24Þ � ðI16 þ I26Þ ð12Þ

s3h i ¼ ðI11 þ I21Þ � ðI12 þ I22Þ ð13Þ

To determine the entanglement entropy E experimentally, we measure
the on-axis intensity values Iuv with u, v∈ {1, 2, 3}, as indicated
in Figure 2c, blue box, and Figure 2e. Therefore, polarization projections
are performed by the use of a quarter-wave plate (λ/4) set to ±45° in
combination with a polarization-sensitive spatial light modulator (SLM2)
and OAM projections by a phase pattern on this modulator. The
respective phase pattern carries the information of all six OAM
projections, in which each of them is assigned to another spatial carrier
frequency46. The application of this demultiplexing hologram results in
six outputs on the CCD camera. Figure 2e positioned in Fourier relation
with the observation plane (SLM2) by a lens (L2), which enables a single-
shot measurement for each polarization basis.
For the entanglement entropy analysis in different (x, y)-planes

of the light field, artificial propagation in the z-direction is applied.
Further, the intensities Iuv for different planes are normalized by
I11 + I12 + I21 + I22 for left- and right-circular polarization basis.

RESULTS AND DISCUSSION

To verify that the field Cj i follows the entanglement dynamics
predicted by Equation (7), we experimentally generated and super-
imposed two orthogonal vector beams (according to Equations (4)
and (5)), using the setup shown in Figure 2c, as indicated by the red
box. For simplicity but without the loss of generality, we chose first-
order radially and azimuthally polarized modes with c ¼ 1 and p= 0.
Magnifications of the different sections of the generation process are
shown in Figure 2d. The desired light field Cj i for a specific z-position
is realized in the Fourier plane (SLM2, observation plane) of SLM1.
The artificially generated field Cj i can be separated into its Rj i and

Lj i parts, with each including two counter-propagating LG modes of
the same helicity. For each polarization, one mode propagates in the
+z-direction, and the other propagates in the -z-direction, which is
achieved through digital propagation enabled by SLM1. The digital
propagation was encoded as e7 iðkz zþfÞ, in which we chose ϕ to be a
discrete phase offset of –π/4. Using a CCD camera positioned in the
observation plane, we recorded the intensity profile of the Rj i and Lj i
components separately by shutting beams 3 and 4 or 1 and 2
(cf. Figure 2c and 2d), respectively. The results are shown in
Figure 3. In Figure 3b, we show the simulated transverse intensity
profile of Cj i when a horizontally aligned polarizer is positioned in
front of the CCD, thus reflecting the polarization distribution
illustrated in Figure 3a and Figure 1. The normalized intensity profiles
for the Rj i (beam 1+2) and Lj i (beam 3+4) polarization components
are shown in Figure 3c and 3d, respectively, for the different positions
kzz + ϕ∈ [0, π] (arrow at the bottom). For both the Rj i and Lj i parts,
we observe a sinusoidal variation in the intensity that depends on
kzz+ϕ, which represents a longitudinal interference pattern of included
beams. Furthermore, the variation in intensity for Rj i and Lj i is out of
phase, that is, the Rj i components carry maximum intensity while the

Table 1 Normalized intensity measurements Iuv for the determination

of the expectation values 〈σi〉

2π

0

Basis
states

Left
circular

Right
circular

L
I11

= 1 = 0 / 2 / 23–1

I21 I22

I12 I13 I14 I15 I16

I26I25I24I23
R
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Lj i parts are at minimum, and vice versa. This behavior is attributed
to the phase shift aVB1;2 , which was used to create orthogonally
polarized vector beams (cf. Equation (6)). Moreover, these counter-
fluctuating intensities evince the variation between pure vector and
pure scalar states for Cj i : If the Rj i Lj ið Þ polarized components are at
a maximum, while the Lj i Rj ið Þ parts disappear, then Cj i is
represented solely by the Rj i Lj ið Þ components, and thus, the light
field is purely scalar with E Cj i; zð Þ ¼ 0, kzz + ϕ= {0, π/2, π}. In
contrast, if the Rj i and Lj i parts are of equal intensity, then Cj i is a
pure vector mode with E Cj i; zð Þ ¼ 1, kzz + ϕ= {π/4, 3π/4}. Between
these extreme cases, a smooth transition is found (cf. Figure 3b).

Entanglement oscillation
To quantitatively verify the longitudinal entanglement oscillation of
Cj i, we performed an entanglement entropy analysis while digitally
propagating the field. Using this approach, we determined the degree
of entanglement E Cj i; zð ÞA½0; 1� as a function of kzz + ϕ. The
respective experimental method is visualized in Figure 2c (blue box)
and Figure 2e.
Figure 4a shows typical intensity images obtained in experiments

per z-distance and from which E is computed. The illustrated case
corresponds to the scalar field shown in Figure 4b. Figure 4b–4d
shows the intensity values, normalized and arranged in the form of
Table 1. Here, we show three cases: scalar, semi-vector and vector
beam, with the corresponding values E= 0.01, 0.32 and 0.94,
respectively. The complete set of experimental E values obtained as
a function of the propagation distance z is presented in Figure 5. Here,
the degree of entanglement (Figure 5a) and the normalized intensity of
the right-/left-handed circularly polarized light IR,L (Figure 5b) are
illustrated as a function of kzz + ϕ. Errors of kzz + ϕ are given by SLM
flickering (± π/16), whereby error bars for E (±0.05) or IR,L (±0.03)
are given by inaccuracies within the experimental method/ system.
For comparison, we experimentally performed an entanglement

analysis of a pure radial vector mode (beam 1+3). As theoretically
expected (cf. Materials and Methods, Theory), this beam reveals an
entanglement entropy of approximately E= 1 for all propagation
distances, as depicted by the black triangles in Figure 5a. In contrast,
the entanglement dynamics of the light field Cj i given by Equation (6)
confirms our theoretical predictions, oscillating between pure scalar
and pure vector, as shown in Figure 5a. The data are represented by
black circles filled according to the ratio between the included Lj i
(blue) and Rj i (red) polarized parts (see scale bar). The green insets

indicate the modes of light at specific positions. The experimental
results reflect the theoretical description in Equation (7) with kzz
replaced by kzz + ϕ' perfectly, as illustrated by the corresponding fit
in Figure 5a (black dashed curve). The fitting parameter ϕ' has a value
of − 0.71 and, thus, almost matches the chosen setting of ϕ=− π/4.
Figure 5b shows simultaneously determined counter-fluctuating

intensity curves for Lj i (blue fit, black hollow diamonds) and Rj i (red
fit, black filled diamonds). Obviously, these curves mirror the
propagation dynamics of entanglement and the involved variation in
the ratio between Lj i and Rj i, as demonstrated in Figure 5a. A slight
shift with respect to the positions of the extrema of Lj i and Rj i can be
observed, which reflects the deviation between ϕ and ϕ'. Our findings
prove that by adjusting ϕ, it is possible to transport a desired degree of
entanglement in Cj i to a predefined z-position.

Discussion
Our results highlight the fact that it is possible to engineer vectorial
light fields whose degree of non-separability oscillates in free-space,
from fully vector to scalar, as a function of the propagation distance,
through spin–orbit coupling. While we have restricted ourselves to
first-order vector vortex beams for the demonstration, the concept
that we outline here is more general and can be applied to higher-
order vector vortex modes as well as, in principle, any vector state with
judicious choice of degree of freedom.
The surprising result is that our entanglement dynamics occur in free

space under unitary conditions. We emphasize that while we have
performed our experiments with coherent light for convenience, the same
results are obtained for local entanglement of the internal degrees of
freedom of a single photon. Neither theory nor experiments differentiate
between these two cases, and thus, we address topical questions as to the
notion of local and classical entanglement and its propagation dynamics.
An important aspect of this work is the practical approach to

the generation and propagation of the fields. It is possible to engineer
the desired effect using a Sagnac interferometer in which an input radially
polarized vector beam is split into two beams traveling along each arm:
one of the beams is switched to azimuthal polarization, with a half-wave
plate, and interfered with the radially polarized beam. In the third arm,
both beams propagate in opposite directions while bearing orthogonal
states of polarization, and they thus generate a standing wave whose
degree of entanglement varies along the propagation axis. This generating
approach does not allow one to experimentally verify the spatially variant
degree of entanglement. We offer a more powerful approach that utilizes
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Figure 3 Intensity profile of the investigated light field Cj i for various
z-positions in units of kzz + ϕ (ϕ=− π/4) with corresponding polarization
structure in (a). (b) Normalized intensity profile of the field Cj i, passing
through a horizontally aligned polarizer (data from simulation). Experimental
results of counter-oscillating intensities for (c) Lj i and (d) Rj i polarization
components.
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with corresponding values of E=0.01, 0.32, 0.94.
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digital generation and propagation enabled by an SLM. This approach
allowed us to manipulate each vector beam independently and, among
other options, perform digital propagation on each. Hence, both vector

beams propagate in a collinear fashion in a manner that simulates
propagation in opposite directions. This approach of generation and
propagation enabled us to realize any state of Cj i with a chosen degree of
entanglement that can be adapted in real time by simply changing the
displayed hologram.
Importantly, this approach allows us not only to monitor the degree

of non-separability but also to provide on-demand specific states to
the observer's positions. We believe that this method will enhance
several noteworthy applications, namely, STED microscopy, optical
trapping, quantum key distribution (QKD) and laser material proces-
sing systems, which we summarize graphically in Figure 6. For
example, rapid changing of the mode type from circularly polarized
light for cutting to radially polarized light for drilling would have clear
benefits in processing materials with lasers17–19, while switching from
a tight spot with radially polarized light to a donut beam with
azimuthally polarized light (after an objective lens) is precisely the
requirement for STED31–32. In addition, the presented configuration
paves the way for novel QKD approaches using a prepare-and-
measure BB84 QKD protocol, with vector and scalar OAM modes
as the orthogonal and mutually unbiased bases47–48. This approach
adds a new level of security to QKD protocols, since (as it has been
noted to us) this work can be extended to a third dimension by
considering the longitudinal mode function. Further, this tripartite
description facilitates classical studies of GHZ-like states (see
Supplementary Information), an exciting opportunity for further work
with classically entangled states.

CONCLUSIONS

We have demonstrated that by exploiting complex modes of light, it is
possible to have an oscillating degree of local entanglement during
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Figure 6 Exemplary applications of virtually counter-propagated, orthogonally
polarized vector modes: (a) adjusting the mode at the focal region for, for
example, STED microscopy systems, optical trapping or (b) laser material
processing by digital propagation (phase shift ϕ), to create radially polarized
beams for drilling and circularly polarized beams for cutting; (c) illustration
of a novel quantum key distribution approach for the delivery of Alice's
states to Bob.
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propagation, even though the medium is considered to be unitary, that
is, a medium in which the entanglement should not change. The result
is a demonstration of spin–orbit coupling in paraxial light beams in free
space. We have shown this effect with entangled internal degrees of
freedom of polarization and spatial modes, and while our experiment
was classical, the results hold equally well for local entanglement of the
internal degrees of freedom of a single photon. In addition, we have
demonstrated the concept behind the first tractor beam for local
entanglement, which would be able to deliver a known degree of
entanglement to some target plane. Our approach highlights intriguing
questions about the notion of entanglement dynamics, opens a new
topic in spin–orbit coupling and offers a new tool for a myriad of
applications that would benefit from holographically controlled avail-
ability of vector and scalar states of light at the target plane.
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