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Activated platelets induce MLKL-driven
neutrophil necroptosis and release of
neutrophil extracellular traps in venous
thrombosis
Daigo Nakazawa1,2, Jyaysi Desai1, Stefanie Steiger1, Susanne Müller3, Satish Kumar Devarapu1, Shrikant R. Mulay1,
Takamasa Iwakura1 and Hans-Joachim Anders 1

Abstract
Venous thromboembolic (VTE) disease, often manifesting as deep vein thrombosis or pulmonary embolism, involves clot
formation consisting of blood cells and platelets locked in plasma protein and chromatin networks. The latter derives
from neutrophil extracellular traps released by dying neutrophils; however, the molecular mechanisms of neutrophil
death in VTE remains unknown. We speculated that mixed lineage kinase-like (MLKL)-driven neutrophil necroptosis
contributes to VTE. Indeed, human inferior venous cava thrombus material stained positive for phosphorylated MLKL, the
activated version of MLKL that executes necroptotic cell death. In mice, MLKL immunostaining showed co-localization of
MLKL with citrullinated histone H3, a marker of neutrophil extracellular trap (NET) formation. These data provide indirect
support for a role of MLKL-mediated necroptosis. As a functional proof, both the stabilizer of receptor-interacting protein
kinase-1 (RIPK1) and necroptosis inhibitor necrostatin-1s as well as genetic deficiency of MLKL partially prevented
clot formation upon inferior vena cava ligation in mice. In both experiments terminal deoxynucleotidyl transferase dUTP
nick-end labeling, RIPK3, and citrullinated histone H3+ areas were markedly reduced within the remnant thrombus. In
vitro, thrombin-activated platelets induced cell death and NET formation in human neutrophils, which was inhibited by
necrostatin-1s treatment. Necrostatin-1s and necrosulfonamide also inhibited neutrophil–platelet aggregate formation
induced by tumor necrosis factor-α but had no effect on platelet activation itself. We conclude that in VTE, activated
platelets, and possibly other triggers, induce neutrophil necroptosis, a process contributing to clot formation by releasing
chromatin in the extracellular space.

Introduction
Venous thromboembolism (VTE) is a complication of

multiple different medical conditions and a major cause of

morbidity and mortality worldwide1. Although it can
occur in any location of the venous system, it primarily
manifests clinically as deep vein thrombosis (DVT) or
pulmonary embolism2. Local microvascular venous
thrombosis is common at sites of trauma or infections but
occurs also in life-threatening systemic disease states as
disseminated intravascular coagulation3. Endothelial dys-
function and the activation of coagulation factors in the
plasma are central elements in clot formation, but the clot
itself largely consists of cellular elements such as red
blood cells, platelets, and neutrophils all contributing to
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clot formation2. Red blood cell-derived microvesicles or
adenosine diphosphate (ADP) initiate thrombin genera-
tion and platelet activation, respectively4,5. The role of
platelets in VTE is less prominent than in arterial
thrombosis. Nevertheless, thrombocytosis has been
attributed as risk factor for VTE6. Pathogens and danger-
associated molecular patterns (DAMPs) stimulate neu-
trophils to activate the clotting system, an interaction
referred to as immunothrombosis7. Neutrophils, them-
selves, contribute to clot formation by releasing neu-
trophil extracellular traps (NETs), that is, networks
consisting of extracellular chromatin, cytoplasmic, and
granular proteins as well as histones that elicit immu-
nostimulatory and cytotoxic effects on microvascular
endothelial cells8. Indeed, netting neutrophil, monocytes,
and platelets cooperate to initiate and propagate VTE9.
Currently, little is known about the molecular mechan-
isms of VTE-related NET formation. It is shown that
platelets release high mobility group protein B1
(HMGB1), which indeed triggers NET formation10,11;
however, the execution pathway of neutrophil death and
chromatin release in this context remains unknown.
Recently, receptor-interacting protein kinase-3 (RIPK3), a

protein involved in inflammation as well as regulated
necrosis12, has been reported to promote platelet activation
in arterial thrombosis13. Interestingly, RIPK3 is also
expressed in neutrophils and contributes to crystal-induced
and microparticle-induced NET formation14,15, a process
associated with neutrophil death and is therefore named
neutrophil necroptosis16. Necroptosis is a regulated form of
cell necrosis involving necrosome formation by RIPK3 and
the pseudokinase mixed lineage kinase domain-like
(MLKL)17–19. Indeed, MLKL oligomers form pores into
nuclear and plasma cell membranes facilitating cell necrosis
and chromatin release into the extracellular space20. Thus,
MLKL-driven neutrophil necroptosis may contribute to
gout and other microparticle-triggered diseases involving
NETs16,21, but its role in VTE is speculative. Here, we
hypothesized that MLKL-dependent neutrophil necroptosis
may contribute to VTE, and thus employed specific
antagonists and Mlkl-deficient mice to address this concept
experimentally in vitro and in vivo.

Results
Inferior vena cava thrombi of human and mouse stains
positive for markers of necroptosis
To examine whether RIPK/MLKL-dependent necrop-

tosis is involved in thrombus formation, we performed
immunostaining of an autopsy sample of a patient with
inferior vena cava thrombus due to renal cell carcinoma.
Hematoxylin and eosin (H&E) staining showed that infil-
trating leukocytes were present in the thrombus along
with CD61+ platelets and fibrinogen. The presence of dead
cells inside the thrombus was identified by terminal

deoxynucleotidyl transferase dUTP nick-end labeling
(TUNEL) staining. In addition, immunostaining of mye-
loperoxidase (MPO) and citrulinated histone-3 (CitH3), as
well as RIPK3 and phosphorylated MLKL, showed the
presence of NETs with a suggestive involvement of MLKL
activation (Fig. 1a). Next, we assessed the same parameters
in a mouse model of inferior vena cava (IVC) thrombosis.
IVC thrombus was induced in wild-type (C57BL/6N) male
mice by ligation of IVC below the left renal vein without
manipulating the side branches. At 72 h after surgery,
thrombi developed in the IVC, in which infiltrated Ly6b+

leukocytes showed high expression of RIPK3-MLKL,
CitH3, and TUNEL positivity (Fig. 1b). Therefore, we
conclude that IVC thrombi of human and mouse stains
positive for markers of necroptosis, NETs, and cell death.

Pharmacological RIPK1 inhibition reduces clot size in
murine IVC thrombosis
To assess whether necroptosis signaling contributes to

clot formation, we evaluated the effect of pharmacological
inhibition of necroptosis with the RIPK1 stabilizer
necrostatin-1s (Nec1s) in the aforementioned IVC ligation
venous thrombosis model. Wild-type mice were pre-
treated prior to IVC ligation with Nec1s. Macroscopic
findings revealed that Nec1s treatment significantly
reduced clot formation (measured as thrombus weight)
after IVC ligation (Fig. 2). TUNEL staining showed that
Nec1s treatment reduced cell death inside thrombi
compared to vehicle (Fig. 3a, b). Furthermore, the number
of infiltrating Ly6b+ granulocytes in thrombi of Nec1s-
treated mice were significantly lower than in controls. The
expression of RIPK3-MLKL and CitH3 in thrombi was
mainly co-localized with blood cells and the over-
expression was suppressed by Nec1s treatment
(Fig. 3a–c). Flow cytometric analysis revealed increased
CD11b+ Ly6Ghigh neutrophils in the peripheral blood of
IVC-ligated mice, which was attenuated by Nec1s treat-
ment (Supplemental Fig. 1a, b). These findings indicate
that the mechanism of venous thrombus formation might
involve programmed neutrophil cell death via RIPK3-
MLKL signaling and histone citrullination. Next, because
monocytes and macrophages produce tissue factor lead-
ing to the activation of pro-coagulant system, we eval-
uated the infiltration of F4/80+ macrophages in thrombi
and the circulating CD11b+Ly6Ghigh monocytes. Phar-
macological inhibition of RIPK1 reduced the number of
infiltrating macrophages in thrombi and the circulating
monocytes (Fig. 3a–c and Supplemental Fig. 1a, c). Next,
to examine the role of programmed necrosis-related
DAMPs during DVT formation, we measured serum
histone–DNA complexes by sandwich enzyme-linked
immunosorbent assay (ELISA). We observed that Nec1s
treatment showed a trend toward a reduced titer of
histone–DNA complexes (Supplemental Fig. 1d). These
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data imply that necroptotic neutrophils and NET-derived
DAMPs could induce further recruitment of immune cells
to the forming clot. Thus, blood cells play a critical role in
the development of DVT and RIPK inhibition ameliorated
venous thrombosis possibly via the suppression of neu-
trophil necroptosis.

Mlkl deficiency reduces clot size in IVC thrombosis
To validate the involvement of necroptosis and also to

avoid potential drug off-target effects, we applied a
genetic approach using Mlkl-deficient mice. We
observed that Mlkl deficiency significantly reduced clot
size upon IVC ligation 3 days after surgery in mice

Fig. 1 Programmed necrosis contributes to thrombus formation in human and mouse. a Paraffin-embedded sections of inferior vena cava
(IVC) thrombus of patient with renal cell carcinoma (upper left panel). H&E staining shows leukocyte infiltration into the thrombus (upper right).
Immunohistochemistry for CD61 and fibrinogen (lower panel). TUNEL, myeloperoxidase (MPO), receptor-interacting protein kinase-3 (RIPK3), and
phosphorylated mixed lineage kinase-like (pMLKL) positive blood cells were detected in the thrombus. Scale bar= 500 μm. b Thrombus of mouse
IVC ligation model. From the left panel, the staining shows TUNEL, Ly6b, RIPK3, MLKL, citrullinated histone-3 (CitH3). Upper figures show the whole
thrombus (scale bar= 1 mm) and lower figures show magnified image (scale bar= 250 μm)
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(Fig. 4a, b). Similar to Nec1s treatment, the areas of
TUNEL+ cells, Ly6b+ neutrophils, and F4/80+ mac-
rophages in thrombi of IVC-ligated Mlkl-deficient mice
were reduced compared to wild-type mice (Fig. 5a–c).
Furthermore, the expression of RIPK3 and CitH3 in
thrombi of IVC-ligated Mlkl-deficient mice was sig-
nificantly lower compared to wild-type mice (Fig. 5a–c).
In addition, Mlkl deficiency resulted in less circulating
neutrophils, monocytes, and serum histone–DNA
complexes after IVC ligation. There was no difference
between groups at baseline (before surgery) in the
number of neutrophils, monocytes, DAMPs, or bleeding
time (Supplemental Fig. 2a–d). Taken together, Mlkl
deficiency reduces clot size in IVC thrombosis, possibly
by abrogating MLKL-dependent necroptosis of blood
cells, especially neutrophils.

Activated platelets induce neutrophil necroptosis and
neutrophil–platelet aggregation
Because blood cell necroptosis and NET formation

were detected in thrombi of IVC-ligated mice, we
questioned which blood cells underwent necroptosis,
and how NETs are induced during thrombus formation?
We first examined the expression of RIPK3 and MLKL in
human neutrophils, peripheral blood mononuclear cells
(PBMCs), and platelets by immunofluorescence staining
as well as immunoblotting. Immunostaining revealed
that neutrophils and platelets both express RIPK3 and
MLKL (Supplemental Fig. 3a, b). In addition, immuno-
blotting analysis showed the presence of RIPK3 and

MLKL protein in neutrophils, PBMCs, and platelets
(Supplemental Fig. 3c). Next, we explored whether
thrombin-activated platelets induce neutrophil necrop-
tosis via the RIPK signaling pathway in vitro. Although
neutrophils were not directly affected by the addition of
thrombin and non-activated platelets, thrombin-
activated platelets stimulated neutrophils to undergo
NET formation with high expression of CitH3, RIPK3,
and MLKL and with lactate dehydrogenase (LDH)
release, the latter indicating neutrophil death (Fig. 6a–e).
NET formation and LDH release were both suppressed
by pretreatment with Nec1s (Fig. 6a–e). Considering the
presence of blood cells with phosphorylated MLKL in
human thrombus (Fig. 1a), the dead neutrophils undergo
necroptosis. To verify that this process contributes to
granulocyte–platelet aggregation as a central mechanism
of clot formation, whole blood was incubated with tumor
necrosis factor-α (TNFα)/zVAD known as typical indu-
cer of necroptosis. As a readout granulocyte–platelet
aggregation was analyzed by flow cytometric analysis
using CD61 (platelet) and CD66 (granulocyte) markers.
TNFα/zVAD induced granulocyte–platelet interaction
and pretreatment with the RIPK1 inhibitor Nec1s or the
MLKL inhibitor necrosulfamide (NSA) inhibited this
process (Fig. 7a, b). Furthermore, as a second and more
physiological inducer thrombin triggered the same
interaction of granulocytes and platelets, which was
rescued by Nec1s and NSA pretreatment (Fig. 7c).
Finally, we examined whether platelets themselves
undergo necroptosis by thrombin stimulation. The

Fig. 2 Necrostatin-1s (Nec1s) inhibits thrombus formation. The IVC of wild-type male mice (11–13 weeks old) was ligated under the anesthesia
with pretreatment of vehicle (5% DMSO in PBS) or Nec1s, and all mice were sacrificed 3 days after the operation. a Left and right image show the
thrombus in IVC ligation model with vehicle and Nec1s, respectively. Upper photos show macroscopic findings and lower figures show H&E staining.
Scale bar= 1 mm. b The graph shows the thrombus size of sham-operated mice with vehicle (n= 3) or Nec1s (n= 4), and IVC-ligated mice with
vehicle (n= 7) or Nec1s (n= 7). Data are mean ± SEM in each group. **p < 0.01 vs. respective control
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platelet death and activation in vitro was examined by
flow cytometry using annexin V and P-selectin as acti-
vation markers, respectively. TNFα/zVAD-stimulated
human platelets up-regulated annexin V and P-selectin;
however, these phenomena were not inhibited by
Nec1s and NSA (Supplemental Fig. 4a). Similarly,
thrombin up-regulated annexin V and P-selectin
expression in platelets, whereas Nec1s or NSA had no
inhibitory effect (Supplemental Fig. 4b). Taken together,
activated platelets induce neutrophil necroptosis and
neutrophil–platelet aggregation.

Discussion
We had hypothesized that MLKL-dependent neutrophil

necroptosis would contribute to VTE and employed specific
antagonists and Mlkl-deficient mice to address this concept
experimentally both in vitro and in vivo. We found the
essential mediators of necroptosis, RIPK3 and MLKL, to be
present in IVC thrombi of humans and mice. Interfering with
necroptosis, either with the specific antagonist Nec1s or with
genetic deletion of Mlkl, partially protected mice from IVC
ligation-induced venous thrombosis. Mechanistically,
thrombin-related platelet activation triggered neutrophil

Fig. 3 Nec1s suppresses necroptosis and NET-related signaling pathway during thrombus formation. a Representative figures of IVC-ligated
mice with pretreatment of vehicle and b Nec1s. From left panel, the staining shows TUNEL, Ly6b, RIPK3, MLKL, CitH3, and F4/80. Upper figures show
the whole thrombus (scale bar= 1 mm) and lower figures show magnified image (scale bar= 250 μm). c Quantification of positive area of each
staining. Data are mean ± SEM in each group. *p < 0.05 vs. respective control
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death and neutrophil-platelet aggregation, which both could
be reversed by specific necroptosis inhibitors. Platelet acti-
vation itself did not involve this pathway. We, therefore,
conclude that in VTE activated platelets induce neutrophil
necroptosis, a process generating the release of chromatin
and DAMPs that contribute to clot formation (Fig. 8).
NETs form predominantly during the organizing stage of

VTE development22. NETs are released by neutrophils
present in the lesion, and several studies identified platelet-
derived HMGB1 as a trigger for NET formation9–11,23. Lytic
proteases, histones, and DAMPs released along with NETs
certainly contribute to the local and systemic inflammation
associated with VTE2,8,24,25. However, the sticky DNA itself
seems to be an essential component of the clot and
synergizes with the fibrin mesh to retain red blood cells25.
Indeed, endogenous DNases counterbalance this phenom-
enon in conceptually similar manner to plasmin that
degrades the fibrin mesh26. There is an ongoing debate
whether NET release is necessarily associated with neu-
trophil death or not. During host defense neutrophils have
been shown to continue migrating also after NET release,
but this has not been observed in other disease settings16,27.
For example, in gout the exposure to urate crystals triggers
crystal–NET aggregates involving lytic neutrophil death and
production of a sticky creamy mass of NETs, dead
neutrophils, and crystals, called the gouty tophus28,29. In
VTE the process and results are conceptually similar,
although the additional presence of blood components such
as platelets, red blood cells, and the fibrin mesh produce a
much higher consistency of clots vs. gouty tophi. Never-
theless, neutrophil death is essential in this process and
contributes to vascular occlusion, obstructing the blood
flow. Indeed, the interesting thing in the setting of VTE is
that neutrophils undergo necroptosis, a form of regulated
cell necrosis19. We recently described that urate as well as

numerous other crystals and microparticles of different
sizes and shapes induce neutrophil necroptosis via RIPK1,
RIPK3, and MLKL14,15. Neutrophil necroptosis has also
been observed in other conditions including exposure to
granulocyte–macrophage colony-stimulating factor fol-
lowed by the ligation of adhesion receptors such as CD44,
CD11b, CD18, or CD1530. Our data add thrombin-activated
platelets to the potential triggers of neutrophil necroptosis,
although the precise outside-in signaling mechanism
remains to be determined. We also do not claim that the
process of neutrophil necroptosis is identical to that of NET
release or what has been called “NETosis.”21 However, the
consequence of plasma cell rupture in neutrophil necrosis is
the same, that is, sticky NET-like chromatin immobilizes
adjacent particles, which in VTE are red blood cells, pla-
telets, and the fibrinogen mesh2.
Interestingly, we found that platelets also express RIPK3

and MLKL. These are ubiquitous cytoplasmic proteins,
which are obviously shed from megakaryocytes during
platelet formation. Although platelet necrosis is known to
be regulated by mitochondrial effect with calcium reflux
and ATP depletion31, how necroptosis contributes to the
platelet death remains unknown. It has been reported that
deletion of RIPK3 from megakaryocytes and platelets causes
a marked defect in platelet aggregation and attenuates
dense granule secretion in response to thrombin or a
thromboxane A2 analog in vitro, and delay vascular
occlusion time in a mouse model of arterial thrombosis13. It
should be noted that RIPK3 has promiscuous biological
functions beyond necroptosis, for example, in apoptosis or
interleukin-1-dependent or nuclear factor-κB-dependent
inflammation12, as well as platelet activation13. Never-
theless, we did not find any evidence that MLKL inhibition
affects thrombin-induced platelet activation. Therefore, we
consider the VTE phenotype of Mlkl-deficient mice largely

Fig. 4 Genetic depletion of Mlkl reduces thrombus size in the IVC ligation model. a Macroscopic findings of thrombi in IVC-ligated wild-type
(left) and Mlkl−/− mice. Scale bar= 1 mm. b The graph shows the thrombus size of IVC-ligated wild-type (n= 7) and Mlkl−/− mice (n= 7). Data are
mean ± SEM in each group. *p < 0.05 vs. respective control
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relate to the lack of neutrophil necroptosis. Unfortunately,
Mlklflox mice were not accessible to us to study cell-type-
specific deletion of MLKL.
In summary, in VTE activated platelets, and possibly

other triggers, induce neutrophil necroptosis, a process
generating the release of chromatin and DAMPs
that contribute to clot formation. Thus, inhibitors of

necroptosis may interfere with clotting, which might be
explored for therapeutic purposes.

Materials and methods
Venous thrombosis model
One hundred percent flow obstruction of the IVC was

induced in 12- to 13-week-old male wild-type C57BL/6N

Fig. 5 Mlkl gene deficiency suppresses necroptosis and NET-related signaling pathways during thrombus formation. From the left panel,
TUNEL, Ly6b, RIPK3, CitH3, and F4/80 staining. a Representative figures of IVC-ligated wild-type mice and b IVC-ligated Mlkl−/− mice (scale bar=
1 mm). Upper figures show the whole thrombus (scale bar= 1 mm) and lower figures show magnified image (scale bar= 250 μm). c Quantification
of positive area of each staining. Data are mean ± SEM in each group. *p < 0.05 vs. respective control
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mice (Charles River Laboratories, Sulzfeld, Germany) or
Mlkl−/− mice under the maintenance of normal body
temperature by employing preoperative heat supply and
online core body temperature recording as described32.
Mice were anesthetized by intraperitoneal injection of
medetomidine (0.5 mg/kg), midazolam (5 mg/kg), and
fentanyl (0.05 mg/kg) before median laparotomy was
performed to carefully expose and completely ligate the
IVC using 7-0 prolene (ETHICON) exactly below the left
renal vein without manipulating side branches. After
ligation, the abdominal wall and skin were closed by

sutures. Anesthesia was antagonized by subcutaneous
injection of atipamezol 2.5 mg/kg and flumazenil 0.5 mg/
kg and pain control was assured by regular subcutaneous
injections of buprenorphine 1mg/kg every 8 h. Mice with
surgical complications such as bleeding or injury of the
IVC were excluded because these factors could possibly
affect thrombus formation. Other groups of C57BL/6N
wild-type mice were treated with Nec1s (1.65 mg/kg,
intraperitoneally, Bio Vision, USA) or vehicle (10%
dimethyl sulfoxide (DMSO) in phosphate-buffered saline
(PBS)) 1 h before the surgery. All mice were sacrificed

Fig. 6 Activated platelets stimulate neutrophils leading to up-regulation of necroptosis-related and NET-related signaling molecules in vitro. a Upper,
middle, and lower panel show co-culture images of neutrophils with non-activated platelets, neutrophils with thrombin-activated platelets, and
Nec1s-treated neutrophils with thrombin-activated platelets. Immunofluorescent images show neutrophil elastase (NE): green; citrullinated histones
H3 (CitH3): red; RIPK3: red; and MLKL: red. Scale bar= 50 μm. Quantification of CitH3 (b), RIPK3 (c), MLKL (d) area and LDH release of supernatant (e) in
unstimulated neutrophils, thrombin-treated neutrophils, non-activated platelets, vehicle-treated neutrophils with thrombin-activated platelets, and
Nec1s-treated neutrophils with thrombin-activated platelets. Data represent the mean ± SEM of three independent experiments and were analyzed
using the paired t test. *p < 0.05 vs. respective control; **p < 0.01 vs. respective control
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3 days after surgery and thrombus weight (without ves-
sels) was measured as a primary endpoint of clot forma-
tion. As a bleeding test 10- to 12-week-old male C57BL/
6N wild-type or Mlkl−/− mice were anesthetized using
isofluorane. A 2mm segment of the tail tip was cut
using a scalpel, and the tail was put in 37 °C PBS33.
Bleeding time was recorded up to when bleeding had
completely stopped. All animal-related procedures fulfilled
the directive 2010/63/EU and were optimized in terms of
3R recommendations and approved by the local govern-
mental authorities (ROB-55.2Vet-2532.Vet_02-17-54).

Histological examination
Thrombi were embedded in paraffin and 3 μm sections

were deparaffinized and rehydrated as previously descri-
bed34. Sections were stained with H&E or prepared for
immunohistochemistry. A 0.3% H2O2 was used for inhibi-
tion of endogenous peroxidase. Primary antibodies included
rat anti-mouse Ly6b (neutrophils, AbD Serotec, Oxford,
UK), rabbit anti-CitH3 (netting neutrophils, Abcam, Cam-
bridge, UK), rabbit anti-mouse RIPK3 (Abcam, Cambridge,
UK), anti-mouse MLKL (kindly provided by Andreas Lin-
kermann, Dresden), and rat anti-mouse F4/80 (Serotec,
Oxford, UK)35. TUNEL staining kit (Roche, Mannheim,

Germany) was used to detect dying cells inside the
thrombus following the manufacturer’s description. Positive
cells were quantified using the ImageJ software.

Histological examination in human thrombus
Paraffin-embedded sections of a human IVC thrombus

from a patient with renal cell carcinoma were stained with
H&E and immunohistochemistry was performed using
the following primary antibodies rabbit anti-CD61
(LifeSpan Biosciences, Inc. Seattle, WA, USA), rabbit
anti-fibrinogen, rabbit anti-myeloperoxidase, rabbit anti-
RIPK3, rabbit anti-phosphorylated MLKL (all from
Abcam, Cambridge, UK). Signal detected was performed
using routine procedures as described36.

In vitro experiments
Blood was obtained from healthy donors after providing

written informed consent on forms approved by the
“Ethikkommission der Medizinischen Fakultät der LMU”
and all experiments were performed in accordance with
their guidelines and regulations. Neutrophils were isolated
using standard dextran sedimentation followed by
Ficoll–Hypaque density centrifugation procedures14,15.
For platelet isolation, blood was collected into sodium

Fig. 7 Nec1s and necrosulfonamide (NSA) inhibit aggregation between neutrophils and platelets in vitro. a Human whole blood was
stimulated with TNFα/zVAD in the presence of vehicle, Nec1s, and NSA. Upper flow cytometry images show the platelet population gated by forward
scatter (FSC)/sideward scatter (SCC). Lower images show neutrophil–platelet aggregates by CD61/CD66 gating and the aggregation ratio in TNFα/
zVAD-treated (b) and thrombin-treated (c) blood. Data represent the mean ± SEM of three independent experiments and were analyzed using the
paired t test. *p < 0.05 vs. respective control
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citrate-coated tubes. Platelet-rich plasma was obtained by
centrifugation (200 rpm, 20min). Neutrophils were sus-
pended in RPMI (5 × 105 cells/well), and seeded onto
either eight-well micro-slides (Ibidi, Martinsried, Ger-
many) or 96-well plates, and incubated in a 5% carbon
dioxide atmosphere at 37 °C for 30min. Neutrophils were
pre-treated with Nec1s (100 µM, Enzo, Lörrach, Ger-
many) or vehicle (1% DMSO in PBS) for 30min and then
stimulated with thrombin (0.05 U/ml, Merck Millipore,
Darmstadt, Germany), non-activated platelets, and
thrombin (0.05 U/ml for 3 min) activated platelets (1 × 107

cells/well). After 3-h incubation, the microslides were
fixed with 4% paraformaldehyde (PFA) and analyzed for
CitH3, RIPK3, and MLKL expression by immuno-
fluorescence staining. In 96 plates, neutrophil death was
quantified by the LDH assay (Sigma Aldrich, Steinheim,
Germany) using neutrophil supernatants. To induce
neutrophil–platelet aggregation, human whole blood was
stimulated by either the combination TNFα (200 ng/ml)
and zVAD (20 µM) or 0.05 U/ml thrombin (for 10min)
with or without pretreatment of Nec1s (100 µM) and
necrosulfonamide (10 µM, Calbiochem).

Flow cytometric analysis
Flow cytometric analysis was performed on a FACS

Calibur flow cytometer (BD Biosciences). In mouse
experiments, anti-mouse FITC-Ly6G, PerCP-Ly6C, PE-

CD11b (BD Biosciences), and APC-CD45 (BioLegend)
antibodies were used to identify circulating neutrophils
and activated monocytes in peripheral blood. Mouse
plasma was analyzed for histone–nucleosome complexes
by ELISA (Roche). Whole blood was analyzed by flow
cytometry to quantify circulating immune cells36. In vitro,
human platelets and whole blood were used. Platelets
were gated by APC-CD42b (BioLegend) and platelet
activation and death were determined by PerCP-CD62p
(BioLegend) and FITC-Annexin V (BD Pharmingen),
respectively. Platelet–granulocyte aggregation was deter-
mined using anti-human FITC-CD61 and PE-CD66
(BioLegend) antibody in accordance with the manu-
facturer’s instructions.

Histone-nucleosome assay
Serum histone was evaluated by histone–DNA com-

plexes ELISA kit (Roche, Mannheim, Germany).

Immunoblotting
Blood cells were also analyzed by standard immuno-

blotting. Cell pellets were lysed with RIPA buffer (Sigma,
USA), the extracted proteins were separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis, and
transferred to a polyvinylidene difluoride membrane.
Anti-β-actin, RIPK3, and MLKL antibodies (Abcam, UK)
were used for detection of molecules expression.

Fig. 8 Schema of activated platelet-induced neutrophil necroptosis in DVT. During thrombus formation, RBCs initiate thrombin generation and
platelet activation. The activated platelets affect neutrophils to induce neutrophil necroptosis via the phosphorylation of MLKL. Necroptotic
neutrophil-derived extracellular chromatin can interact with fibrin mesh and activate endothelial cells, resulting in the aggravation of rigid clot
formation as immunothrombosis. RBC red blood cell, pMLKL phosphorylated mixed lineage kinase domain-like
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Statistics
Data are presented as mean ± SEM. Unpaired Student’s

t test and one-way analysis of variance followed by Dun-
nett’s post test were used for the comparison. A value of
p < 0.05 was considered to indicate statistical significance.
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