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Composition and richness of the serum microbiome differ
by age and link to systemic inflammation
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Abstract Advanced age has been associated with alter-
ations to the microbiome within the intestinal tract as
well as intestinal permeability (i.e., “leaky gut”). Prior
studies suggest that intestinal permeability may contrib-
ute to increases in systemic inflammation—an aging
hallmark—possibly via microorganisms entering the cir-
culation. Yet, no studies exist describing the state of the
circulating microbiome among older persons. To com-
pare microbiota profiles in serum between healthy young
(20-35 years, n =24) and older adults (6075 years, n =
24) as well as associations between differential microbial
populations and prominent indices of age-related inflam-
mation. Unweighted Unifrac analysis, a measure of [3-
diversity, revealed that microbial communities clustered
differently between young and older adults. Several
measures of «-diversity, including chaol (p=0.001),
observed species (p =0.001), and phylogenetic diversity
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(p=0.002) differed between young and older adults.
After correction for false discovery rate (FDR), age
groups differed (all p values <0.016) in the relative
abundance of the phyla Bacteroidetes, SR1, Spiro-
chaetes, Bacteria_Other, TM7, and Tenericutes. Signifi-
cant positive correlations (p values <0.017 after FDR
correction) were observed between IGF1 and
Bacteroidetes (p =0.380), Spirochaetes (p=0.528),
SR1 (p=0.410), and TM7 (p=0.399). Significant in-
verse correlations were observed for IL6 with
Bacteroidetes (p=—0.398) and TM7 (p=—0.423), as
well as for TNFx with Bacteroidetes (p =—0.344). Sim-
ilar findings were observed at the class taxon. These data
are the first to demonstrate that the richness and compo-
sition of the serum microbiome differ between young
and older adults and that these factors are linked to
indices of age-related inflammation.

Keywords Aging - Leaky gut - Microbiome -
Microbiota - Inflammation

Introduction

Chronic low-grade inflammation is one of the most
consistent biologic features of advanced age, evi-
denced by over 10,000 publications in this area
(Buford 2017). Yet, despite the common recognition
of the inflammatory phenomenon, the etiology of age-
related inflammation remains poorly understood. Re-
cently, a novel hypothesis has emerged from our
group and others suggesting that increases in gut
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permeability (i.e., “leaky gut”) and subsequent re-
lease of intestinal contents into the circulation may
be a primary contributor to increases in age-related
inflammation (Buford 2017; Nicoletti 2015).

Aging is associated with several relevant changes
to overall gut health including increases in intestinal
permeability (Man et al. 2015; Nicoletti 2015) as well
as changes to the stability of the gut microbiome
(Biagi et al. 2010; Jeffery et al. 2016)—the aggregate
genetic material of microorganisms residing within
the intestinal tract which contribute to regulating host
health (Human Microbiome Project Consortium
2012). These changes are relevant in the present
context as recent evidence indicates that changes in
microbial composition and density can alter immuni-
ty and inflammation distal to the intestine (Belkaid
and Naik 2013). Indeed, early studies in humans
reported cross-sectional associations between gut
microbiome profiles and circulating inflammatory
cytokines of older adults (Claesson et al. 2012;
Rampelli et al. 2013). However, the mechanisms
through which gut dysbiosis could contribute to
chronic, low-grade inflammation were unclear.

Basic and pre-clinical studies have also suggested
that intestinal permeability, coupled with altered micro-
biota profiles (Clark et al. 2015; Rera et al. 2012), may
drive age-related increases in systemic inflammation.
Very recently, Thevaranjan et al. (2017) published a
seminal study in a mouse model definitively demon-
strating that age-related gut microbial dysbiosis drives
intestinal permeability, microbial translocation to the
circulation, and ultimately systemic inflammation. Yet,
despite these important pre-clinical studies, data are
lacking to link intestinal permeability to inflammation
in humans.

We recently published the first human evidence dem-
onstrating that circulating concentrations of zonulin, a
physiologic regulator of intestinal permeability, were
higher—indicating greater permeability—among
healthy older adults than younger peers (Qi et al.
2017). Furthermore, zonulin concentrations were posi-
tively associated with circulating concentrations of in-
flammatory cytokines tumor necrosis factor alpha
(TNFx) and interleukin 6 (IL6) (Qi et al. 2017), two
of the primary inflammatory cytokines consistently as-
sociated with the aging process. The objective of this
study was to expand upon these findings by providing
the first data comparing microbial DNA profiles within
the circulation of healthy and older adults. We
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hypothesized that the microbiome found within serum
would display age-related differences in measures of
both alpha- and beta-diversity—key measures to detect
differences in microbiomes between differing popula-
tions (Kumar et al. 2014). Moreover, we also aimed to
identify specific microbial DNA abundances signifi-
cantly associated with circulating concentrations of
IL6 and TNFx as well as insulin-like growth factor 1
(IGF1)—a hormone known to be intricately related to
inflammatory cytokine production (Maggio et al. 2013;
Rajpathak et al. 2008) and recently reported to be stim-
ulated by microbiota (Yan et al. 2016).

Results

Participant characteristics, diet, and inflammatory
parameters Data from a total of 48 participants was
included in the study. Participant descriptive statistics
are shown in Table 1. The young (n = 24) and older adult
(n=24) groups were balanced for sex. Participants in
each group were of similar height and body mass,

Table 1 Participant demographic characteristics and inflammato-
ry parameters

Young adults  Older adults
Age, years 27.8+4.0 63.9+£3.2%*
Female, n 14 (58.3%) 14 (58.3%)
Height, cm 1702+11.0  169.1+£10.9
Body mass, kg 72.7+12.9 749+15.0
Body mass index, kg/m® 25.0+3.0 259+3.2
Body fat, % 30.1£104 35.9+6.4*
VO,max, mL/O,/min 37.5+84 27.0+4.8%*
Dietary intake
Total intake, kcal/day 2003 +779 1767 +625
Carbohydrate, g/day 253.9+103.6 210.2+75.5%
Fiber, g/day 20.4+8.3 16.2+8.7
Fat, g/day 76.5+41.2 67.8+36.4
Protein, g/day 75.4+33.9 73.1+30.1*
Serum inflammatory parameters
Interleukin 6, pg/mL 0.38+0.19 0.52+0.20%
Tumor necrosis factor «, 2.02+0.60 2.20+0.44
pg/mL
Insulin-like growth factor 1, 365.4+£129.2 188.4+£82.3%*
ng/L

VO2max maximal respiratory capacity (i.e., fitness); *p <0.05,
*#p < 0.0001

All values (mean = SD)
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resulting in a similar mean body mass index between
groups. Body fat percentage and fitness were signifi-
cantly different (p <0.05) between groups. Regarding
dietary intake, a trend toward significance (p =0.061)
was observed for greater daily caloric intake among
younger adults compared to older adults. Young adults
consumed significantly more carbohydrate (mean dif-
ference: 43.6 kcal/day, p = 0.008), including significant-
ly more fiber (mean difference: 4.2 g/day, p =0.005)
than older adults. No differences were observed in daily
intake of fat or protein nor in specific sub-types of fats
including cholesterol, saturated fat, or mono/
polyunsaturated fats (data not shown). Serum concen-
trations of IL6, TNFo, and IGF1 are shown by group in
Table 1. Significant group differences (p <0.05) were
observed for IL6 and IGF1, but not TNF .

Microbial analyses—overall microbiome composition,
(-diversity, and a-diversity Figure 1 depicts the overall
composition of the serum microbiomes among both
young and older adults at both the phylum (A) and class
(B) levels of taxonomy. Principal coordinate analysis
(PCoA) revealed that age groups differed in the overall
serum microbiota community structure as determined
by Unweighted UniFrac (C). Key measures of o-diver-
sity, including richness (chaol and observed species)
and phylogenetic diversity, were significantly different
between young and older adults (Fig. 2). Overall sample
diversity, measured according to the Shannon and

Simpson metrics, did not significantly differ between
age groups.

Age-related differences in microbial abundances The
relative abundance of several bacterial phyla was signifi-
cantly different between age groups (Fig. 3). After correc-
tion for false discovery rate (FDR), significant group dif-
ferences were observed for the phyla Bacteroidetes, SRI,
Spirochaetes, Bacteria_Other, TM7, and Tenericutes. At
the class level, significant group differences were observed
for Bacteroidia, Mollicutes, Bacteria Other Other,
Cytophagia, Firmicutes Other, and Leptospirae
(Table 2). Additionally, several other families with p values
< 0.05 but not significant after FDR correction were iden-
tified, including Erysipelotrichi, Fusobacteria,
SRI unknown, and Acidimicrobiia.

Associations of identified microbial communities with
inflammatory parameters Several phyla were signifi-
cantly associated with serum inflammatory parameters
(Fig. 4), in particular Bacteriodetes which was signifi-
cantly correlated with all three measures. The phylum
TM7 was significantly correlated with both IGF1 and
IL6. Additionally, several other phyla displayed p values
<0.05 but were not significant after FDR correction.
These included the following: Bacteria Other with
IGF1 (p=0.329, p=0.025), Tenericutes with 1GF1
(p=0.303, p=0.041), and Spirochaetes with TNFx
(p=—0.285, p=0.050). At the class level, three
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Fig. 2 Comparison of o-diversity of the serum microbiome be-
tween healthy young (blue) and older adults (red). Five indices
were used to represent the richness (chaol, observed species),

significant correlations were observed including
Bacterioidia with both IGF1 and IL6 as well as
Cytophagia with IGF1 (Fig. 5). Correlations with other
families with p values <0.05 but not significant after
FDR correction included Bacteria_Other Other with
IGF1 (p=0.318, p=0.033), Leptospirae with IGF1
(p=0.321, p=0.031), and Bacterioidia with TNFx
(p=—0.324, p=0.026).

Discussion

This is the first study to evaluate the age-related differ-
ences in microbial DNA profiles present in serum of
healthy humans as well as associations of DNA abun-
dances of specific microbial communities with indices
of systemic inflammation. These findings are the first to
indicate that the community structure of the microbiome
in human serum differs between healthy young and
older adults. Compared to younger adults, serum of
older adults contained DNA from fewer species
representing a lower level of phylogenetic diversity than
that of young adults. Numerous bacterial phyla- and
class-level differences were observed between age
groups. Notably, the relative abundance of DNA from
the Bacteroidetes phylum—one of the most abundant
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phylogenetic diversity, and sample diversity (shannon and
simpson indices). Box whiskers indicate the range of observed
values

bacteria in both the gut and circulation—was signifi-
cantly lower among older adults. Several of these dif-
ferentially expressed bacterial DNA were also signifi-
cantly correlated with indices of inflammation. DNA
from Bacteriodetes in particular displayed strong rela-
tionships with inflammatory parameters as it was posi-
tively associated with IGF1 and negatively associated
with both IL6 and TNFa.

Under healthy conditions, the compartmentalization
of bacteria and other microbes to the gastrointestinal
tract is maintained by a tight barrier at the intestinal-
vascular interface (Spadoni et al. 2015). Yet, under
certain clinical conditions, the integrity of this barrier
can decrease and result in microbial translocation to the
systemic circulation. For instance, microbial transloca-
tion due to a loss of immune control has been reported in
HIV+ patients (Brenchley et al. 2006) as well as in
cirrhotic patients with ascites (Santiago et al. 2016). In
the case of the HIV+ population, microbial translocation
was associated with low-grade systemic inflammation
similar to findings observed in the in recent animal study
of aging (Thevaranjan et al. 2017).

In the present study, the analysis performed from
whole serum cannot differentiate between microbial
DNA fragments and intact microbes. Even under
healthy conditions, human blood contains bacterial
DNA capable of triggering host innate immune
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Fig. 3 Microbial DNA populations differentially expressed be-
tween young (blue) and older (red) adults at the phylum level.
Asterisk indicates statistical significance after correcting for

responses (Hacker et al. 2002; Muruve et al. 2008;
Nikkari et al. 2001). What is notable here, however, is
the differences in the relative abundances between
young and older adults. Several studies have reported
alterations in circulating bacterial DNA abundances
and corresponding immune/inflammatory profiles in
patient populations including those with cirrhosis,
kidney disease, and cardiovascular disease
(Dinakaran et al. 2014; Frances et al. 2004; Kwan
et al. 2013). In fact, differences in relative bacterial
DNA abundances between patients and controls were
proposed as an indicator of cirrhosis progression
(Santiago et al. 2016). Though we cannot confirm
the cause of these differentially expressed DNA, our
prior findings related to zonulin concentrations in
older adults as well as pre-clinical studies in this area
lead us to hypothesize that these differences may be

Young Adults

Older Adults Young Adults  Older Adults

multiple comparisons via false discovery rate. Box whiskers rep-
resent the range of observed values

secondary to gut permeability. Future studies are
needed to confirm this hypothesis.

Novel findings of this study include the differences in
[3-diversity as well as in the number of species with
DNA expressed. In particular, DNA from the
Bacteroidetes phylum differed by age and was signifi-
cantly correlated with indices of inflammation. Given
the lower abundance of Bacteroidetes DNA among
older adults—these data could suggest a causal relation-
ship between microbial DNA community composition
and lower IGF1/higher inflammatory cytokines ob-
served with advanced age. Though speculative, as a
dominant microbial community, it is possible that re-
ductions in circulating concentrations indicate increases
in other potentially more reactive communities.

Another novel finding of the study is association
of serum microbial DNA abundances with IGFI.
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Table 2 Serum microbiome composition at the class level (25 most common OTUs)

Young adults Older adults p value for group
Firmicutes_Clostridia 348+ 143 345+ 154 0.932
Bacteroidetes_Bacteroidia 182+4.7 13.6+5.0 0.003*
Firmicutes Bacilli 125+7.0 11.4+4.7 0.831
Proteobacteria_Gammaproteobacteria 9.6+6.3 7.7+32 0.580
Actinobacteria_Actinobacteria 49+64 7.6+74 0.093
Firmicutes_Erysipelotrichi 23+1.6 8.6+134 0.023
Fusobacteria_Fusobacteriia 59+46 34+£3.6 0.035
Proteobacteria_Betaproteobacteria 27+09 34+23 0.496
Proteobacteria_Alphaproteobacteria 23+£23 24+1.8 0.702
Verrucomicrobia Verrucomicrobiae 1.9+0.8 23+13 0.217
Proteobacteria_Epsilonproteobacteria 08+04 0.6+04 0.085
Actinobacteria_Coriobacteriia 05+02 0.6+0.3 0.120
Bacteroidetes Flavobacteriia 05+0.2 0.6 +0.7 0.898
Cyanobacteria_Chloroplast 05+04 0.7+0.5 0.173
Tenericutes Mollicutes 0.7+£0.5 0504 0.003*
Proteobacteria_Deltaproteobacteria 04+03 04+03 0.865
Bacteria_Other_Other 03+0.2 02+0.2 0.004*
Bacteria SR1_unknown 02+0.2 0.1+0.2 0.016
Bacteroidetes Cytophagia 0.04 £ 0.04 0.25+0.49 0.003*
Cyanobacteria_Synechococcophycideae 0.07 £ 0.04 0.16 £0.22 0.328
Deferribacteres_Deferribacteres 0.10+0.10 0.10 £ 0.08 0.686
Firmicutes_Other 0.11 +0.07 0.06 = 0.05 0.011*
Spirochaetes Leptospirae 0.10 £ 0.08 0.04 +0.06 0.001*
Actinobacteria_Acidimicrobiia 0.03 £ 0.03 0.04 + 0.06 0.045
Cyanobacteria_Oscillatoriophycideae 0.02 £0.03 0.10£0.20 0.034

All values (mean + SD) indicate relative abundance (%)

*Statistically significant after correction for false discovery rate

Though typically known for its potent anabolic proper-
ties, IGF1 also has tremendous relevance to the human
immune system. It is well documented that inflamma-
tory cytokines attenuate IGF1 production (Maggio et al.
2013; Rajpathak et al. 2008), but IGF1 also plays an
important role in regulating innate and acquired immu-
nity—including the production of inflammatory cyto-
kines (Heemskerk et al. 1999). Clinical data have re-
cently implicated low IGF1 in flare-ups of inflammatory
bowel disease (Krakowska-Stasiak et al. 2017), while
basic studies have demonstrated that IGF1 directly in-
hibits pro-inflammatory cytokines in multiple animal
cell types (Ji et al. 2017; Onnureddy et al. 2015), induc-
ing LPS-induced cytokine expression (Onnureddy et al.
2015). This latter finding may have important
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implications for present findings, as microbial LPS
may stimulate inflammatory cytokine production.
Moreover, recent data reported that gut microbiota can
stimulate IGF1 (Yan et al. 2016). Despite these links, the
present data should not be over-interpreted as they do
not provide any indication of directional causality. How-
ever, they do suggest that further follow-up may be
warranted given the strength of associations and the
aforementioned recent literature in this area.

Notably, dietary intake—including intake of dietary
fiber—and fitness differed between young and older
adults. Though these are differences commonly ob-
served between young and older adults, these findings
are important in the present context as diet and physical
activity/exercise are among the primary factors known
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Fig. 4 Microbial DNA populations at the phylum level signifi-
cantly differing in abundance between young and older adults and
correlated with indices of inflammation. Correlation coefficients
reflect the Spearman rho comparison. Asterisk indicates statistical

to influence gut microbiota communities (Campbell and
Wisniewski 2017; Chen et al. 2014; O’Sullivan et al.
2015; Pallister and Spector 2016). To our knowledge,
no data exist to directly indicate that diet or exercise can
alter systemic bacterial DNA expression. However, both
high-fat meals and highly vigorous exercise are known to
be capable of inducing intestinal permeability, bacterial
translocation, and even transient endotoxemia (Costa
et al. 2017; Kelly et al. 2012). It is unclear at present
how these factors might contribute to age-related differ-
ences in serum microbiome profiles, but these factors are
important to consider for proper interpretation of study
findings and in moving forward to causal studies.

significance after correcting for multiple comparisons via false
discovery rate. Data points are colored separately to indicate
young (blue) and older (red) adults

As with any study, the present investigation is not
without limitations. For instance, as noted above, the
16S microbiome analysis does not discriminate between
microbial DNA fragment and intact microbes.

However, as noted, previous studies have shown
that even bacterial DNA fragments are capable of
stimulating immune reactions based on their for-
eign structure (Hacker et al. 2002; Muruve et al.
2008; Nikkari et al. 2001). Again, it is possible
that differences in serum microbial DNA expres-
sion may be influenced by exercise (as evidenced
by fitness) or diet which are important regulators
of the intestinal microbiome. However, this is
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purely speculative at present. Additionally, only a
single time-point was examined; thus, it remains
unclear if serum microbe composition changes
over time.

In summary, this study is the first to demonstrate age-
related differences in the composition of the serum
microbiome and associations between DNA expression
of microbial communities and circulating indices of
inflammation. Future studies are needed to evaluate
causal links between these outcomes as well as associ-
ations between the abundance of microbial communities
in the serum among those with various chronic diseases.

Experimental procedures

Study population A total of 48 healthy, community-
dwelling adults from the Birmingham, AL metropolitan
area was included in this study. These participants rep-
resented a sub-set from a larger study protocol investi-
gating skeletal muscle changes and exercise responsive-
ness with aging. Inclusion criteria were based on age
ranges of 20-35 years for younger adults and 60—
75 years for older adults. Subjects were free of chronic

@ Springer

significance after correcting for multiple comparisons via false
discovery rate. Data points are colored separately to indicate
young (blue) and older (red) adults

disease and not obese (body mass index <30 kg/m?).
All subjects completed health history questionnaires,
and older adults passed a comprehensive physical exam
and a diagnostic exercise stress test with 12-lead ECG to
confirm health status. All participants were also
assessed for body composition via dual x-ray absorpti-
ometry and for aerobic fitness (i.e., VO,max) via a
maximal exercise challenge with expired gases as fur-
ther indicators of overall health status. Habitual dietary
intake was assessed via 4-day food records analyzed
using Nutrition Data Systems for Research (NDSR)
software (Nutrition Coordinating Center, University of
Minnesota, Minneapolis, MN). Prior to participation, all
participants provided written informed based on docu-
ments approved by Institutional Review Boards of the
University of Alabama at Birmingham (UAB) and Bir-
mingham Veterans Affairs Medical Center.

Blood collection and inflammatory analyses Venous
blood was collected and spun down to obtain serum
using standard clinical practices. Serum IL6 and TNFx
were determined using a Meso Scale Discovery (MSD;
Rockville, MD) Quick Plex SQ 120 imager using
electrochemiluminescence technology. Minimum
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sensitivity for the IL6 assay was 0.07 pg/mL, while
sensitivity was 0.09 pg/mL for TNF«. Intra-assay coef-
ficients of variation (CV) were 7.84 and 7.67%, and
inter-assay coefficients were 5.78 and 2.5% for IL6
and TNF«, respectively. IGF1 was assessed via
immunoradiometric assay (Diagnostic Systems Labora-
tories, Webster, TX). The inter-assay CV, intra-assay
CV, and assay sensitivity for IGF1 were 9.43, 3.48,
and 4.89 ng/mL, respectively.

Microbiome analyses—16S PCR amplification The
16S V4 analysis was done as previously described
(Kumar et al. 2014). DNA was extracted from
serum samples with the ZR Fecal DNA Miniprep
Kit (Zymo Research, Irvine, CA) (Kumar et al.
2014). PCR was used with unique bar-coded
primers to amplify the V4 region of the 16S rRNA
gene to create an “amplicon library” from individ-
ual samples as described by Kumar et al. (2014).
Cycling conditions for the PCR reactions were as
follows: initial denature 94 °C for 1 min followed
by 32 cycles of 94 °C for 30 s, 50 °C for 1 min,
65 °C for 1 min, and a final extension of 65 °C
for 3 min. The entire PCR reaction was electro-
phoresed on a 1.0% agarose/Tris-borate-EDTA gel.
The PCR product (approximately 250 base pairs)
was visualized by UV illumination. The band was
excised and purified from the agarose using
Qiagen QIAquick Gel Extraction Kit according to
the manufacturer’s instructions.

The PCR products were then sequenced using the
[llumina MiSeq platform (Kumar et al. 2014). Paired
end reads of approximately 250 bp from the V4
region of 16S rDNA were analyzed. The samples
were first quantitated using Pico Green, adjusted to
a concentration of 4 nM then used for sequencing on
the Illumina MiSeq (Kumar et al. 2014). Fastq con-
version of the raw data files was performed following
de-multiplexing. Quality control of the fastq files was
performed which was then subject to quality assess-
ment and filtering using the FASTX toolkit (FASTX).
The remainder of the steps was performed using the
Quantitative Insight into Microbial Ecology (QIIME)
suite, version 1.8 (Kumar et al. 2014; Lozupone et al.
2007; Navas-Molina et al. 2013). One sample was
removed from analysis due to failing quality control
procedures.

Microbiome analyses—sequence data analysis and
composition The sequence data covered the 16S
rRNA V4 region with a PCR product length of ~
255 bases and 250 base paired-end reads. Since the
overlap between fragments was approximately 245
bases, the information from both ends of the paired
reads was merged to generate a single high-quality
read using the module “fastq mergepairs” of
USEARCH (Edgar 2010). Read pairs with an overlap
of less than 50 bases or with too many mismatches (>
20) in the overlapping region were discarded. Chi-
meric sequences were also filtered using the
“identify chimeric seqs.py” module of USEARCH
(Edgar 2010). Overall, read quality was assessed
before and after filtering using FASTQC (FASTQC.
http://Www.bioinformatics.babraham.ac.
uk/projects/fastqc/y. The QIIME data analysis
package was used for subsequent 16S rRNA data
analysis (Caporaso et al. 2010a, b). Sequences were
grouped into operational taxonomic units (OTUs)
using the clustering program UCLUST at a similarity
threshold of 0.97% (Edgar 2010). The Ribosomal
Database Program (RDP) classifier was used to make
taxonomic assignments (to the genus and/or species
level) for all OTUs at confidence threshold of 80%
(0.8) (Wang et al. 2007). The RDP classifier was
trained using the Greengenes (v13_8) 16S rRNA
database (McDonald et al. 2012).

The resulting OTU table included all OTUs, their tax-
onomic identification, and abundance information. OTUs
whose average abundance was less than 0.0005% were
filtered out. OTUs were then grouped together to summa-
rize taxon abundance at different hierarchical levels of
classification (e.g., phylum, class, etc). Multiple sequence
alignment of OTUs was performed with PyNAST
(Caporaso et al. 2010a, b). Alpha diversity (diversity with-
in the samples) was calculated using Shannon’s diversity
matrix which measures both richness (number of OTUs/
species present in a sample) and evenness (relative abun-
dance of different OTUs/species and their even distribution
in a sample) (Jost 2007), as implemented in QIIME
(Caporaso et al. 2010a, b). Beta diversity (diversity be-
tween the samples) was measured using unweighted
Unifrac analysis (Lozupone and Knight 2005). Principal
coordinate analysis (PCoA) was performed by QIIME to
visualize the dissimilarity matrix between all samples, such
that samples that were more similar were closer in space
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than samples that were more divergent. A 3D PCoA plot
was generated using EMPEROR (Vazquez-Baeza et al.
2013).

Statistical analysis All data were evaluated for normal-
ity and homogeneity of variance prior to determination
of descriptive statistics and comparative analyses.
Group comparisons for demographic, dietary, and in-
flammatory data were performed using Student’s # tests
for independent samples. The observed species metric
of «-diversity was assessed using Student’s # test. Other
indices of «-diversity were assessed via the Mann-
Whitney test. A p value of < 0.05 was utilized to identify
differences in descriptive data between groups. Com-
parison of microbial abundances between groups, both
at the phylum and class levels, were analyzed using the
non-parametric Mann-Whitney test. For the class level,
only the 25 most common OTUs were evaluated due to
the low abundance of other OTUs. A significance level
of p < 0.05 was utilized for initial identification of OTUs
of interest, with final determination of significance
established after correcting for false discovery rate
(FDR) according to the method of Benjamini and
Hochberg (1995). Following comparative analyses, cor-
relational analyses were performed among the inflam-
matory parameters and those OTUs identified (adjusted
for FDR) as significantly differing in relative abundance
between age groups. Correlation coefficients were cal-
culated using the Spearman procedure. Correlations
with p values < 0.05 were flagged, with final determi-
nation of significance established after correcting for
FDR.
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