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Abstract Obesity is one of the major risk factors for
cardiovascular diseases and its prevalence is increasing
in all age groups, with the biggest impact observed in
middle-aged and older adults. A critical mechanism by
which obesity promotes vascular pathologies in these
patients involves impairment of endothelial function.
While endothelial dysfunction in large vessels promotes
atherogenesis, obesity-induced microvascular endothe-
lial dysfunction impairs organ perfusion and thereby is
causally related to the pathogenesis of ischemic heart
disease, chronic kidney disease, intermittent claudica-
tion, exercise intolerance, and exacerbates cognitive
decline in aging. Reduction of weight via calorie-based
diet and exercise in animal models of obesity results in
significant improvement of endothelial function both in
large vessels and in the microcirculation, primarily due
to attenuation of oxidative stress and inflammation.
Clinical data on the protective effects of weight loss on
endothelial function is limited to studies of flow-

mediated dilation assessed in brachial arteries. Current-
ly, there is no guideline on testing the effects of different
weight management strategies on microvascular endo-
thelial function in obese patients. Here, we provide
proof-of-concept that weight loss-induced improvement
of microvascular endothelial function can be reliably
assessed in the setting of a geriatric outpatient clinic
using a fast, reproducible, non-invasive method: laser
speckle contrast imaging-based measurement of
endothelium-dependent microvascular responses during
post-occlusive reactive hyperemia tests. Our study also
provides initial evidence that short-term weight loss
induced by consumption of a low-carbohydrate low-
calorie diet can reverse microvascular endothelial dys-
function associated with obesity.
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Introduction

Obesity is national and global epidemic among older
adults (Ogden et al. 2006, 2015). According to recent
statistics, over 35% of the US population are considered
obese and over 69% are considered either overweight or
obese (Flegal et al. 2012). Among these, the rates of
obesity are significantly higher in middle age (40–59 years
of age, 40.2%) and older adults (> 60 years of age, 37%)
than in younger adults (20–39 years of age, 32.3%)
(Ogden et al. 2015). Recent data indicate that obesity is
associatedwith high financial burden, and only in theUSA
the per capita medical costs associated with obesity have
increased from $2741 in 2005 to $6899 in 2011 (Tremmel
et al. 2017).

The literature is replete with evidence that obesity ac-
celerates the aging processes (Baur et al. 2006; Bernier
et al. 2016;Mattison et al. 2014;Minor et al. 2011; Pearson
et al. 2008a, b) resulting in decreased life expectancy both
in humans and laboratory animals (Abdelaal et al. 2017;
Bailey-Downs et al. 2013; Ozanne and Hales 2004;
Tucsek et al. 2014a). In many cases, such a dramatic
decrease in lifespan is attributed to co-morbidities that
accompany obesity in middle age, which are then carried
into the advanced age. In addition to its adverse effects on
metabolism, the musculoskeletal system, systemic inflam-
matory processes, sleep apnea, carcinogenesis, and mental
illness, obesity is known to exert multifaceted deleterious
effects on vascular health. Obesity is a critical risk factor
for atherosclerotic cardiovascular and cerebrovascular dis-
eases (Hubert et al. 1983) and also significantly contributes
to the development of other risk factors for cardiovascular
disease including hypertension, hypercholesterolemia and
type 2 diabetes (Din-Dzietham et al. 2007; Hubert et al.
1983). A critical mechanism by which obesity promotes
vascular pathologies involves impairment of endothelial
function (Steinberg et al. 1996). There is substantial evi-
dence from clinical (Perticone et al. 2001) and pre-clinical
(Galili et al. 2007; Pearson et al. 2008a; Tucsek et al.
2014a; Ungvari et al. 2010a, 2011) studies demonstrating
that obesity impairs bioavailability of NO by promoting
oxidative stress in endothelial cells.

It is increasingly recognized that obesity is also a sig-
nificant risk factor for microvascular disease, promoting
both adverse structural and functional alterations in the
microcirculation in a variety of tissues, including heart,
brain, kidneys, lungs, adipose tissue, and skeletal muscle
(Sorop et al. 2017). These microvascular pathological
changes involve inflammatory processes, metabolic

alterations, impaired barrier and transport functions. Im-
portantly, obesity-induced global impairment of
endothelium-mediated dilation of resistance arterioles im-
pairs organ perfusion and thereby is causally related to the
pathogenesis of ischemic heart disease, heart failure, pul-
monary hypertension, chronic kidney disease, intermittent
claudication and exercise intolerance. Recently, the view
has emerged that obesity also promotes cognitive decline
(Elias et al. 2003; Elias et al. 2005; Roriz-Cruz et al. 2007;
Whitmer et al. 2008), at least in part, due to its adverse
effects on the cerebral microcirculation (Alosco et al. 2012;
Kim et al. 2012; Letra and Sena 2017; Li et al. 2013;
Tucsek et al. 2014a; Tucsek et al. 2014b).

Successful approach to weight management in obese
people includes evidence-based lifestyle modification ap-
proaches (diet, physical activity, and/or behavior change
therapies), pharmacological treatments and bariatric sur-
gery (American College of Cardiology/American Heart
Association Task Force on Practice Guidelines 2014;
Yumuk et al. 2015). It is predicted that these weight loss
strategies may confer microvascular protection in obese
patients, contributing to the prevention of a wide range of
diseases, from hypertension to vascular cognitive impair-
ment. To test this prediction, it is essential to evaluate the
effects of different weight loss approaches on microvascu-
lar endothelial function in various patient populations.
Despite its clinical importance, there is no guideline on
testing the impact of weight loss on microvascular endo-
thelial function in obese patients.

In this case report study, we tested the hypothesis that
weight loss-induced improvement of microvascular endo-
thelial function in the setting of a geriatric outpatient clinic
can be assessed using a fast, repeatable, and non-invasive
method: laser speckle contrast imaging-based measure-
ment of endothelium-dependent microvascular responses
during post-occlusive reactive hyperemia tests (Barcelos
et al. 2017; Cordovil et al. 2012). As proof-of-concept, we
report the assessment of the effects of short-term, voluntary
weight loss achieved by consumption of a low-
carbohydrate low-calorie diet onmicrovascular endothelial
function in a middle-aged man.

Methods

Study participant

This study has been performed under an approved In-
stitutional Review Board protocol in the Translational
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Geroscience Laboratory, Reynolds Oklahoma Center on
Aging, Department of Geriatric Medicine, at the Uni-
versity of Oklahoma Health Sciences Center. A study
participant (45 years of age, male, Caucasian) was en-
rolled into current study with a BMI of 31.8 (obesity
class 1), history of controlled arterial hypertension, and
hypercholesterolemia before starting a voluntary weight
loss program based on a low-carbohydrate low-calorie
diet (1200 cal/day) for 30 days. The study participant
was taking lisinopril (10 mg/day p.o.) and rosuvastatin
(10 mg/day p.o.), did not smoke and conducted a sed-
entary lifestyle throughout the study period. A complete
blood metabolic panel was performed prior to and after
the weight loss program.

Assessment of microvascular endothelial function

To assess microvascular endothelial function, a post-
occlusive reactive hyperemia tests were performed after
a 10-min rest with the patient being in a temperature-
controlled room (22 ± 1 °C). Blood pressure was mea-
sured on the left arm prior the microvascular testing.
Reactivity of microvessels was evaluated using a laser
speckle contrast imaging system equipped with a
785 nm wavelength laser (Perimed PSI System,
Perimed, J rf lla, Sweden). The left hand was placed
on a black background mat, the distance from the imag-
ing camera was set to 20 cm and the sampling rate was
set to 19 images/second. Occlusion was performed via a
sphygmomanometer cuff (Welch Allyn, Skaneateles
Falls, NY, USA) inflated to 220 mmHg for 3 min on
the upper arm, above the antecubital fossa (Fig. 1). Skin
temperature was measured from a distance of less than
10 mm with a non-contact, laser-based thermometer
(Thermoworks TW2, Thermoworks, American Fork,
UT, USA) after removal of the occlusion cuff on the
back of hands, and on the last phalanx of the middle
finger. Recordings were analyzed offline with the man-
ufacturer’s software (PIMSoft, Pedimed, J rf lla, Swe-
den), and normalized microvascular perfusion units
were measured. Two measurement areas were selected
on the middle finger avoiding skin pigmentation, visible
veins, skin irritation, and wounds. Two regions of inter-
est (10 mm in diameter each) were selected above the
nail bed and above the first phalanx of middle finger. A
30-s average of basal perfusion was considered the
baseline perfusion. Perfusion during occlusion was also
evaluated to assess the minimal perfusion rate. Images
were recorded for 3 min after release of occlusion and

maximal perfusion, the time-perfusion integral of the
reactive hyperemia were evaluated. Reactive hyperemia
was calculated based on relative changes of maximal
perfusion over the baseline perfusion. We have also
calculated the acute reperfusion rate based on the perfu-
sion characteristics during the first 4 s after the arterial
cuff deflation in the nail beds. Assessment of microvas-
cular endothelial function was performed on four con-
secutive days before and after the weight loss program.

Statistical analysis

Data were analyzed by two-tailed t test. A p value less
than 0.05 was considered statistically significant. Data
are expressed as mean ± S.E.M.

Results

The low-carbohydrate low-calorie diet-based weight
loss program resulted in a significant reduction in body
mass of 14 kg (from 103 to 89 kg) and improvement of
BMI index from 31.8 (obesity class 1) to 27.5
(overweight) over the period of 30 days. This weight
loss was accompanied by improved cholesterol, HDL,
LDL, and triglycerides plasma levels (Table 1).

No differences in skin temperature were detected
during the endothelial function measurements before
and after weight loss (32.7 ± 5.8 °C vs 30.2 ± 2.4 °C,
p = 0.33), indicating that temperature differences did not
confound the functional measurements of endothelial
function. After weight loss, a trend toward improved
endothelial function was discernible, as measured by
post-occlusive reactive hyperemia using laser speckle
contrast imaging in the skin (Fig. 2a). In addition, we
have assessed the reperfusion of the microvasculature in
the nail beds over the first 4 s after the arterial cuff
deflation. Our data showed that weight loss also tended
to improve reperfusion rate (Fig. 2b).

Discussion

In the present study, we have utilized a Laser Speckle
Contrast Imaging (LSCI)-based method to assess micro-
vascular endothelial function. There are several advan-
tages of this approach. LSCI is a non-invasive, non-
contact, and fast technique for measuring microvascular
blood perfusion. The protocol used is also significantly
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easier to implement than measurement of brachial arte-
rial flow in FMD studies, particularly in the setting of a
geriatric outpatient clinic. Our study lays the foundation
for further studies on larger cohorts of geriatric patients
on different weight loss programs. Ongoing studies will
also compare flow-mediated dilation (FMD) in the bra-
chial artery and the LSCI-basedmicrovascular perfusion
data to demonstrate how endothelial functional changes
in the macro- and microvasculature correlate.

Abundant preclinical data demonstrate that obesity
induces microvascular endothelial dysfunction in ani-
mal models (Elmarakby and Imig 2010; Erdei et al.
2006; Henderson et al. 2004; Lynch et al. 2013; Park
et al. 2012; Sweazea et al. 2010; Tarantini et al. 2018;
Ungvari et al. 2010a; Ungvari et al. 2011) and that these
effects are exacerbated in aging (Tucsek et al. 2014b).
The available clinical data agrees with the preclinical
findings, showing that even moderate obesity is associ-
ated with significant endothelial dysfunction in humans
(Mohler et al. 2013; Romero-Corral et al. 2010; Wil-
liams et al. 2005). This view is also supported by ex vivo
data demonstrating impaired acetylcholine-induced en-
dothelium-dependent relaxation in subcutaneous arteri-
oles isolated from obese subjects compared to lean
individuals (Grassi et al. 2010). On the basis of these
observations and the known role of endothelial dysfunc-
tion in the pathogenesis of age-related vascular diseases
(Ungvari et al. 2010b), it has been predicted that weight
loss in obese individuals should confer important car-
diovascular benefits. Our results show that short-term

significant weight loss in middle-aged obese man (re-
duction of BMI from 31.8 to 27.5) improves microvas-
cular endothelial function, extending the findings of
previous studies assessing FMD in brachial arteries
(Bigornia et al. 2010; Joris et al. 2015; Romero-Corral
et al. 2010; Rudofsky et al. 2011; Williams et al. 2005).
For example, 16 weeks of combined aerobic/resistance
training and diet-induced weight loss was shown to
improve endothelial function in overweight and obese
women (Cotie et al. 2014). Similar findings were report-
ed by other investigators as well (Bigornia et al. 2010).
Importantly, the benefits of weight loss seem to be
manifested as early as 1 week after initiation of dietary
intervention that resulted in a ~ 4% reduction of BMI
(Mavri et al. 2011). Improvement in FMD induced by
weight loss in obese subjects have been attributed to a
decline in circulating inflammatory mediators/
adipokines, blood pressure and insulin (Williams et al.
2005). We predict that the abovementioned factors
would improve microvascular endothelial function as
well. Interestingly, some clinical studies have reported
mixed results on the effects of weight loss on endothelial
function in human subjects. For example, no significant
improvement in endothelial function was found in a 2-
year prospective study in humans after significant
weight loss achieved by either a low-carbohydrate or a
low-fat diet (Mohler et al. 2013). A recent meta-analysis
concluded that the protective effects of weight loss on
flow-mediated vasodilation of the brachial artery may
depend on subject characteristics, type of weight-loss
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Fig. 1 Assessment of changes in
skin perfusion and microvascular
endothelial function induced by
short-term weight loss using laser
speckle contrast imaging. To as-
sess microvascular endothelial
function, we have occluded the
blood flow to the hand using ar-
terial cuff inflated to 220 mmHg
for 3 min and measured changes
in skin reactive hyperemia (arbi-
trary units) during post-occlusion
test
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treatment, and dietary composition. In general, weight
loss-mediated endothelial protection tends to be more

pronounced when participants have coexisting obesity-
related morbidities or when subjects receive low-fat

Table 1 Changes in the blood
metabolic panel in case study
participant before and after
weight loss program

HDL, high-density lipoprotein;
LDL, low-density lipoprotein;
ALT, alanine aminotransferase;
AST, aspartate aminotransferase;
BUN, blood urea nitrogen; CO2,
carbon dioxide; GFR, glomerular
filtration rate; MCH, mean cor-
puscular hemoglobin; MCHC;
mean corpuscular hemoglobin
concentration; MCV, mean cor-
puscular volume; RBC, red blood
cells; RDW, red cell distribution
width; STDEV, standard devia-
tion; WBC, white blood cells.
*sign indicates values that were
improved with the weight loss

Before weight loss After weight loss

Body mass (kg) 103 89*

BMI 31.8 27.5*

Systolic blood pressure (mmHg) 128 122

Diastolic blood pressure (mmHg) 84 78

Cholesterol, < 200 mg/dL 259 189*

HDL, 40–59 mg/dL 52 61*

LDL Calculated, < 100 mg/dL 169 100*

Non-HDL cholesterol, < 130 mg/dL 207 128*

Triglyceride, < 150 mg/dL 191 141*

Albumin, 3.5–5.2 g/dL 4.8 4.9

Alkaline phosphatase, 34–132 U/L 66 58

ALT, 0–41 U/L 74 23

Anion GAP, 0–16 mmol/L 13 16

AST, 0–40 U/L 30 14

Bilirubin total, 0.0–1.2 mg/dL 0.6 0.6

Bun, 6–20 mg/dL 15 18

Calcium, 8.4–10.4 mg/dL 10.1 10.2

Chloride, 98–107 mmol/L 98 102

CO2, 22–29 mmol/L 29 26

Creatinine, 0.60–1.30 mg/dL 1.06 1.02

GFR, African American, ≥ 60 mL/min/1.73 m2 > 60 > 60

GFR, ≥ 60 mL/min/1.73 m2 > 60 > 60

Glucose, 74–106 mg/dL 85 89

Potassium, 3.5–5.1 mmol/L 4.3 4.1

Total protein, 6.4–8.3 g/dL 7.4 7.1

Sodium, 136–145 mmol/L 140 144

Hematocrit, 39.0–50.0% 45.4 44.8

Hemoglobin, 13.1–17.2 g/dL 15.7 15.3

Lymphocyte absolute, 1.00–4.80 K/uL 2.10 1.94

Lymphocytes, 24–44% 28 28

MCH, 27.0–35.0 pg 30.5 30.8

MCHC, 32.0–36.0 g/dL 34.6 34.2

MCV, 81.0–101.0 fL 88.2 90.1

Monocyte absolute, 0.00–0.80 K/uL 0.72 0.64

Monocytes, 0–10% 10 9

Neutrophil absolute, 1.80–7.70 K/uL 4.57 4.14

Neutrophils, 36–78% 61 60

Platelets, 150–450 K/uL 297 281

RBC, 4.20–5.60 M/uL 5.15 4.97

RDW, 11.0–16.0% 12.8 13.2

RDW-STDEV, 37.0–54.0 fL 41.4 43.6

WBC, 4.5–11.0 K/uL 7.5 7.0
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diets or weight-reduction regimens including exercise
therapy or weight-loss medication (Joris et al. 2015).
Future studies should determine how these factors in-
fluence microvascular endothelial function.

Previous studies demonstrate a beneficial effect of
weight reduction on central arterial function in obese
subjects. For example, low-calorie diet-induced weight
reduction in obesemiddle-agedmen, whowere similar to
the study participant reported here (age, ~ 45 years; BMI,
~ 30 kg/m2), resulted in a significant improvement of
central arterial distensibility (carotid arterial compliance
significantly increased and b-stiffness index and aortic
pulse-wave velocity significantly decreased) (Miyaki
et al. 2009). Our data also suggest that weight loss may
result in the improvement of vascular stiffness, evidenced
by a faster reperfusion of superficial arteries of the hand
during the first 4 s after the arterial cuff deflation.

Taken together, our study provides proof-of-concept
that weight loss-induced improvement of microvascular
endothelial function can be reliably assessed in the
setting of a geriatric outpatient clinic using LSCI-
based measurement of endothelium-dependent micro-
vascular responses during post-occlusive reactive hy-
peremia tests. Our study also provides initial evidence
that short-term weight loss induced by consumption of a
low-carbohydrate low-calorie diet can reverse microvas-
cular endothelial dysfunction associated with obesity.
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