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Abstract A number of studies have indicated that disor-

ders of consciousness result from multifocal injuries as

well as from the impaired functional and anatomical

connectivity between various anterior forebrain regions.

However, the specific causal mechanism linking these

regions remains unclear. In this study, we used spectral

dynamic causal modeling to assess how the effective

connections (ECs) between various regions differ between

individuals. Next, we used connectome-based predictive

modeling to evaluate the performance of the ECs in

predicting the clinical scores of DOC patients. We found

increased ECs from the striatum to the globus pallidus as

well as from the globus pallidus to the posterior cingulate

cortex, and decreased ECs from the globus pallidus to the

thalamus and from the medial prefrontal cortex to the

striatum in DOC patients as compared to healthy controls.

Prediction of the patients’ outcome was effective using the

negative ECs as features. In summary, the present study

highlights a key role of the thalamo-basal ganglia-cortical

loop in DOCs and supports the anterior forebrain mesocir-

cuit hypothesis. Furthermore, EC could be potentially used

to assess the consciousness level.

Keywords Mesocircuit � Basal ganglia � Posterior cingu-
late cortex � Spectral dynamic causal modeling � Connec-
tome-based predictive modeling

Introduction

Disorders of consciousness (DOCs) have always been

difficult to understand; yet studies have advanced our

understanding of both responsiveness and consciousness

after severe brain injuries. Recent neuroimaging studies

have made much progress in this field and have consis-

tently revealed that impaired consciousness is associated

with damaged mid-line regions of the frontal and parietal

cortices [1–4] as well as abnormal thalamus- and basal

ganglia-modulated connectivity [5–7]. Based on the evi-

dence that traumatic brain injuries in these subcortical and

cortical regions as well as in their complex interactions

may cause impaired consciousness, a mesocircuit hypoth-

esis [8] has been proposed to predict the dynamic process

that occurs in the anterior forebrain during the restoration

of consciousness. According to the circuit-level mecha-

nism, DOCs can be attributed to widespread reductions in

the thalamocortical and thalamostriatal outflows followed

by a failure in the firing state of the striatum. These events

result in excessive inhibition of the thalamus and then the

cortex [9].
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The thalamus acts as a transfer station that transmits

information through its broad connectivity [10] between

the cortex and subcortical nuclei (the basal ganglia, for

example) [11–15]. The thalamo-frontal circuit [16–18] as

well as the cortico-thalamo-basal ganglia-cortical circuit

[8, 16] are crucial in the recovery from DOCs, and atrophy

of the thalamus has been found to be proportional to the

severity of DOCs [8]. In addition to its function in DOCs,

some studies have also shown that the thalamus is

important in many aspects of forebrain function through

various projection patterns, such as those that control

alertness, attention, and awareness, and those that regulate

sleep-wake rhythms [19, 20].

In contrast, several studies in both humans and animals

have indicated that the thalamo-cortical loop may have a

lesser, or only an indirect, effect on limited wakefulness

after brain lesions [21] and in propofol-induced uncon-

sciousness [22–24]. According to the mesocircuit hypoth-

esis, other subcortical structures (e.g. the striatum and

globus pallidus) in the basal ganglia also contribute to

consciousness through interactions with the thalamus [8],

and may be controlled by the thalamus [25]. Reciprocal

connections between the thalamus and basal ganglia as

well as other basal ganglia connections may jointly

contribute to arousal, attention [26–28] and movement

[29, 30]. Another study suggested that regions in the basal

ganglia can mediate consciousness, bypassing the thalamus

[21].

While subcortical regions including the thalamus and

basal ganglia have been shown to be important in DOCs,

how they interact with cortical regions and the exact

locations of these regions remain under debate. Crone

et al. [31] have compared various existing models and

inferred that recovery of consciousness is a dynamic

process involving changes in the cortico-thalamo-basal

ganglia-cortical connectivity, and cortical regions such as

the medial prefrontal cortex (mPFC) and posterior

cingulate cortex (PCC) are particularly emphasized. These

two regions have also been frequently found to be

important in impaired consciousness in multimodal imag-

ing studies [32–34] and literature reviews [4, 35] on

DOCs.

Apart from the specific regions, the mechanisms and

systems underlying consciousness, including the subcor-

tico-cortical and cortico-cortical connectivity, have gained

increasing attention [19, 36, 37]. Structural [13] and

functional [31] imaging studies have both shown that

pathways connecting the thalamus, basal ganglia, and PCC

jointly contribute to consciousness. Despite the revealed

impairments in fiber tracts and functional connectivity in

DOC patients, a mechanistic understanding of the specific

effective couplings (ECs) and their directionality in DOCs

remains unclear.

The present study was designed to investigate how

regions of the anterior forebrain are related to DOCs. We

first compared the ECs among the thalamus, striatum,

globus pallidus, and two midline regions in the default

mode network (DMN) between DOC patients and healthy

controls using spectral dynamic causal modeling (spDCM).

Then, a machine-learning method was used to inspect the

indexes that performed best in predicting the Coma

Recovery Scale-Revised (CRS-R) scores.

Materials and Methods

Participants

A total of 40 patients with severe brain injury (30 M/10 F,

aged 20–64 years, mean ± SD, 40.9 ± 13.9) were recruited

to this study. The inclusion criteria before the scanning

were as follows: (1) disease course\1 year; (2) no history

of psychological disorders; (3) no previous alcohol or drug

abuse; and (4) either in a vegetative state/unresponsive

wakefulness syndrome (VS/UWS) or a minimally con-

scious state (MCS). The clinical severity was evaluated

based on the Coma Recovery Scale-Revised [38]. To

decrease diagnostic error, each patient was evaluated by

2–3 doctors together on the day of scanning. During data

processing, 8 patients who had excessive head motion

(translation[3 mm in any of the planes or rotation[3� in
any of the x, y, and z axes) and 7 with severe brain lesions

were excluded. Thus, 19 DOC patients (8 in MCS and 11 in

VS/UWS) were included for further analyses. The detailed

clinical information of these patients are listed in Table 1.

We also recruited 19 gender- and age-matched healthy

participants (13 M/6 F, aged 20–50 years, 35.6 ± 10.0) as

controls (Table 2). None of them had a history of

neurological or psychiatric illnesses or brain injury.

Written informed consent was given by each healthy

participant and by the legal surrogate of each patient. The

protocols were approved by the Research Review Board of

The General Hospital of Guangzhou Military Command of

The PLA.

Data Acquisition

All MRI data were acquired on a 3T GE MRI scanner with

an eight-channel phased-array head coil. Two hundred and

forty resting-state functional volumes were acquired for

each participant. Resing state fMRI data were obtained

using a gradient-echo echo-planar imaging sequence with
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the following parameters: repetition time (TR) = 2,000 ms,

echo time (TE) = 26 ms, flip angle (FA) = 90�, field of view
(FOV) = 240 9 240 mm2, data matrix = 64 9 64, voxel

size = 3.75 9 3.75 9 3.6 mm3, 36 sequential slices, and

240 volumes obtained in *8 min. In addition, high-

resolution structural images were acquired using a T1-

weighted 3D fast spoiled gradient recalled sequence (TR =

8.86 ms, TE = 3.52 ms, FA = 90�, FOV = 240 9 240 mm2,

data matrix = 256 9 256, voxel size = 0.94 9 0.94 9 1

mm3, and 176 sagittal slices).

Data Preprocessing

Functional images were preprocessed using statistical

parametric mapping (SPM12, http://www.fil.ion.ucl.ac.uk/

spm) and data preprocessing and analysis for brain imaging

(DPABI, http://rfmri.org/dpabi). First, we removed the

initial 10 volumes of functional images and then performed

slice-timing correction and motion correction. Afterwards,

the high-resolution structural and functional images were

both manually reoriented to the standard position parallel

Table 1 Demographic and clinical characteristics of the patients with disorders of consciousness.

Patient index Gender Age (years) Months post-icuts Etiology Diagnosis CRS-R scores

Au/V/M/O/C/Ar Total

P01 M 36 2 HIE VS/UWS 1/0/0/0/0/1 2

P02 M 62 1 HIE VS/UWS 0/0/1/0/0/2 3

P03 M 48 1 HIE VS/UWS 0/0/1/0/0/2 3

P04 M 43 1 HIE VS/UWS 0/0/1/1/0/2 4

P05 M 64 2 TBI VS/UWS 0/0/1/1/0/2 4

P06 M 21 1 HIE VS/UWS 1/0/2/1/0/1 5

P07 M 39 2 TBI VS/UWS 0/0/2/1/0/2 5

P08 M 39 1 HIE VS/UWS 0/0/2/1/0/2 5

P09 M 32 9 HIE VS/UWS 1/0/1/1/0/2 5

P10 M 36 9 TBI VS/UWS 0/0/1/2/0/2 5

P11 M 51 1 TBI VS/UWS 1/0/2/1/0/2 6

P12 M 47 3 HIE MCS 1/3/0/1/0/2 7

P13 M 41 3 TBI MCS 1/1/3/0/0/2 7

P14 F 46 2 TBI MCS 1/0/3/1/0/2 7

P15 M 41 3 HIE MCS 2/3/2/1/0/1 9

P16 F 59 1 TBI MCS 1/0/5/1/0/2 9

P17 F 27 1 TBI MCS 1/0/5/1/0/2 9

P18 M 30 1 TBI MCS 1/1/3/2/0/2 9

P19 F 20 2 TBI MCS 2/3/3/1/0/2 11

MCS, minimally conscious state; VS/UWS, vegetative state/unresponsive wakefulness syndrome; TBI, traumatic brain injury; HIE, hypoxic-

ischemic encephalopathy; M, male; F, female; CRS-R, Coma Recovery Scale-Revised; Au, auditory; V, visual; M, motor; O, oromotor; C,

communication; Ar, arousal.

Table 2 Demographic and

clinical characteristics of the

patients with disorders of con-

sciousness (DOCs) and the

healthy controls (HCs).

Characteristics DOCs HCs Statistics P-value

Gender (male/female) 15/4 13/6 v2 = 0.71 0.71a

Age (years) 42.3 ± 13.0 35.6 ± 10.0 t = 1.78 0.08b

Months post-ictus 1.1 ± 0.3 – – –

Etiology (HIE/TBI) 9/10 – – –

Diagnosis (MCS,VS/UWS) 8,11 – – –

CRS-R scores 6.1 ± 2.5 – – –

HIE, hypoxic ischemic encephalopathy; TBI, traumatic brain injury; MCS, minimally conscious state; VS/

UWS, vegetative state/unresponsive wakefulness syndrome; CRS-R, Coma Recovery Scale-Revised.
av2-test.
bTwo sample t-test.
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to the anterior commissure-posterior commissure line.

Functional images were individually co-registered with the

high-resolution structural images and then spatially nor-

malized to the group template, which was made using

diffeomorphic anatomical registration through exponenti-

ated Lie algebra [39]. Finally, the resulting data were

spatially smoothed with a Gaussian kernel of 4 mm full-

width at half-maximum.

Region selection

The ROIs were determined according to the Brainnetome

atlas (http://atlas.brainnetome.org/bnatlas.html), which

divides the whole brain into 105 cortical regions and 18

subcortical regions in each hemisphere [40]. The ROIs in

our study were directly extracted and combined using these

segmentations implemented in MarsBaR (http://marsbar.

sourceforge.net). The posterior part of the cingulate cortex

(BA 23) was extracted as the ROI for the PCC. Two parts

of the basal ganglia (caudate and putamen) were combined

as the striatum. Segmentation of the thalamus and mPFC (8

individual parts for the thalamus and 2 parts for mPFC)

were separately combined into one ROI. The globus pal-

lidus was also extracted directly from the atlas. Every ROI

was further checked visually using the Automated

Anatomical Labeling [41] and Brodmann atlases. These

regions have been previously described in other con-

sciousness-related studies using spDCM [31, 42]. Figure 1

illustrates the distributions of these ROIs.

Spectral Dynamic Causal Modeling

Using DCM12 implemented in SPM12, we performed

spDCM analysis. The specific calculation steps were as

follows: (1) General linear model (GLM) definition: A

GLM was defined using the preprocessed images and the

confounding time-series from the white matter and cere-

brospinal fluid were regressed out as nuisance variables. (2)

Time series extraction: The first eigenvectors for the 5

ROIs were extracted for each participant. (3) Model

specification and estimation: The fully and reciprocally

connected models, including the self-connections, between

the 5 ROIs were specified. Thus 25 = 32 free parameters

were produced and then estimated for each model. (4)

Bayesian post-hoc model selection routine: A post-hoc

model optimization routine [43] was used to determine the

model that had the best fit for each group.

Machine-Learning Approach in Brain-Behavior

Prediction

To predict the clinical performance of the DOC patients

from their brain connectivity, we used a recently launched

machine-learning approach termed connectome-based pre-

dictive modeling [44]. The calculation included the fol-

lowing steps: (1) Feature selection. The correlation

between the effective connectivity and the total CRS-R

score for each patient was analyzed using Spearman’s

correlation. By taking the correlation coefficients as matrix

elements, we produced a 19-by-19 matrix, in which each

element ranged from -1 to 1. Only the significant

coefficients (P\ 0.05) were selected as features. Positive

and negative correlations were analyzed separately. All 19

patients were divided into a training set and a testing set to

perform leave-one-subject-out cross-validation. (2) Feature

summarization. The significant features (coefficients) were

simply summed for further computations. In the calcula-

tions, we separately analyzed the positive and negative EC

values. (3) Model building and evaluation. The summary

value of the features and the total CRS-R score for each

participant in the training set were built into a linear model

using the least squares method. The predicted CRS-R

scores were generated by applying this linear model to the

testing set. Finally, we evaluated the predictive perfor-

mance by computing the Spearman’s correlation between

the predicted CRS-R scores and the real scores. In this way,

we produced the correlation coefficients and their P-values.

Fig. 1 Regions of interest

selected in the current study.-

Red, medial prefrontal cortex;

blue, posterior cingulate cortex;

green, striatum; yellow, globus

pallidus; purple, thalamus. L,

left hemisphere; R, right

hemisphere.
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Statistics

Comparisons of Effective Connections

Differences in EC strength between patients and controls

were determined with permutation tests. The ECs were also

compared among patients with different etiologies (HIE

and TBI) to calculate the influence of the heterogeneity. All

the parameters of intrinsic connectivity (shown as

DCM.Ep.A in Matlab files) were calculated. In addition,

the connection strengths for the corresponding winning

models within each group were analyzed using one-sample

t-tests. All the resulting P-values were corrected for a false-

discovery rate (FDR \ 0.05), and another significance

threshold, P\ 1/(number of comparisons) [42], was also

taken into consideration when analyzing the differences

between the groups. Of note, positive values of the EC

indicate excitatory influence from one region to another,

and negative values indicate inhibitory influence, whereas

self-connections of regions are assumed to be always

inhibitory [42].

Brain-Behavior Prediction

The predictive significance was assessed using permutation

testing. By preserving the connectivity matrices but

randomly reassigning the behavioral scores a thousand

times, an empirical null distribution was generated. The

resulting P-value was the proportion of sampled permuta-

tions that are greater than or equal to the real predictive

correlation.

Results

Dynamic Causal Modeling

The Bayesian optimization procedure searched all the

reduced versions of the full model for each group. The

fully-connected model was the winning one for both the

patients and controls and had a posterior probability of

almost 1 (Fig. 2A). After the optimized model was

selected, the parameter inference of connection strength

within the same group was compared using one-sample t-

tests. The connectivity strengths and directions between the

5 ROIs are shown in Fig. 2B. In the healthy controls, all the

self-connections within the nodes were significant and the

thalamo-globus pallidus-posterior cingulate cortex circuit

was also significantly connected. In the patient group,

however, almost all the reciprocal connections between

regions disappeared except for a driving influence from the

striatum to the globus pallidus. The self-connection within

the globus pallidus also disappeared, but the self-inhibition

of the other 4 regions remained. The ECs were not

influenced by etiology.

Significant changes in effective connectivity strength

were found in the DOC patients compared to the controls

(Fig 3). Specifically: (1) The patients showed a significant

increase in the influence from the striatum to the globus

pallidus (P = 0.039) and also a significant decrease in the

opposite direction (P = 0.006). This went along with a

reduction in the influence from the globus pallidus to the

thalamus (P = 0.011) and an increase in the opposite

direction (P = 0.0007). (2) In the DOC patients, the PCC

negatively influenced the globus pallidus (P = 0.032) and

received a positive influence (P = 0.0006). There was also a

significant reduction in the driving influence from the

mPFC to the striatum (P = 0.021). The effective connec-

tivity strengths and P-values for both groups are listed in

Table 3.

Brain-Behavior Prediction

The valid features used in the predictive procedures are

shown in Fig. 4. Given the 25 ECs in the optimized model

(that is, 20 inter-regional connectivities between the 5 ROIs

and 5 recurrent connectivities within the 5 ROIs) and using

a threshold of P\ 0.05, four out of 25 features (correla-

tions) were retained. These four consisted of only one

positive feature, a significantly positive correlation

between the CRS-R scores and the mPFC-to-PCC EC (r

= 0.456, P = 0.049), and three negative features. The latter

were significantly negative correlations between the CRS-

R scores and self-connections within the PCC (r = – 0.566,

P = 0.012), self-connections within the GP (r = – 0.462,

P = 0.047), and the thalamus-to-PCC EC (r = – 0.512, P =

0.025). When taking the negative effective connections as

features, we found a significant correlative relationship (r =

0.55, P = 0.014) between the real CRS-R scores and the

predicted performance. The nonparametric permutation

testing showed that the statistical significance of this

performance was P = 0.018. No significant correlation was

found when taking the positive effective connections as

features (Fig. 5).

Discussion

In this work, we investigated the relationships among 5 key

regions within the anterior forebrain using spDCM. We

identified disrupted ECs in the thalamo-basal ganglia-

posterior cingulate cortex circuit of a group of DOC

patients compared to the healthy group. Using connectome-

based predictive modeling, we found that the predicted

CRS-R scores had a significant correlation with the real

scores when negative correlation coefficients were selected
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as features. Importantly, the PCC and the globus pallidus

appeared to play a key role in this brain-behavior

prediction.

Changes in Effective Connections within the Meso-

circuit in DOC Patients

Our results indicated that, compared to controls, patients

with DOCs had disrupted connectivity between key regions

within the anterior forebrain mesocircuit. In these patients,

the striatum first seemed to lose its inhibition of the globus

pallidus, then the globus pallidus had a decrease in self-

inhibition, and finally the globus pallidus had an inhibitory

influence on the thalamus (see Figs 2 and 3). Our results

are in line with the mesocircuit hypothesis in that the

globus pallidus was released from striatal inhibition and

was overactive, resulting in excessive inhibition of the

thalamus [8]. Another DCM study [31] also reported the

Fig. 2 Results of DCM post-hoc selection and one-sample t-tests.

A Bayesian model optimization. The full model was optimized for

both the patients and the controls with a posterior probability of

almost one. B Results of one-sample t-tests. Red arrows, significant

positive inputs or outputs; blue arrows, significant negative values

(P \ 0.05, FDR-corrected for multiple comparisons); and grey,

insignificant values. The digits represent the mean EC within the

group. mPFC, medial prefrontal cortex; PCC, posterior cingulate

cortex; thal, thalamus; GP, globus pallidus; stria, striatum; HC,

healthy control; DOCs, disorders of consciousness.

Fig. 3 Significant changes in

effective connections (Hz) in

the DOC patients. A Differences

between patients and controls

derived from permutation tests.

Red arrows, connections with

significant increases; blue

arrows, connections with sig-

nificant decreases (P\ 0.04 =

1/25 uncorrected); asterisks,

significant results after FDR

correction (P\ 0.006). B Mean

effective connections of signif-

icantly changed pairs of regions.

PCC, posterior cingulate cortex;

mPFC, medial prefrontal cortex;

thal, thalamus; GP, globus pal-

lidus; stria, striatum.
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loss of striatal output to the globus pallidus in healthy

individuals under propofol-induced sedation, and this

influence returned after the recovery of consciousness,

suggesting that the striatopallidal inhibition is modulated

by the level of consciousness. We found a significantly

decreased and negative influence from the globus pallidus

to the thalamus in the DOC patients. Several current

models suggest that striatal projection neurons modulate

the inhibitory pallido-thalamic connectivity [8, 45, 46] in

both direct and indirect pathways [47–49]. These existing

models have been proposed to be linked to basic motor

functions essential for survival [50], an aspect which might

explain the impaired motor function of DOC patients.

Differences in the Connectivity between the Basal

Ganglia and the Cortex between the Two Groups

In addition to the disrupted subcortico-subcortical connec-

tions (the striato-pallido-thalamic loop) in the DOC

patients, two significantly changed subcortico-cortical

pathways were found between the basal ganglia and

cortical regions. First, we detected a significantly decreased

Table 3 Effective connectivity

strengths in patients and

controls

Regions of interest Within groups Between groups

DOC HC DOC-HC

Mean ± SD P-

value

Mean ± SD P-

value

Mean differences P-

value

From mPFC to

mPFC - 0.35 ± 0.38* 0.001 - 0.55 ± 0.41* 0.000 0.20 0.065

PCC - 0.08 ± 0.54 0.555 0.09 ± 0.27 0.152 - 0.17 0.126

Thalamus 0.01 ± 0.33 0.900 0.12 ± 0.82 0.536 - 0.11 0.299

Striatum - 0.17 ± 0.49 0.157 - 0.13 ± 0.79 0.489 0.04 0.435

Globus pallidus - 0.09 ± 0.54 0.467 - 0.13 ± 0.67 0.399 0.04 0.424

From PCC to

mPFC 0.24 ± 0.44 0.028 0.02 ± 0.29 0.753 0.22 0.041

PCC - 0.54 ± 0.34* 0.000 - 0.53 ± 0.28* 0.000 - 0.01 0.450

Thalamus - 0.06 ± 0.19 0.225 0.10 ± 0.65 0.503 - 0.16 0.165

Striatum - 0.10 ± 0.41 0.324 - 0.21 ± 0.54 0.101 0.12 0.228

Globus pallidus 0.22 ± 0.68 0.180 - 0.57 ± 0.61* 0.001 0.79# 0.001

From thalamus to

mPFC - 0.03 ± 0.34 0.686 0.01 ± 0.07 0.597 - 0.04 0.324

PCC - 0.02 ± 0.45 0.877 0.00 ± 0.11 0.909 - 0.01 0.455

Thalamus - 0.50 ± 0.26* 0.000 - 0.45 ± 0.25* 0.000 - 0.05 0.277

Striatum 0.08 ± 0.64 0.599 - 0.03 ± 0.45 0.794 0.11 0.279

Globus pallidus - 0.17 ± 0.70 0.317 0.26 ± 0.32 0.002 - 0.43 0.011

From striatum to

mPFC - 0.10 ± 0.30 0.164 0.06 ± 0.15 0.091 - 0.16 0.020

PCC - 0.03 ± 0.28 0.612 0.01 ± 0.14 0.873 - 0.04 0.305

Thalamus 0.04 ± 0.43 0.652 - 0.13 ± 0.26 0.037 0.17 0.064

Striatum - 0.40 ± 0.39* 0.000 - 0.46 ± 0.32* 0.000 0.06 0.304

Globus pallidus - 0.23 ± 0.60 0.113 0.25 ± 0.54 0.054 - 0.48# 0.006

From globus pallidus to

mPFC 0.03 ± 0.30 0.623 0.02 ± 0.18 0.691 0.02 0.418

PCC - 0.12 ± 0.33 0.131 0.04 ± 0.17 0.310 - 0.16 0.032

Thalamus 0.06 ± 0.28 0.389 - 0.28 ± 0.33 0.002 0.34# 0.001

Striatum 0.31 ± 0.32* 0.001 0.11 ± 0.37 0.201 0.20 0.039

Globus pallidus - 0.22 ± 0.25 0.001 - 0.40 ± 0.39* 0.000 0.18 0.042

*Significant effective connectivity at the group level (P\ 0.05, FDR-corrected); #significant differences

between groups (P\ 0.05, FDR-corrected); significant differences (P\ 0.04, uncorrected) between groups

are shown in bold. PCC, posterior cingulate cortex; mPFC, medial prefrontal cortex
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and negative influence from the mPFC to the striatum in

the DOC patients. Previous studies [42, 51–53] have

suggested that, as an important part of the DMN, the mPFC

is engaged in modulating consciousness levels. In addition,

the striatum receives frontal influence from the mPFC

through different types of connectivity, which are proposed

to influence information processing [54], sensorimotor

functions [55], self-related social cognition [56, 57], and

decreased dopamine [58, 59]. Second, we found a signif-

icant difference between the two groups in the connection

between the globus pallidus and the PCC. Our results agree

with previous findings implying that pallido-cortical con-

nectivity [31] is modulated by the level of consciousness.

Significant differences in the mPFC-striatum-globus pal-

lidus loop between groups are also in line with a previous

study [5], implying that the basal ganglia might regulate

consciousness and cortical activation via the cortico-

striato-pallidal loop. Taking these studies together, we

can reasonably infer that the basal ganglia-cortical loop is a

prominent neural circuit in regulating consciousness.

Animal models have shown that the basal ganglia are

critical for motion with its direct and indirect neural

circuits [29, 30]. This evidence may explain the movement

disorders in DOC patients.

Impaired Thalamic and Extrathalamic Circuits

in Disorders of Consciousness

In contrast to the widespread deafferentation across the

thalamo-cortical system that is hypothesized in the meso-

circuit theory [8], we did not find a significant difference in

thalamo-cortical connectivity between the patients and the

controls. A growing body of literature has suggested that

the direct connectivity of the thalamo-cortical loop may be

less involved in loss of consciousness [7, 31, 60, 61] and

that thalamic input may be neither necessary nor sufficient

to produce wakefulness [21]. Our results might support

those studies indicating that thalamo-cortical deafferenta-

tion is mainly associated with higher cognitive functions

and motor responsiveness [8], whereas the basal ganglia-

cortical loop seems to play a more important role in

regulating consciousness [5, 21, 25]. Although no signif-

icant difference was detected in thalamo-cortical connec-

tivity, the thalamo-globus pallidus-posterior cingulate

Fig. 4 Significant Spearman’s correlation between the CRS-R scores

and the effective connections (EC) in the DOC patients. Scatter plots

showing the linear fits between ECs and CRS-R scores. Each dot

represents a patient. Each colored line represents the fitted line in each

correlation. The grey shaded areas show the 95% confidence interval

(P\0.05). mPFC, medial prefrontal cortex; PCC, posterior cingulate

cortex; thal, thalamus; GP, globus pallidus.

Fig. 5 Spearman’s correlation

between real and predicted

CRS-R scores using machine

learning. A Features selected

only from negative effective

connections. B Features selected

only from positive effective

connections. Each dot repre-

sents a patient (*P\ 0.05).
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cortex loop was found to differ between the two groups.

Our results support the view that, at least in DOCs,

different aspects of consciousness can be mediated by both

thalamic and extrathalamic circuits including the basal

ganglia-cortical circuit [25].

Negative Correlations Predicted CRS-R Scores

From the machine-learning analysis based on the correl-

ative relationship between the patients’ ECs and their

clinical assessments, we found that negative correlations

predicted the patients’ CRS-R scores (Fig. 5A). Three

significant features played a joint role in this prediction

(Fig. 4). First, as the level of consciousness decreased, self-

connection within the PCC approached zero. This suggests

that self-inhibition of the PCC is related to consciousness

levels. A close relationship between the activity of the PCC

and the levels of DOCs has consistently been found across

different kinds of imaging studies [1, 3, 62, 63]. Similarly,

PCC activity is an important index for distinguishing

different types of DOC, such as between MCS and VS/

UWS [3]. Second, patients with higher CRS-R scores also

had increased self-inhibition in the globus pallidus. This

seems to support the mesocircuit hypothesis [8] by

implying that dynamic changes in the globus pallidus

occur during recovery from DOCs. Third, the EC from the

thalamus to the PCC was negatively correlated with the

CRS-R scores. Previous evidence [35, 64] has shown that

functional connectivity between the thalamus and the PCC

is associated with the degree of impaired consciousness.

Our findings indicate that the EC might be a useful marker

of a patient’s state of impairment.

Although the positive feature made a non-significant

prediction of the CRS-R scores, a significant correlation

was detected before the prediction step. We found a

positive correlation between the CRS-R scores and the EC

from the mPFC to the PCC. A previous study [65] has

implied that functional coupling within the midline DMN

may be useful for detecting different levels of DOCs. The

DMN also has particularly interesting implications for

consciousness-level studies ranging from pathological

alterations of consciousness [1–3, 32, 33, 63, 66] to

sleep-wake cycles [60, 67, 68] and pharmacological

changes (e.g., anesthesia) [69–71]. Our results support a

previous study [65] that suggested that the decoupling of

these two spontaneous, synchronized regions of the DMN

could account for the varied states of consciousness.

Notably, this positive feature (correlation) failed to build a

significant model for the DOC patients in the subsequent

prediction step. This supports previous studies [65, 72]

showing that patients with extreme consciousness disrup-

tion can maintain a preserved DMN network. More

interestingly, none of the four effective connections with

a significant correlation with the CRS-R scores of the DOC

patients showed any group difference from the healthy

controls. Our results imply that the EC-based predictive

model is able to predict patient outcome. However, the

changes within the midline DMN, the self-inhibition of the

globus pallidus, and the thalamo-PCC connectivity may not

be a definite diagnostic biomarker for DOC patients.

Limitations

A number of limitations should be considered when

interpreting our results. First, although we recruited 40

patients, we discarded more than half based on relatively

strict procedures of quality control. A larger cohort is

needed to validate our results, especially the cross-valida-

tion results. Second, previous studies [73–75] have shown

that specific losses of neurons in the thalamus are

associated with different kinds of disease (e.g. the central

thalamus with DOCs [76]). In our study, to fully utilize this

region, the entire thalamus was extracted; therefore, further

studies are needed to correlate different parts of the

thalamus with brain or behavioral functions. Third, because

our signals were acquired from fMRI rather than neuron-

level experiments, our interpretation of the results must be

limited to the meso-system level. Particularly importantly,

the positive or negative signs of the ECs should be kept in

mind when explaining our findings. We may not conclude

that the EC is an inhibitory or an excitatory signal in the

biological sense. Last, we performed an FDR correction to

correct for multiple comparisons, and we also expected\1

false-positive at P \1/25 uncorrected for the between-

group differences, which accordingly increased the prob-

ability of type-I (false-positive) errors. In this way, we

were able to investigate more specific influences between

each pair of regions. Importantly, our main findings among

the thalamus, the basal ganglia, and the PCC persisted after

correction. Further studies with a finer-grained hypothesis

for every brain region, unlike this one that used the fully-

connected model in an exploratory manner, could reduce

the number of connections in the model and the false-

positive error rate.

Conclusion

In the current study, we investigated the effective connec-

tivity between the anterior forebrain regions in DOC

patients and matched controls. Our findings were primarily

in line with the mesocircuit hypothesis, showing a dys-

functional thalamo-basal ganglia-cortical connection loop

in the DOC patients. Self-connections within the PCC and

the globus pallidus seemed to be less variable in the DOC

patients and were highly effective when used to predict the
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patients’ clinical scores. The current findings suggest that

the effective couplings among anterior forebrain regions

have potential value for the clinical assessment of DOCs.
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