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Abstract

Adaptation refers to the biological phenomenon where living systems change their internal states 

in response to changes in their environments in order to maintain certain key functions critical for 

their survival and fitness. Adaptation is one of the most ubiquitous and arguably one of the most 

fundamental properties of living systems. It occurs throughout all biological scales, from 

adaptation of populations of species over evolutionary time to adaptation of a single cell to 

different environmental stresses during its life span. In this article, we review some of the recent 

progress made in understanding molecular mechanisms of cellular level adaptation. We take the 

minimalist (or the physicist) approach and study the simplest systems that exhibit generic adaptive 

behaviors. We focus on understanding the basic biochemical interaction networks in living matter 

that are responsible for adaptation dynamics. By combining theoretical modeling with quantitative 

experimentation, we demonstrate universal features in adaptation as well as important differences 

in different cellular systems, including chemotaxis in bacterium cells (Escherichia coli) and 

eukaryotic cells (Dictyostelium). Future work in extending the modeling framework to study 

adaptation in more complex systems such as sensory neurons are discussed.
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1. Introduction

Living systems, from a single cell to multi-cellular organisms and populations of interacting 

species, all have the amazing ability to adapt to changes in their environments. Adaptation 

allows living systems to adjust themselves in response to persistent changes of the 

environment. At the evolutionary time scale, adaptation drives species to evolve driven by 

changes in the environment. At the time scale of the life span of a living system, the ability 

to adapt is critical for the survival of the living system by maintaining its homeostasis under 

different environmental conditions. At the even shorter time scale of individual signaling 

pathways such as those for sensory signal transduction, adaptation can greatly extend the 
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range of sensitive detection and also provides a way to compute/process environmental 

information.

What are the possible mechanisms for adaptation in living systems? Are there any universal 

principles governing interactions of the underlying living matter (biomolecules, cells, 

organisms) that are responsible for the vast variety of adaptive behaviors in biology? Are 

there any fundamental limitations to the performance of adaptation? In this paper, we review 

some of the recent developments in addressing these questions by combining theoretical 

analysis, computational modeling, and quantitative experiments for representative sensory 

signaling systems, including bacterium cells (Escherichia coli) and eukaryotic cells 

(Dictyostelium discodeum). We first provide a general mathematical framework for the two 

basic interaction networks that exhibit adaptation and examine their dynamics. Next, we 

provide a detailed description of two biological systems that employ these networks. We 

then study the universal properties of adaptation independent of the specific network 

structure. We conclude by outlining some of the remaining challenges for future 

investigations.

2. Adaptation as Dynamical System: a Mathematical Framework

We start with a presentation of a general mathematical framework to study adaptation. We 

denote X(t) as the input (stimulus strength) and Z(t) as the output of the biochemical 

network, where t is time. A change in X results in a change in Z with a fast response time. 

The output also depends on a slower internal variable Y(t), which itself depends on X, Y, 

and Z. The system can be described by two generic dynamical equations:

dZ
dt = G(X, Y , Z), dY

dt = F(X, Y , Z), (1)

where F and G are the rate functions for Z and Y respectively.

The nullclines from dZ/dt = 0 and dY/dt = 0 are given by Z = g(Y, X) and Y = f(Z, X) 

respectively. The steady state solution for a fixed X is determined by the intercept of the two 

nullclines. Here, we express the steady state solution as Y = Ys(X) and Z = Zs(X). A typical 

adaptive response is shown in Fig. 1A. Upon a sudden increase of the input from X to X + 

ΔX, the output of the system Z first changes from Zs(X) to a peak value of Zp(X + ΔX, X) 

before recovering (adapting) to its new steady state value Zs(X + ΔX) at a longer time. In the 

following, we describe the basic requirements for adaptation.

Separation of time scales—We can define the two time scales τZ ≡ − ∂G
∂Z

−1
, and 

τZ ≡ − ∂F
∂Y

−1
, which characterize the times scales for response and adaptation, respectively. 

To have a high sensitivity to a sudden change in its environment, a cell needs to first respond 

quickly. To maintain the high sensitivity over a wide range of backgrounds the cell needs to 

adapt to a constant environment over a longer time scale. Indeed, one of the key 

requirements for adaptation is the separation of these two time scales, i.e., τZ ≪ τY. This 
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means that the controller Y adjusts the system only after it has enough time to respond. Due 

to its slow time scale, Y can also be understood as a working memory for the signal 

encountered by the cell.

Response sensitivity and adaptation accuracy—There are two key characteristics 

for adaptation. The short time response is characterized by the response sensitivity defined 

as

S ≡
∣ Z p(X + ΔX, X) − Zs(X) ∣

∣ ΔX ∣ (2)

for a small ΔX. The long time recovery is characterized by the adaptation error, ε, defined 

as:

ε ≡
∣ Zs(X + ΔX) − Zs(X) ∣

∣ Z p(X + ΔX, X) − Zs(X) ∣ , (3)

which measures how close the output adapts back to its original value relative to the initial 

response. An adaptive behavior requires ε < 1, and a perfect adaptation corresponds to ε = 0 

when the adapted output recovers to exactly its pre-stimulus value.

Network requirement for adaptation—Given the separation of time scales τZ ≪ τY, 

the short time response Zp can be expressed as Zp(X + ΔX, X) ≈ g(Ys(X), X + ΔX). For 

small |ΔX|, we can express the initial response as: 

∣ Z p(X + ΔX, X) − Zs(X) ∣ ≈ ∣ g(Ys(X), X + ΔX) − g(Ys(X), X) ∣ = ∣ ∂g
∂X ΔX ∣and the adapted 

response as: 

∣ Zs(X + ΔX) − Zs(X) ∣ = ∣ g(Ys(X + ΔX), X + ΔX) − g(Ys(X), X) ∣ = ∣ ( ∂g
∂X + ∂g

∂Y ×
dYs
dX )ΔX ∣. 

Plugging these expressions in Eq. (3), the requirement ε < 1 results in a necessary condition 

for adaptation:

∂g
∂X × ∂g

∂Y ×
∂Ys
dX < 0. (4)

The above requirement for adaptation has a simple intuitive interpretation: adaptation 

requires the two pathways from input to output – one direct ( ∂g
∂X ) and one indirect through 

Y ( ∂g
∂Y ×

dYs
dX ) – to have opposite signs, i.e., one excitatory and the other inhibitory.

Two basic network motifs for adaptation—Without losing generality, we assume that 
∂g
∂X > 0, i.e., the output increases as the input increases. Furthermore, we consider the case 
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where ∂g
∂Y < 0, i.e., the output has the opposite dependence on the control variable Y. From 

Eq. (4), we then have the condition for adaptation:

dYs
dX =

∂ f
∂X + ∂ f

∂Z
∂g
∂X

1 − ∂ f
∂Z

∂g
∂Y

≈ ∂ f
∂X + ∂ f

∂Z
∂g
∂X > 0, (5)

where the last approximation was obtained by using ∂ f
∂Z

∂g
∂Y ∝ τZ /τY ≪ 1.

This adaptation condition is satisfied by two basic networks with a minimum number of 

non-zero interactions: (1) ∂f/∂Z > 0, ∂f/∂X = 0, and (2) ∂f/∂X > 0, ∂f/∂Z = 0. As illustrated in 

Fig. 1B, the first network is called the negative feedback loop (NFL) network because of the 

negative feedback loop Z → Y → Z. The second network is called the incoherent feed-

forward loop (IFFL) network because the loop is formed by two feedforward paths, X → Z 
and X → Y → Z, with opposite (incoherent) signs. Indeed, an exhaustive search of all 

possible three-node networks found that NFL and IFFL are the only two basic network 

motifs that enable strong response and accurate adaptation (1).

In realistic biological systems, the dynamical variables are protein concentrations in 

different conformational states, and interactions are carried out by enzymatic reactions with 

many intermediate control elements (a vector Y⃗). However, despite their simplicity, the 

general dynamical system model and the basic network structures (NFL and IFFL) provide a 

powerful framework to understand adaptation in a wide range of different cellular systems 

including E. coli and Dictyostelium, which we describe below.

3. Adaptation in Bacterial Chemotaxis

Due to its relative simplicity, E. coli chemotaxis has served as an important model system to 

study sensory adaptation. It was first observed by Berg and Brown more than 40 years ago 

that upon a sudden increase in the concentration of chemo-attractant aspartate, a cell’s 

tumbling frequency first decreases then it recovers and eventually returns back to its 

prestimulus level (2). The adapted value of the tumbling frequency remains the same for a 

wide range of the stimulus strengths (aspartate concentrations). This accurate adaptation is 

remarkable given the large variations in the concentrations of the key biomolecules among 

individual cells (3). The quest for the molecular mechanism of adaptation motivated a large 

body of in-depth study into E. coli chemotaxis, which resulted in a quantitative 

understanding of the system.

3.1. Molecular Mechanism

Signal transduction—The bacterial chemotaxis signaling pathway has been well studied 

(see (4) for a review on the signaling pathway). External chemical signals are sensed by the 

membrane bound chemo-receptors in a bacterial cell such as E. coli. When chemoeffector 

molecules (ligands), such as amino acids and sugar molecules, bind with chemo-receptors, 

they induce subtle conformational changes of the receptor, which in turn control the kinase 
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activity of the cytosolic protein CheA. The chemo-receptors, histidine kinase CheA, and an 

adaptor protein CheW form extended two dimensional cluster with up to thousands of 

proteins in them (5). These receptor clusters with many directly and indirectly coupled 

receptors are responsible for signal amplification in the system (see (6) for a recent review 

on modeling). The activated CheA first auto-phosphorylates and then passes the phosphate 

group onto the response regulator proteins CheY and CheB. The phosphorylated CheY, 

CheY-P, can bind with the motor switch protein FliM to control the bacterial flagellar 

motor’s rotational direction and thus the cell’s motility. This constitutes the “linear” part of 

the signal transduction in bacterial chemotaxis.

Adaptation mechanism—The linear signal transduction pathway described above allows 

the cell to sense and respond. However, the range of stimulus concentrations over which a 

cell can respond to is limited by the sensitivity range of the chemo-receptor, which is finite 

(less than one order of magnitude). The question arises as to how the bacterial chemosensory 

system functions in an environment with a wide range of chemoeffector concentrations. The 

answer is adaptation. We now know that at the molecular level, bacterial chemo-receptors 

adapt by covalent modification, i. e., methylation and demethylation catalyzed by the 

enzymes CheR and CheB-P, respectively. Receptor adaptation dynamically adjusts its 

sensitive range according to the background and allows the receptor to detect changes in the 

environment using the most sensitive part of its response curve.

3.2. The Standard Model of Bacterial Chemotaxis

The state of a given receptor can be represented by three variables: its activity a, its ligand 

occupancy status l determined by the ligand concentration [L], and its methylation level m. 

For a simple two-state (active and inactive) model for a receptor with 5 methylation levels 

and ligand binding status (ligand-bound and vacant), there are 2 × 2 × 5 = 20 states with 4 × 

9 × 2 = 72 reactions among them. Mathematical models based on the transitions between 

these discrete states were used to study the dynamics and robustness of the system (7, 8, 9). 

Here, we use a simple coarse-grained model to describe the dynamics of the averaged 

properties of the system. Following the convention developed in the previous section, we 

define the output Z ≡< a > and controller Y ≡< m >, which are both continuous variables. 

The input is the ligand concentration X ≡ [L] (the correspondence between the different 

variables is summarized in Table 1). Below, we develop the simplest mathematical model for 

these averaged variables guided by separation of time scales and quantitative experiments.

Fast response dynamics—For bacterial chemotaxis, both the ligand binding dynamics 

and kinase activity dynamics are faster than the receptor methylation process. Therefore, at a 

time scale faster than the methylation time, we only consider the dynamics of the output Z 
with a constant Y:

dZ
dt = − [Z − g(Y , X)]/τZ, (6)

where τZ is a fast time scale that depends on both the ligand binding and kinase activation 

dynamics. In steady state, we have Z = g(Y, X). The functional form of g(Y, X) can be 
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determined experimentally by measuring the input-output relationship (Z versus X) in cells 

with a fixed value of Y, e.g., by knocking out the methylation (CheR) and/or demethylation 

(CheB) enzymes (10, 11). Experimentally, this input-output relationship was found to follow 

a sigmoidal form with a large Hill coefficient. Theoretically, this input-output dependence 

can be explained by a Monod-Wyman-Changeux (MWC) model (11, 12, 13), for a large 

cluster of high cooperative (all-or-none) receptors or by an Ising-type model where receptors 

interact with its nearest neighbors in a extended lattice of receptors(14, 15, 16). The MWC 

model leads to a simple analytical result, which we use here:

g(Y , X) = [1 + e
N f m(Y)

(
1 + X /Ki
1 + X /Ka

)
N

]
−1

, (7)

where N is the number of highly correlated receptors in the cluster, Ka(i) are the dissociation 

constants for the active (inactive) receptor with Ka ≫ Ki. The effects of receptor methylation 

are given by the free energy difference fm(Y) between active and inactive states for a 

receptor that is not bound to the ligand. From experimental data, we have fm(Y) ≈ −α(Y − 

m0), and thus depends (roughly) linearly on Y with α ≈ 1.7 (17, 18).

Slow adaptation dynamics—From Eq.(7), it is clear that varying Y shifts the sensitivity 

of the input-output response. How does the system adjust its receptor methylation level in 

response to changes in the environment to enable adaptation? Details of the enzymatic 

reactions (methylation and demethylation) and their kinetic rates are not well known. 

However, significant insights into the methylation dynamics were gained by the systems 

level adaptation behavior. For E. coli chemotaxis, adaptation is highly accurate with an error 

ε ~ 1 – 4%, i.e., the adapted value of Z activity is independent of the input X, a phenomenon 

called perfect adaptation. A simple way to achieve perfect adaptation is to have the 

methylation rate function F to depend only on Z:

dY
dt = F(Z), (8)

where the explicit dependence of F on Y and X are negligible. In steady state the adapted 

activity is determined by F(Z) = 0, which results in an adapted activity Z = Zs independent 

of the input X. This perfect adaptation mechanism is related to the integral control system in 

engineering (19).

Given that ∂g
∂Y > 0, we need to have dF(Z)

dZ < 0 (at least near Z = Zs) to maintain stability of 

the adapted state. Therefore, the interactions between the output (Z) and the controller (Y) 

have opposite signs dF(Z)
dZ × ∂g

∂Y < 0, which clearly indicates that bacterial chemotaxis 

adaptation is carried out by a negative feedback loop (NFL) network. Combining the fast 

and slow dynamical equations, Eq.(6) and Eq. (8) constitute the “standard model of bacterial 

chemotaxis” (20), which can be used to predict responses to arbitrary input signals (21, 18).
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3.3. Comparison with Quantitative Experiments

For simple step function (adding and removal) stimuli, the response of the cell have been 

measured in vivo by using Förster Resonance Energy Transfer (FRET) method, see Fig. 2A 

for a typical response to a strong stimulation (10). The standard model can be analyzed by 

using the nullcline analysis and exploiting the separation of time scales, as shown and 

explained in Fig. 2B. Furthermore, the standard model has been used to predict responses to 

more complex time-varying signals to compare directly with quantitative experiments.

Responses to ramps—In an environment where the attractant concentration keeps 

increasing in time, the receptor methylation level increases continuously to adapt. However, 

due to the slow adaptation, the system can only manage to adapt to an activity level Zc that is 

lower than Zs. In fact, for an exponential ramp: X = X0ert with r the ramp rate, it was shown 

(20) from the standard model that Zc is a constant that depends on the ramp rate r: Zc = F
−1(r/α) where F−1 is the inverse function of F. This remarkable connection provides a way to 

determine the intracellular rate function F(Z) by measuring cellular ramp responses. Indeed, 

a thorough in vivo study of the ramp responses using FRET (18) not only confirmed the 

model prediction, it also quantitatively determined the rate function F(Z). In fact, F(Z) is 

found to have a large linear regime around Zs, i.e., F(Z) ≈ kRB(Zs − Z), where the parameter 

kRB depends on the kinetic rates for the methylation and demethylation reactions catalyzed 

by CheR and CheB-P, respectively.

Responses to oscillatory signals—Once F(Z) is determined, the standard model can 

be used to predict responses to any time varying signals without any adjustable parameters. 

For an exponentiated sine-wave signal X(t) = X0 exp[AL sin(2πνt)], the standard model 

predicts that the response is Z(t) = Zs + Re(A), where the complex response A = AL 

exp(i(2πνt − ϕ)) with the amplitude |A| and a phase delay ϕ given by:

∣ A ∣ =
NZs(1 − Zs)
1 + (νm/ν)2 AL, ϕ = π − tan−1 (νm/ν), (9)

where νm = −αNZs(1 − Zs)F′(Zs)/2π is a characteristic adaptation frequency. These 

predictions, Eq. (9), agree quantitatively with experiments as shown in Fig. 2C (18). Finally, 

by taking the Fourier transform of the signals time derivative B ≡ iνAL and factoring this 

out from the response, we obtain the systems time-derivative-filtering function H ≡ A/B = 

NZs(1 − Zs)(iν + νm)−1, which is a constant for ν ≪ νm as shown in Fig. 2C. This clearly 

shows that E. coli computes time derivative of the signal at frequencies lower than the 

adaptation frequency νm.

Responses to realistic signals—Besides predicting responses of immobile cells to 

prescribed time-varying signals, the standard model has been used to understand 

intracellular signaling dynamics of free moving cells (22, 23). The combination of the 

standard model for the signaling pathway and a quantitative model for the flagellar motor 

response has yielded significant insights and quantitative predictions on how motile cells 

behave in spatial-temporally varying environments. These predictions have been tested in 
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microfluidic experiments with stationay, stand-wave, and traveling wave gradients (24, 25, 

26).

4. Adaptation in Eukaryotic Chemotaxis

Adaptation is not limited to bacterial chemotaxis but is also critically involved in eukaryotic 

chemotaxis. A number of eukaryotic cells respond to chemical gradients and direct their 

motion to higher chemoattractant concentrations (27, 28, 29). Chemotaxis plays an essential 

role in several biological processes, including wound healing (30), embryology (31, 32) and 

cancer cell migration (33). Just as in the case of bacterial chemotaxis, the external 

chemoattractant molecules binds to surface receptors, activating intra-cellular signaling 

pathways that involve a multitude of biochemical components (34). The precise molecular 

mechanisms for eukaryotic chemotaxis are still under debate (28, 35, 36, 34) but many of the 

pathway components are identified, Furthermore, these pathways are mostly conserved 

across different cell types, making it possible to use experimentally accessible model 

systems (37, 38, 39). One of the best studied model systems is Dictyostelium discoideum, a 

social amoeboid that uses chemotaxis to form aggregation centers following starvation (40, 

41). Dictyostelium cells move fast and are relatively easy to manipulate in a laboratory 

setting. Furthermore, many fluorescent reporters are available which makes it possible to 

quantify response kinetics and amplitudes.

How do eukaryotic cells employ chemotaxis? Just as bacteria, eukaryotic cells are able to 

adapt themselves to their changing surroundings as they move up the gradient. The logic is 

the same as for bacteria: with an adaptive approach, cells can maintain their responsiveness 

over a wider range of background concentration (42, 43). Nevertheless, there are a number 

of important differences between bacterial chemotaxis and chemotaxis in eukaryotes. These 

differences are primarily due to the contrasting modes of motion between the two cell types 

as well as their size disparities. Instead of swimming, eukaryotic cells crawl and migrate by 

extending their membrane at the front of the cell while retracting the back of the cell (44, 45, 

27). The resulting migration speed can range from less than 1 μm/min for macrophages and 

fibroblasts (46, 47) to approximately 10 μm/min for neutrophils and Dictyostelium cells (48, 

49), considerably slower than the typical swimming speed of bacteria ~25 μm/s (2). 

Chemotaxing eukaryotic cells are, in general, also much larger than bacteria and their 2 μm 
size, ranging from 10 μm in diameter (neutrophils and Dictyostelium) to roughly 100 μm for 

elongated fibroblasts. Taken together, the much smaller speed and larger cell sizes preclude 

eukaryotic cells from using the time measurement mechanisms employed by swimming 

bacteria. Instead, these cells use spatial directional sensing mechanisms, in which the cell’s 

symmetry is broken, leading to a distinct back and front that can be visualized using 

fluorescent markers (Fig. 3) (50, 51, 52).

How might adaptation help eukaryotic cells during chemotaxis? Several experimental 

studies have shown that cells can detect very small gradients (54). For example, 

Dictyostelium cells can respond to concentration differences of approximately 1% across the 

cell body (55, 56). In addition, these cells respond to gradients with a large range of 

background concentrations, defined here as the spatially averaged concentration experienced 

by the cell. Thus, cells cannot determine their direction based on a fixed operating point as 
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this would make them responsive only over a very small concentration range. Instead, cells 

must be able to compare bound receptor levels at their front and back independent of the 

background concentration. As suggested by several studies, this comparison will be 

facilitated by adaptation which ensures that the difference between front and back is 

independent of background levels (57, 58, 59). Importantly, experiments monitoring FRET 

between two subunits of the receptors have demonstrated that this adaptation occurs 

downstream from the chemoattractant receptors (60).

4.1. Experimental Evidence for Adaptation

Early experiments, using observations of morphological changes or using cell population 

assays, have suggested that cells can adapt to changing stimuli (61, 62). A more quantitative 

analysis of adaptation has been made possible by the recent introduction of microfluidics, 

coupled to improved microscopy. These experimental technique make it possible to study 

the dynamics of markers in single cells exposed to carefully controlled environments (63, 

64, 65, 48, 56, 66, 52, 67). Recently, Takeda et al. quantified the dynamics of activated Ras, 

Ras-GTP, measured using the fluorescent reporter RBD-GFP (68, 69) following step stimuli 

of chemoattractant. This signaling component was chosen since it is immediately 

downstream from the G protein-coupled chemoattractant receptors, with Ras likely 

activating a range of downstream effectors. Thus, its response should be a more direct read-

out of adaptation than components that are further downstream and which can be part of 

multiple feedforward and feedback loops.

Takeda et al. found that without a change in the external cAMP concentration, RBD-GFP is 

found to be uniformly distributed in the cytosol (Fig. 4A). Upon a sudden increase in 

external cAMP concentration, however, RBD-GFP rapidly localizes to the membrane, 

followed by a gradual return to the cytosol (Fig. 4B). Ras dynamics was quantified following 

concentration increases of several orders of magnitude (0.1 nM to 1 μM) and it was found 

that cytosolic RBD-GFP returned to its pre-stimulus level after approximately 35s, 

indicating perfect adaptation (Fig. 4C). Furthermore, as can be observed from Fig. 4B, the 

time of the peak response decreases for increasing concentration changes. Similar qualitative 

behavior was found in the study by Wang et al. which examined the dynamics of PI3K 

(phosphoinositide 3-kinase) activation using a fluorescent phosphatidylinositol 3,4,5-

trisphosphate (PIP3) specific biosensor (70) following a step change in cAMP.

4.2. Network Topology for Adaptation in Eukaryotic Chemotaxis

The finding that activated Ras dynamics adapts perfectly suggests that one of the two basic 

network motifs described above (negative feedback loop, NFL, or incoherent feed-forward 

loop IFFL) should be at the heart of the signaling network. Indeed, the quantitative data from 

the Takeda et al. experiment is able to rule out the NFL network and is consistent only with 

the IFFL motif. This can be most readily seen by examining the dynamics of the adaptation 

as a function of stimulus size. For the NFL motif, the time scales of reaching the maximum 

response and the subsequent return to basal levels increase significantly as the stimulus size 

is increased. This can be intuitively understood by realizing that the NFL motif works 

through a feedback loop. Consequently, a larger stimulus will result in larger deviations from 

equilibrium, requiring more time to return to basal levels.
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For the IFFL motif, on the other hand, the response time can actually decrease upon 

increasing stimulus strength. This can be seen by analytically examining the dynamics of the 

response as a function of stimulus strength using simple zero-order forms for F and G:

dZ
dt = kZX(1 − Z) − k−ZYZ,
dY
dt = kYX − k−YY .

(10)

The steady state values are Ys = kY X/k−Y and Zs = (k−Y kZ)/(k−Y kZ + kY k−Z), illustrating 

that Z is independent of X, the hallmark of perfect adaptation. To approximate the dynamics 

of recovery, we assume that activation is much faster than inhibition so that we can use the 

quasi-steady approximation resulting in

1
X

dZ
dt = kZ(1 − Z) −

kYk−Z
k−Y

Z (11)

Thus, the recovery time scale increases with X, consistent with the experimental results.

To further determine whether the incoherent feed-forward topology is consistent with the 

experiments, Takeda et al. fitted the experimental data to a model containing an IFFL motif. 

The model is based on the biochemistry of Ras: Ras is activated by RasGEFs (guanine 

nucleotide exchange factors) and inactivated by RasGAPs (GTPase activating proteins). 

Thus, in the adaptation scheme of Fig. 1, RasGAP is the equivalent of ”Y”, activated Ras is 

the equivalent of ”Z”, and the chemoattractant concentration plays the role of ”X”. To 

account for the role of RasGEF, an additional node between the chemoattractant 

concentration and activated Ras (i.e., X and Z) was inserted. This correspondence between 

the variables is listed in Table 1. In addition, receptor kinetics was incorporated using 

experimentally determined values for the binding dynamics. The resulting topology, shown 

in Fig. 4D, has the same qualitative features as the IFFL motif of Fig. 1. The output of the 

model was tested using a subset of experimental data points and the value of the parameters 

were adjusted using a fitting procedure (68). The final model was able to reproduce all 

experimental results; for example, the dose-response curves of the model (lines) and of the 

experiments (symbols) show good agreement (Fig. 4E). The experimental curves in this 

figure were obtained using cells that were exposed to different and constant chemoattractant 

concentrations for prolonged times. Other comparisons, involving full time traces and 

sudden decreases of cAMP concentrations, also show satisfactory agreement between 

experiment and model, indicating that the IFFL motif is responsible for adaptation.

A similar conclusion was reached by Wang et al. who used a different stimulus protocol to 

distinguish between the two possible network motifs. Specifically, they used a linear ramp 

signal X = X0 + βt where β represents the increase in concentration per unit time. It is 

possible to obtain an exact expression for Y as a function of time:
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Y(t) =
kY

k−Y
X0 + βt + β

k−Y
(e

−k−Yt
− 1) (12)

Thus, for large t, both Y and X both will increase linearly and will be proportional to the 

slope of the signal ramp. Therefore, the output Z will not depend on the signal and will adapt 

perfectly. Note, however, that in general this adaptation is slower than when a step stimulus 

is applied. In contrast, the NFL motif does not adapt in response to a linear ramp. The 

experiments of Wang et al. show that PI3K activity adapts, independent of the rate of 

increase of cAMP (70). Thus, combined with the study of Takeda et al., these results imply 

that adaptation in eukaryotic and bacterial chemotaxis operate using different mechanisms: 

IFFL for eukaryotes and NFL for bacteria.

4.3. Connection to Directional Sensing Models

Even though the topology of the chemotactic pathway was found to be different than the 

well-established bacterial chemotaxis pathway, its discovery was not a complete surprise. 

Eukaryotic models for chemotaxis do not only have to deal with the response to uniform 

concentration changes but also need to explain the spatial asymmetry observed when cells 

are placed in a gradient (see Fig. 3). One of the early models for directional sensing is the 

Local Excitation, Global Inhibition (LEGI) model, originally proposed by Parent and 

Devreotes (57). It contains the IFFL topology and assumes that excitation occurs locally and 

rapidly and that inhibition is slower and more global, modeled by including a diffusive term 

for the inhibitor (GAP in Fig. 3D). The main idea here is that the inhibitor will cancel out 

the effect of the average receptor occupancy whereas the local excitation will allow for 

response to local variations away from the mean (58). Adaptation will then result in a larger 

response at the side of the cell that is directed to the higher chemoattractant concentration 

than to the side pointed away from the chemoattractant source.

Even though the LEGI displays perfect adaptation and creates a spatial asymmetry in the 

presence of a chemoattractant gradient, it is not able to fully capture eukaryotic chemotaxis. 

The problem is that the generated asymmetry is always smaller than the asymmetry from the 

gradient. In other words, the LEGI mechanism is not able to amplify an external signal and, 

instead, simply reads off the external gradient. Several models have been proposed to 

provide the necessary amplification. For example, a variant of the LEGI model incorporates 

the idea of zeroth order ultrasensitivity (71). It no longer assumes that the enzymes that 

control the read-out component are unlimited, resulting in a reaction that is modeled by the 

full Michaelis-Menten kinetics. Then, for certain parameter values, the read-out component 

of the network can rapidly switch between a low and high state, resulting in the desired 

amplification (72). Another gradient sensing model uses a modular approach and postulates 

that the output of a LEGI module feeds into an excitable module (73, 74). Obviously, this 

model is still able to adapt perfectly and can generate a large response due to its excitable 

nature. The fact that cell responses can be described by excitable features was also noted by 

other studies (75, 76, 77, 78) and is motivated by the transient and stochastic protrusions and 

retractions of membrane extensions of cells as well as the signaling ”patches” following 
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cAMP stimulation (79, 80). A model cell placed in a gradient will produce a LEGI response 

that is higher at the front than at the back of the cell. By carefully choosing the model 

parameters, this will result in excitations that occur more frequently at the front of the cell.

4.4. Scale Invariant Adaptive Response

In addition to perfectly adaptive, the response of the LEGI model to sudden stimulus 

changes can also be scale invariant. A response is said to be scale invariant if its dynamics 

depends solely on the ratio between the pre- and post-stimulus level. In other words, scale 

invariance implies that a stimulus change from X0 to X1 gives the same response as a 

stimulus change from pX0 to pX1. Such a “fold-change detection” has been investigated 

theoretically (81, 82, 83) and has been demonstrated experimentally in E. coli chemotaxis 

(84). In a more recent study, general necessary and sufficient rules for scale invariance were 

obtained for three-node network topologies (85). Furthermore, this study investigated 

whether the topology found in Ref. (68) (and shown in Fig. 4B) exhibits scale invariance. 

Examining the basic IFFL model of Eqns. 10 reveals that it is not perfectly scale invariant: 

changing the input X → pX in the core model will lead to Y → pY. The equation for the 

output, however, shows that Z depends non-trivially on both X and Y, leading to dynamics 

that is not scale invariant. However, in the limit where the output dynamics is very fast we 

can use the quasi-steady state approximation. Then, Z is given by its steady state value 

which can be easily verified to be invariant under a fold change in the input.

The full adaptation model, detailed in Ref.(68), only displays scale invariance for 

intermediate values of cAMP stimuli. This is shown in Fig. 5 where we plot the response of 

the full model, measured as the level of RBD-GFP, to various changes in external cAMP 

concentrations. For intermediate values of cAMP, the curves for 1–10nM and 2–20nM steps 

are nearly indistinguishable, indicating scale invariance (Fig. 4D and Fig. 6 in (85)). For 

smaller and for larger values of cAMP, however, the response is no longer scale invariant, as 

can be seen in Fig. 5A and C. The reason for the absence of scale invariance for small values 

of cAMP is that the steady state approximation breaks down (for an in-depth discussion of 

the necessary conditions for scale invariance we refer to Ref. (85)). For large values of 

cAMP, on the other hand, the equation of the receptor occupancy in the full model is no 

longer linearly dependent on the chemoattractant concentration due to receptor saturation. 

The resulting non-linear dependence on the cAMP concentration results in responses that are 

not scale invariant. These results should be testable using the microfluidics system of Takeda 

et al. in which the concentration is stepped systematically.

5. The Effect of Adaptation: the Weber-Fechner law

Why is adaptation so essential in biology? The general answer is that adaptation allows a 

living system to function normally in a wide range of backgrounds. For sensory systems, this 

qualitative explanation is related to the well known empirical Weber-Fechner (WF) law, 

which states that the response (or perception) of an adaptive sensory system is proportional 

to the relative change in stimulus. In the following, we describe a general scaling theory for 

adaptive response to demonstrate the WF law.
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5.1. A General Scaling Theory for Adaptive Response

As we discussed in Sec. 2, for a system adapted to an external stimulus level X, the fast 

response to a sudden change of stimulus to X + ΔX can be obtained by assuming that the 

internal variable Y remains roughly unchanged Y ≈ Ys(X) due to its relatively slow 

dynamics. Based on the general observation that the primary effect of adaptation is to shift 

the response curve without changing its shape, we hypothesize that adaptation mainly 

normalizes the input by a factor K(Ys). The peak value can then be written as:

Z p(X + ΔX, X) ≈ R X + ΔX
K(Ys(X)) ≡ R X + ΔX

Ks(X) , (13)

where R is the response function and Ks(X) is the scaling factor that depends on the 

background X through its direct dependence on Ys.

The adapted output Zs(X) at the background level X is given by Zs(X) = R(X/Ks(X)), from 

which we can compute the sensitivity S:

S(X) ≡ ΔZ
ΔX ≡

Z p(X + ΔX, X) − Zs(X)
ΔX = Ks(X)−1R′(X /Ks(X)), (14)

where R′ is the derivative of R.

In order to adapt over a wide range of backgrounds, the scaled stimulus strength X/Ks(X) 

needs to be roughly a constant for a wide range of X. To satisfy this condition, Ks needs to 

depend roughly linearly on X:

Ks(X) ≈ K0 + λX, (15)

where K0 and λ are constants. Perfect adaptation corresponds to K0 = 0, where the adapted 

output Zs(X) = R(λ) is independent of X. The case of no adaptation corresponds to λ = 0, 

where Ks = K0 does not change with X at all.

By using Eq. (15) for Ks(X), we can compute the sensitivity from Eq. (14):

S(X) = (K0 + λX)−1R′( X
K0 + λX ) C0X−1 (16)

for X ≫ K0/λ with C0 ≡ λR′(λ) a constant. From Eq. (16), we have ∣ ΔZ ∣ = C0
∣ ΔX ∣

X , 

which is exactly the Weber-Fechner (WF) law. The WF law dictates that the response only 

depends on the relative change of the stimulus, which is related to the fold-change detection 

idea that has been studied recently in both bacterial chemotaxis (86) and eukaryotic 

chemotaxis (85, 68) as discussed in the last Section. Here, we demonstrate the WF law 
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regardless of details of the specific system such as its response function R as long as the 

general scaling hypothesis for adaptive response, Eq. (13), holds.

Next, we show the validity of the scaling hypothesis in both bacterial chemotaxis and 

eukaryotic chemotaxis and how the WF law can be applied to study adaptive sensory 

systems in general.

5.2. The Weber-Fechner Law in Different Sensory Systems

Bacterial Chemotaxis—As described in Section 3, an E. coli cell adapts to an 

environment with background chemical concentration X by adjusting its chemo-receptor 

methylation level to Ys(X), which restores its preferred activity Zs. When the concentration 

changes suddenly to a new level X + ΔX, the immediate response is given by Eq. (7). Within 

the range of receptor sensitivity Ki ≪ X ≪ Ka, we can simplify Eq. (7) to obtain the 

response in activity:

Z p(X + ΔX, X) = 1 + X + ΔX
Ks(X)

N −1
, (17)

which satisfies the scaling hypothesis Eq. (13). More specifically, the response function R in 

E. coli chemotaxis takes the form of a Hill function with a Hill coefficient N. By 

determining Ys using the perfect adaptation condition Zp(X, X) = Zs, the scaling function is 

given by Ks(X) = Ki exp (α(Ys − m0)) = (Zs
−1 − 1)

1
N X, which depends linearly on X, 

confirming the scaling assumption Eq. (15) for adaptation.

We can compute the sensitivity at background X ≫ Ki:

S(X) ≈ NZs(1 − Zs)X
−1, (18)

which is exactly the WF law. For a non-adaptive cell, the receptor methylation level does not 

change. For high background concentrations X ≫ Ki, the sensitivity of the non-adaptive cell 

Sna(X) ≈ NKi
NX−(N + 1) decays much faster than S(X).

Eukaryotic Chemotaxis—For eukaryotic chemotaxis, adaptation is achieved by an IFFL 

network, whose dynamics are described by Eq. (10). We can compute the response by first 

using the quasi-equilibrium condition to determine the internal variable Ys ≈
kY

k−Y
X at a 

background X. After the input changes from X to X + ΔX, the output Z starts to increase and 

the peak response can be found by setting dZ/dt = 0 in Eq. (10), which results in
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Z p(X + ΔX, X) ≈
kZ(X + ΔX)

kZ(X + ΔX) + k−ZYs
= u

u + 1, (19)

where u = (X + ΔX)/Ks(X). The scaling function Ks(X) = k−ZkZ
−1Ys =

k−ZkY
k−YkZ

X depends 

linearly on X in agreement with the perfect adaptation condition Eq. (15). The sensitivity at 

background X can be easily determined:

S(X) = (1 − Zs)ZsX
−1, (20)

which follows the WF law. For non-adaptive mutants with a fixed Y, it is easy to show that 

the sensitivity decays faster as X−2.

From Eq. (18) and Eq. (20), we show that the scaling hypothesis for adaptive response holds 

and the WF law is universal for adaptive systems independent of the underlying biochemical 

network structure (NFL or IFFL).

Sensory Neurons—The general scaling model for adaptive response can be used to 

describe adaptive system even in cases where the detailed adaptation mechanism is not fully 

understood. The functional form of the response function R can be measured by non-

adaptive mutants in which Ks remains a constant independent of the background. Once R is 

determined, then all responses of the adaptive wild-type (WT) cells in any given 

backgrounds can be determined by just two parameters K0 and λ. This approach has been 

used successfully to explain response sensitivities in both the rhodopsine and the olfactory 

neurons (87).

6. Nonequilibrium Thermodynamics of Adaptation

Inside a living cell, all biological functions, including adaptation, are carried out by 

biochemical reactions with a relatively small number of molecules (much smaller than 

Avogadro’s number). The stochastic nature of molecular reaction and diffusion give rise to 

significant fluctuations in biochemical reactions. Another general feature of living systems is 

that they are far from equilibrium. Living matter is highly dissipative. Chemical free energy 

harvested by metabolic processes powers interactions of living matter in different 

biochemical networks to achieve various biological functions. How do we describe the 

nonequilibrium thermodynamics of a small living system? How can a cell function 

accurately in the face of these noisy biochemical reactions? In the following, we will address 

these questions in the context of cellular sensory adaptation.

6.1. Breakdown of Detailed Balance

To understand the effect of noise in adaptation dynamics, we introduce the Langevin 

dynamics by including noise in the simple dynamical equations described in Section 2:
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dZ
dt = G(X, Y , Z) + ηZ, , dY

dt = F(X, Y , Z) + ηY, (21)

〈ηZ(t + t′)ηZ(t′)〉 = ΔZδ(t), 〈ηY(t + t′)ηY(t′)〉 = ΔYδ(t) (22)

where ηY and ηZ are noise terms due to the stochastic nature of the underlying biochemical 

reactions. In general, the noise strength ΔY and ΔZ can depend on the variables (X, Y, Z).

For an equilibrium system with an energy functional ℰ(X, Y, Z), its dynamics is driven by 

the local gradient of ℰ(X, Y, Z) in addition to thermal fluctuations. For example, in its 

simplest form, we can have G = − ∂ℰ
∂Z , and F = − ∂ℰ

∂Y  with the noise strength ΔY = ΔZ = 

2kBT where kBT is the thermal energy of the heat bath the system is in equilibrium with. It 

is easy to show that the equilibrium Langevin equation leads to the Boltzmann distribution 

exp ( − ℰ
kBT ). Independent of the specific form of ℰ(X, Y, Z), the constrain ∂G

∂Y = ∂F
∂Z  is 

satisfied by all equilibrium systems as a result of the detailed balance (88). However, as we 

discussed in Sec. 2, for adaptive systems these two cross derivative terms have different 

signs and thus can not be equal:

∂G
∂Y ≠ ∂F

∂Z , (23)

which means that detailed balance is violated in adaptation. This means that the underlying 

biochemical reactions are driven out of equilibrium by energy dissipation.

6.2. The Energy-Speed-Accuracy Tradeoff

How does the system use free energy to achieve adaptation and how does the energy 

dissipation relate to and limit the performance of adaptation? To answer these questions we 

investigate the key biochemical reactions underlying the two adaptation circuit motifs – NFL 

and IFFL, both of which can be studied by using a simple four-state model as shown in Fig. 

6A.

For adaptation in E. coli chemotaxis, each state of the chemo-receptor is characterized by a 

pair of order parameters (s, m): s = 0, 1 corresponding to the active and inactive state of the 

receptor, and the receptor methylation level m = 1, 2 (only two adjacent levels are 

considered here). The biochemical transition rates between the four states are given in Fig. 

6A with all the counterclockwise (CCW) and clockwise (CW) rates labeled by kl and k−l 

respectively (l = 1, 2, 3, 4).

For a fixed receptor methylation level, the transitions between the active and inactive state of 

the receptor is governed by the free energy levels of the two states, i.e., 

Tu and Rappel Page 16

Annu Rev Condens Matter Phys. Author manuscript; available in PMC 2018 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



k2
k−2

= exp [E(0, 2) − E(1, 2)],
k4

k−4
= exp [E(1, 1) − E(0, 1)], where E(s, m) = sfm(m) is the free 

energy level of state (s, m) with fm(m) = −α(m − m0) the methylation free energy (see 

Section 3). The rates for receptor methylation and demethylation, however, do not satisfy the 

detailed balance conditions. In particular, in order to carry out negative feedback control, the 

methylation rate for the inactive receptor should be enhanced relative to the demethylation 

rate, and the demethylation rate should be increased relative to the methylation rate for the 

active receptor, i.e., 
k1

k−1
> exp [E(0, 1) − E(0, 2)] and 

k3
k−3

> exp [E(1, 2) − E(1, 1)]. These two 

non-equilibrium processes are facilitated by two enzymes – CheR for methylation and 

CheB-P for demthylation reactions. See Fig. 6A (upper panel).

We can define a “reversibility” parameter Γ for the whole reaction cycle:

Γ ≡
∏cwk
∏ccwk = ∏

l = 1

4 k−l
kl

, (24)

which determines whether the full reaction cycle is in thermal equilibrium with its 

environment. For Γ ≠ 1, the system is dissipative and its steady state is a non-equilibrium 

steady state (NESS), which needs to be maintained by a finite rate of free energy 

consumption.

For the adaptation network in E. coli, the negative feedback control is carried out by 

suppressing the “undesirable” backward reactions, which can be characterized by a small 

parameter γ < 1: k−1 = γk−1
(0) and k−3 = γk−3

(0) where the equilibrium backward rates k−1
(0) and 

k−3
(0) satisfy detailed balance with their corresponding forward rates, resulting in an 

irreversible parameter Γ = γ2. For an equilibrium system with Γ = 1, the system does not 

adapt, see the black line in Fig. 6B. Adaptation, i.e., recovery, only occurs when Γ decreases 

below a critical value Γc(< 1). The adaptation error decreases as γ (or equivalently Γ) 

decreases. The adaptation error can be expressed as: ε = εc + ε0γ, where ε0 is an O(1) 

constant that depends on details of the system. The saturation error at γ → 0 is given by εc, 

which depends on system parameters. εc can be made arbitrarily small by proper design of 

the system (89). For those systems with εc ≈ 0, perfect adaptation (ε = 0) can be achieved 

when γ = 0.

The entropy production rate of the system can also be computed: Ṡ = Σl(Jl+ − Jl−) ln(Jl+/Jl−) 

where Jl± are the forward and backward probability fluxes for the l’th reaction. From Ṡ, we 

can determine a minimum free energy dissipation rate Ẇ = kBTṠ to maintain the adapted 

state, where the thermal energy unit kBT = 1 of the environment can be set to unity. It can be 

shown that the dissipation rate increases with the adaptation speed ωadp ≡ τadp
−1  with τadp the 

adaptation time: Ẇ = −c0ωadp ln(γ), with c0 a system dependent O(1) constant.
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By varying γ, i.e., the strength of the negative feedback control, we can relate the cost of 

adaptation as characterized by the minimum free energy dissipation rate (Ẇ) with its 

performance characterized by its speed (ωadp) and accuracy (ε):

W
.

= c0 × ωadp × ln
ε0

ε − εc
, (25)

which is called the energy-speed-accuracy (ESA) tradeoff relationship as shown in Fig. 6C.

The ESA relationship seems to be general for adaptive systems. Eq. (25) was found to be 

valid for the IFFL network in the eukaryotic chemotaxis (90). Similar to adaptation by 

negative feedback control in bacterial chemotaxis, two opposing enzymes, guanine 

nucleotide exchange factor (GEF) and GTPase-activating protein (GAP), activate and 

deactivate Ras, respectively, through two different paths in eukaryotic chemotaxis as shown 

in Fig. 6A (lower panel). Free energy is continuously consumed in the adapted steady state 

to suppress the “undesirable” reverse reactions and drives a sustained cycling flux among the 

four states. The free energy is provided by the hydrolysis of high energy bio-molecules that 

are coupled with these cycles, e.g., ATP or GTP for the phosphorylation-dephosphorylation 

cycle in eukaryotic chemotaxis and S-adenosyl methionine (SAM) for the methylation-

demethylation cycle in bacterial chemotaxis. Measurements of the adaptation dynamics in 

energy deprived E. coli cells are consistent with the ESA relationship (89).

The general ESA relationship provides a fundamental physical limit for an important 

biological function, adaptation. It also provides insights in designing biochemical circuits to 

achieve optimal performance with limited resources. The effect of energy dissipation on 

other key characteristics of adaptation has also been studied. In particular, it was found that 

free energy dissipation can be used to suppress fluctuation of the adapted activity without 

affecting the short time response of the system, a violation of the fluctuation dissipation 

relationship in equilibrium systems (91).

7. Adaptation in Other Biological Systems

Adaptation in cells is not limited to chemotaxis signaling. For example, it was recently 

found that the bacterial flagellar switch can adapt to the intracellular CheY-P level by 

adjusting the number of FliM molecules at the switch complex (92, 93). Adaptation also 

plays a key role in a variety of homeostatic processes, e.g., adaptation to hyperosmotic 

shocks in budding yeast Saccharomyces cerevisiae cells. In a recent study, Muzzey et al 
measured nuclear enrichment of the MAP kinase Hog1 and found it to perfectly adapt, 

meaning that the steady-state pre- and post-stimulus levels were identical (94). This study 

also argued for the presence of an integrator and found, through a set of carefully chosen 

experiments in either mutant strains or for different stimulus protocols, that a single 

integrating mechanism that involves Hog1 kinase activity and which regulates glycerol 

synthesis is responsible for the observed adaptation.
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All sensory neurons show adaptive behaviors. Although the full molecular mechanism is 

unclear, some key steps in the adaptation pathway are known. For example, in olfactory 

sensing in mammalian neurons (95, 96), odorant binding induces activation of adenylyl 

cyclase (AC), which causes an inbound calcium (Ca+2) flux. The intracellular calmodulin 

(CaM) interacts with enriched calcium to form Ca-CaM, which activate AC phosphorylase 

calmodulin kinase II (CAMKII) that eventually phosphorylates and deactivates AC. For light 

sensing in mammalian neurons (97, 98, 99), light activates the G-protein coupled receptor 

(photon-sensor) that decreases the cellular level of cyclic guanosine monophosphate (cGMP) 

and inhibits the inbound calcium (Ca+2) flux, which eventually turns on the octopus 

rhodopsin kinase (ORK) to phosphorylate and deactivate the photon-sensor. The adaptation 

mechanism for the hair cells and whether it involves Ca+2 is still controversial (100, 101). 

Due to the multiple time scales observed in neuron adaptation behavior, it is highly likely 

that a nested network consisting both NFL and IFFL motifs are employed in neuron 

adaptation. It is thus interesting to use the dynamical systems approach described here 

together with quantitative single cell measurements to determine the underlying network 

architecture for adaptation in more complex systems such as sensory neurons.

As a final example of adaptation we would like to point out that it does not have to be 

limited to single cells but can also occur at the tissue, organ, or whole body level. One 

example of perfect adaptation at the body level can be found in the control of calcium levels 

in mammals. These levels need to be well-controlled and must be within a small range of 

values. El-Samad et al. described how an integral control feedback mechanism is able to 

achieve these requirements and proposed a biologically plausible model for calcium 

homeostasis (102). Specifically, they showed that a previously proposed and simple 

feedback control mechanism is not sufficient to robustly control calcium levels and that the 

addition of an integrator, much like the one schematically shown in Fig. 1, is able to ensure 

calcium levels that are independent of the perturbation. When applied to data from cows that 

give birth, which represents a large calcium perturbation, the model was able to capture the 

perfect adaptation observed in the animals. As one can imagine, however, obtaining large 

amounts of quantitative data to fully capture dynamics at animal scales is a complicated and 

time-consuming task, illustrating why chemotaxis of single cells is a favorite system for the 

study of adaptation.

8. Reprise

In this paper, we reviewed the two basic molecular mechanisms, NFL and IFFL, for cellular 

adaptation exemplified by the bacterial and eukaryotic chemotaxis signaling pathways, 

respectively. Despite their different network architecture, they share many common and 

universal characteristics in their dynamics, energetics, and scaling behavior. To display 

adaptive dynamics, both pathways require a separation of time scales with a fast response 

and a slow recovery. Both operate out of thermal equilibrium, continuously dissipate 

(consume) free energy to maintain the adapted steady state. The power consumption sets a 

limit for the adaptation performance characterized by adaptation speed and accuracy. 

Adaptation maintains a high sensitivity over a wide range of background, which is directly 

responsible for the Weber-Fechner scaling law observed in different sensory systems. There 

are, however, notable differences in the dynamics of these two networks. While both the 
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response and the recovery time scales in the IFFL network decrease with the signal strength, 

they increase with or are independent of the input in the NFL network. These differences can 

be exploited to determine the underlying molecular mechanism for adaptation from input-

output measurements. Indeed, the theoretical framework we described here should be useful 

to understand more complicated adaptive systems in biology.
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SUMMARY POINTS

1. There are two distinct basic biochemical networks that lead to accurate 

adaptation – the negative feedback loop (NFL) network and the incoherent 

feedforward loop (IFFL) network.

2. Both NFL and IFFL networks operate with at least two separate time scales – 

a fast response time and a slow recovery (adaptation) time.

3. Adaptation in bacterial chemotaxis involves a NFL network motif. Adaptation 

in eukaryotic chemotaxis involves an IFFL network motif.

4. The time scales in IFFL decrease with the signal intensity while the NFL time 

scales increase with the signal or show no dependence.

5. A general scaling theory of adaptive response is developed to derive the 

Weber-Fechner law in both bacterial chemotaxis and eukaryotic chemotaxis 

systems.

6. Both bacterial chemotaxis and eukaryotic chemotaxis can show scale 

invariant responses or fold change detection due to adaptation.

7. Adaptation costs energy. The adapted state continuously consumes energy to 

maintain its stability. There is an universal tradeoff relationship among the 

energy dissipation rate and the adaptation speed and accuracy.
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FUTURE ISSUES

1. Probing adaptive motifs in complex signaling pathways require fast and 

quantifiable perturbation to intracellular components. The recently developed 

optogenetic methods (103), which use light to reversibly activate specific 

components within a pathway (104, 105, 106, 107), may be employed to 

decipher the pathway topology.

2. Quantitative experimental techniques, including microfluidics that generate 

time-varying stimuli (56, 54, 52, 108, 67) can be used together with modeling 

to determine key model parameters and their cell-to-cell variability.

3. The current modeling framework can be extended to study complex 

biochemical networks with multiple time scales and nested IFFL and NFL 

motifs, such as those involved in adaptation in sensory neurons.
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Figure 1. 
Generic adaptation behavior and responsible network motifs. A: Illustration of adaptation 

dynamics of the output Z(t) in response to a step function change in input from X to X + ΔX. 

B: The two basic network architectures (motifs) that can provide accurate adaptation. The 

red arrowed lines highlight the slow interactions critical for adaptation. Different placements 

of these slow interactions in the NFL and IFFL networks differentiate these two networks.
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Figure 2. 
Comparison between predictions of the standard model of bacterial chemotaxis and 

quantitative experiments. A: Response of E. coli to step up and step down (addition and 

removal) of attractant MeAsp concentrations (X1 and X2). The response (kinase activity) is 

measured by using FRET (data from Sourjik and Berg(10)). B: The nullcline analysis of the 

dynamical equations for bacterial chemotaxis. The lettered time points (A–E) correspond to 

those in panel A. The solid grays lines are the Z-nullclines, Z = g(Y, X1) and Z = g(Y, X2), 

for different inputs X1 and X2(> X1), respectively. The dotted line is the Y-nullcline 

expressed as F(Z) = 0 or Z = Zs a constant. The solid arrowed lines (green) show the fast 

responses caused by changes (adding and removal) of input X between X1 and X2. The 

dotted arrowed lines (blue) show the slow adaptive dynamics along the Z–nullclines. C: The 

responses to oscillatory signals (top panel) are characterized by the response amplitude |A| 

and the phase shift ϕ. Both dependences of |A| (middle panel) and ϕ (bottom panel) on the 

input frequency ν agree with predictions from the standard model quantitatively. The results 

show that the system computes the time derivative of the signal at low frequencies (shaded 

region) where ν < νm ≈ 0.006Hz. The gradient computation can be seen directly by defining 

H ≡ A/(iνAL), which remains roughly constant in the shaded region (dotted blue line in the 

middle panel). Part C is adapted from ref.(18).
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Figure 3. 
A: Example of spatial asymmetry breaking in a neutrophil exposed to a gradient (towards 

the upper right). Shown are the distribution of actin (left) and phosphorylated myosin light 

chain (right) as revealed by fluorescent staining (From (53)) B: Spatial symmetry breaking 

in a Dictyostelium cell in a gradient pointing to the right. Visualized is the localization of 

activated Ras (RasGTP) using a Ras Binding Domain fused to Green Fluorescent Protein 

(RBD-GFP).
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Figure 4. 
Adaptation measured in Dictyostelium cells (From (68)). A: Snapshots of a cell undergoing 

a sudden increase in chemoattractant concentration at t = 0 s (visualized in red). Activated 

Ras is visualized using RBD-GFP, which shows a transient translocation to the membrane. 

B: The RBD-GFP cytosolic fluorescence intensity, I(t), normalized by the fluorescence 

intensity before stimulation, as a function of time for different amounts of stimulation. Note 

that the time for peak response decreases when the stimulus strength increases. C: The RBD-

GFP cytosolic fluorescence intensity as a function of stimulus strength shows perfect 

adaptation. D: Incoherent feedforward network topology consistent with experimental data: 

chemoattractant binds to receptors R which activate both RasGEF and RasGAP. These two 

enzymes then activate (GEF) and inactivate (GAP) Ras. E: Experimental results (RBD-GFP 

dose-response curves for different pretreatment concentrations, plotted as symbols) and the 

results of the incoherent feedforward network using model parameters obtained by fitting 

(plotted as lines).
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Figure 5. 
Response of the adaptation model of Ref. (68) to different stimulus steps. Only the responses 

in B are precisely scale invariant.
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Figure 6. 
The nonequilibrium dynamics in adaptation and the universal energy-speed-accuracy 

tradeoff. A: Biochemical reactions in the NFL (top) and the IFFL (bottom) networks for 

adaptation. Both biochemical networks break detailed balance and persistent flux cycles, as 

illustrated by the orange cycling arrows, exist in the adapted non-equilibrium steady state 

(NESS). The fast and slow reactions are distinguished by the black and red arrows, 

respectively. The key enzymes that facilitate the non-equilibrium reaction cycles are 

highlighted in green. Reactions suppressed by free energy dissipation are labeled by dotted 

arrows. B: No adaptation exist for the equilibrium model with Γ = 1 (black line). Adaptive 

dynamics occur after Γ decreases beyond certain critical value and it becomes more accurate 

as Γ decreases (red and blue lines). C: The energy-speed-accuracy relationship. The 

adaptation error ε decreases exponentially with ΔW ∝ |ln Γ| until it reaches a saturation 

value εc, which depends on specific parameters of the system as well as the background 

signal level. Different lines correspond to different background attractant concentrations. 

Part B and C are adapted from ref. (89).
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Table 1

Notational correspondence for bacterial and eukaryotic chemotaxis.

This review Bacterial chemotaxis Eukaryotic chemotaxis

Input X Ligand concentration [L] Ligand concentration (R)

Internal Y Methylation level m Activator/Inhibitor (RasGEF, RasGAP)

Output Z Receptor activity a Output (RasGTP)
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