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During the last few decades, nanotechnology has evolved into a success story, apparent from a steadily

increasing number of scientific publications as well as a large number of applications based on engin-

eered nanomaterials (ENMs). Its widespread uses suggest a high relevance for consumers, workers and

the environment, hence justifying intensive investigations into ENM-related adverse effects as a prerequi-

site for nano-specific regulations. In particular, the inhalation of airborne ENMs, being assumed to rep-

resent the most hazardous type of human exposure to these kinds of particles, needs to be scrutinized.

Due to an increased awareness of possible health effects, which have already been seen in the case of

ultrafine particles (UFPs), research and regulatory measures have set in to identify and address toxic impli-

cations following their almost ubiquitous occurrence. Although ENM properties differ from those of the

respective bulk materials, the available assessment protocols are often designed for the latter. Despite the

large benefit ensuing from the application of nanotechnology, many issues related to ENM behavior and

adverse effects are not fully understood or should be examined anew. The traditional hypothesis that

ENMs exhibit different or additional hazards due to their “nano” size has been challenged in recent years

and ENM categorization according to their properties and toxicity mechanisms has been proposed

instead. This review summarizes the toxicological effects of inhaled ENMs identified to date, elucidating

the modes of action which provoke different mechanisms in the respiratory tract and their resulting

effects. By linking particular mechanisms and adverse effects to ENM properties, grouping of ENMs based

on toxicity-related properties is supposed to facilitate toxicological risk assessment. As intensive studies

are still required to identify these “ENM classes”, the need for alternatives to animal studies is evident and

advances in cell-based test systems for pulmonary research are presented here. We hope to encourage

the ongoing discussion about ENM risks and to advocate the further development and practice of suitable

testing and grouping methods.

1. Introduction

The use of engineered nanomaterials (ENMs) is increasing
continuously and represents an indispensable technology in
the current times. This so-called “new” material is applied in
different sectors like the automotive industry, consumer
goods or medical applications. At the time of writing this
article, more than 1600 “nano-containing” consumer pro-
ducts were registered in the Nanotechnology Consumer
Products Inventory (CPI), an inventory providing the cur-
rently best available overview of nano-enabled consumer pro-
ducts introduced to the global market.1 Due to their ubiqui-
tous presence, human exposure to ENMs cannot be fully pre-

vented. Exposure may occur via ingestion of food,2 direct
dermal contact3 while using tools and consumer products,4,5

and inhalation of airborne particles.6,7 Out of these exposure
routes, inhalation is assumed to entail the most harmful
potential. From the 15th century onwards,8 several adverse
health effects have been associated with exposure to airborne
materials such as coal,9 quartz,10 diesel particles,11 asbestos
fibers12 or ultrafine particles (UFP) in general.13 The poten-
tial health risk of inhaled particulate matter is underscored
by the example of ambient air pollution, which is thought to
have accounted for about three million deaths in 2012
according to a WHO estimation.14,15 Although these statistics
also comprise the adverse effects of other air pollutants, a
carcinogenic effect was attributed to nano-sized carbon-core
particles in the exemplary case of diesel engine emissions.16

With the ongoing elucidation of the toxicological mecha-
nisms of particulate matter, some nano-specific regulations
have already been implemented, e.g., for cosmetics,17 food
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contact materials,18 and biocides.19,20 Nevertheless, the rele-
vance of the “nano” dimension for adverse health effects
remains questionable.21 The current knowledge indicates
that for granular biodurable particles without known specific
toxicity (GBPs), such as carbon black nanoparticles
(CBNPs)22 or titanium dioxide (TiO2),

23 dust overloading of
the lungs represents the main mechanism for carcinogeni-
city. However, the clearance of GBP materials from the lungs
may differ between individual substances as recent results
with barium sulfate (BaSO4) demonstrate.24 A toxicological
risk assessment requires not only the consideration of par-
ticle size but also careful attention to other NM character-
istics which may impact the dissolution in the lysosomes of
pulmonary macrophages, and thereby the retention in the
lungs upon long-term inhalation. Although some in vivo
studies indicate that ENMs are able to cross biological bar-
riers, such as the pulmonary air–blood barrier, more efficien-
tly than the corresponding bulk materials,7,25 other data
dissent such a difference.26 The fact that most materials with
a primary particle size in the nanometer range are inhaled as
micrometer-sized agglomerates, formed due to van der
Waals forces,27–33 further adds to the observation that NMs
generally behave like fine dusts, i.e., particulate matter 2.5
(PM2.5). So far, it is still subject to debate whether de-
agglomeration takes place under physiological conditions.
Another uncertainty is represented by a potential in vivo dis-
solution of NMs. While, for instance, cerium oxide (CeO2)
exhibits a low solubility in physiological media in vitro,34 dis-
solution in vivo was shown to be significantly higher.26,35,36

Additionally, differences in the physiological properties of
different cells (e.g., acidity) may also have an effect on NM
behavior. Up to now, no standard protocol is available for
the general solubility testing of NMs. The translocation of
NMs to secondary target organs such as the liver, heart,
spleen, or kidney has been reported to occur subsequently to
pulmonary uptake.37,38 However, it remains uncertain
whether particles are transferred as such or in dissolved
form with a subsequent de novo particle formation upon
arrival at the final destination.39–41 The toxicokinetics of the
inhaled NMs, including total uptake, biodistribution and the
dose received per organ, is therefore of paramount impor-
tance for a reliable risk assessment and has been addressed
in several recent publications.42,43 This review is focused on
the factors determining the toxicokinetic behavior of air-
borne ENMs. The procedures for a thorough characterization
of ENM properties and exposure scenarios, which are an
indispensable prerequisite for the preparation and evalu-
ation of toxicokinetic studies, are presented as well.
Furthermore, recently developed in vitro systems for bio-
kinetic studies, aimed to investigate toxicological parameters
under physiological conditions, are described. The elucida-
tion of toxicokinetic mechanisms shall help to understand
why certain ENM properties exert toxicological effects.
Besides the identification of potential hazards, this infor-
mation may contribute to group ENMs in order to achieve a
more comprehensive risk assessment.

2. Nanomaterial characteristics and
exposure
2.1. Characteristics

Historically and based on their different origins, nano-sized
materials are often discriminated into intentionally produced
ENMs and UFPs, the latter of which are incidentally gener-
ated.44 For a thorough exposure and toxicity assessment of
ENMs, the discrimination between both is required. The
understanding of the complex features of ENMs, evolving
with their increasing applications and different surface coat-
ings ranging from inorganic/organic layers over polymers to
specific biological molecules, is of utmost importance to
comprehend their life cycle and fate as well as to assess
specific responses observed in toxicological investigations.45

In the future, attention regarding a potential hazard should
also be focused on fibres46 since there are hints on the poten-
tial carcinogenic effects of some of these materials.47 Fibers
can be rigid, rod-like or more flexible bundle-like structures
and are usually described by their aspect ratio. Multi-walled
or single-walled carbon nanotubes (MWCNT/SWCNT) or
asbestos are examples of this morphology.48 Similarly, nano-
platelets exhibit a significantly increased aspect ratio.49,50

Besides their shape, ENMs exhibit further physico-chemical
properties which need to be characterized as they are thought
to determine the material-specific hazard. The relevant physi-
cal properties include size, specific surface area, agglomera-
tion or aggregation, surface morphology, crystal structure and
solubility in different media. The chemical properties on the
other hand comprise impurity profile, reactivity, surface
charge, zeta potential and particle stability.51,52 An overview
of ENMs and their properties with regard to risk assessment
is provided by Stefaniak et al.52

2.2. Routes of exposure

Considering the different routes of ENM exposure—dermal
contact, ingestion and inhalation—inhalation is regarded as
the main route of concern.53,54 In the following, we describe
three main areas as potential sources for inhalation exposure
of humans:

Workplace: Exposure to airborne ENMs is of most relevance
in the field of occupational health. The possible events
include production, handling and transport of ENMs, during
the development of nano-enabled products and also during
work processes with ENM-containing products. The examples
for activities with possible particle release are any handling of
powders, embedding materials into matrices, vacuum clean-
ing, wet milling, filtration, weighing of materials, etc.55

Knowing the process leading to ENM exposure is of high rele-
vance as it may drastically influence the exposure character-
istics. Kuhlbusch et al. give an overview about ENMs relevant
for work-related activities, which include, besides others,
carbon black (CB), CNTs, fullerenes, MWCNTs, silver (Ag),
silicon dioxide (SiO2) and metal oxides like TiO2, CeO2 or
aluminum oxide (Al2O3).

55
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Consumer products: A variety of consumer products are
also likely to produce respirable airborne ENMs in proximity
to the user. For exposure assessment, it is of high relevance
whether the ENMs are released as part of the intended use.
Exposure to airborne ENMs may occur through the use of
sprays and powders, mostly applied in cosmetics, cleaning or
care products.56–60 Nevertheless, different authors showed that
“nano”-labeled spray products do not necessarily contain
ENMs,56,57 while a release of nano-sized airborne particles
during application has been shown for others.56,61 The spray-
ing process itself was identified as the main factor determin-
ing the particle size. Propellant sprays produce significantly
smaller particles in comparison with pump sprays. This indi-
cates, on the one hand, that consumer products may produce
nano-sized airborne particles even though the liquid formu-
lation does not contain any ENMs. On the other hand, it
becomes evident that the specific application procedure of
each product determines the exposure scenario. Although
more studies on aerosol formation by consumer products are
currently being conducted,62 the market introduction of new
products and still inconclusive data call for further research.

Environment: The sources of ENMs in the environment are
ubiquitous and remain difficult to identify or even to quantify.
As recently reviewed by John et al., ENMs may be released into
the ambient air by similar processes as in occupational or
daily life scenarios.63 The release of ENMs may occur primarily
at phases downstream to the production, such as particle
recovery, spray drying or milling. Furthermore, leakage during
the production may introduce particles into the environ-
ment.63 ENMs may further be accidentally released into
ambient air during the handling and transport of particles.
Furthermore, emissions may occur during the application of
products containing or releasing ENMs, either by the intended
use itself or through abrasion by material degradation under
various ambient influences.64–66 TiO2, for example, may be
released from façade coatings, or during waste treatment such
as recycling, landfill disposal, or incineration.67

Further sources of airborne ENMs in the environment are
exhaust gas catalysts which are often produced with nano-
sized metal oxides such as CeO2.

68,69 Keller et al. estimated
that the release in ambient air represents less than 1.5% of the
total global ENM production, the smallest share of ambient
emissions compared to disposal in landfills or into water.70

Nevertheless, due to the particular risk of adverse effects due
to particle inhalation, the significance of this process should
not be underestimated.63 In ambient air, however, UFPs
arising from traffic and industrial emissions, domestic
heating, but also from the formation of precursor gases from
volcanic activities or vegetation still represent a considerable
amount of nano-sized particles.71–73 The overlapping size
range of ENMs and UFPs therefore complicates their character-
ization. ENM exposure is the least researched route with
respect to exposure measurements and assessment and still
poses a challenge due to its comparably low concentrations
and limited analytical methods. Thus, the discrimination
between ENMs and background particles which has to be

ensured for ENM exposure and toxicity testing still represents
an outstanding issue.55

2.3. Metrics for exposure assessment

A valid assessment of ENM toxicity requires an exposure
assessment and, in preparation thereof, the definition of the
most relevant exposure metrics to measure. As reviewed by
Tsai et al., particle mass was originally used for exposure
assessment in working places, and is currently primarily con-
sidered in the context of statutory regulations.74 The benefit of
this property is on the one hand its stability during the life
cycle, from release to uptake. On the other hand, all other
regulations on chemicals are also based on mass concen-
tration. Due to the ratio of size to mass, however, it is subject
to debate to what extent bulk mass concentration is applicable
for ENMs.54,75–77 Particle number and surface area were
suggested as more suitable indicators. These metrics, in con-
trast, may change during the life cycle, making the linkage
from release to exposure more difficult. For occupational
exposure assessments, advanced measurement strategies have
been established during the last 10 years, as proposed, e.g., by
the National Institute for Occupational Safety and Health
(NIOSH),78 the Organization for Economic Co-Operation and
Development (OECD),79 the International Organization for
Standardization (ISO)80 or Brouwer et al.81 The tiered
approaches suggest the gathering of information about a
specific ENM use or an exclusion of ENM release as the first
step. If ENM release is anticipated, an increased concentration
of the nano-sized material has to be ascertained and differen-
tiated from any background dust originating from the work
space or ambient environmental sources (step 2). The strat-
egies for a detailed background characterization have been
summarized by Kuhlbusch et al.55 and include the measure-
ment of time series (temporal approach), discrimination by
comparing a place representative for background concen-
tration with an ENM exposed area (spatial approach), compara-
tive studies with and without ENMs, and a size resolved chemi-
cal and/or morphological analysis.78,82–86 Once a significant
release has been recognized, the monitoring of further metrics
like particle number, particle size distribution, or surface area
concentration is proposed (step 3).79,87 Aerosol sampling for
chemical, morphological and gravimetric analysis comp-
lements the online obtained instrumental data. To date, no
clear evidence for a step change in hazardous properties relat-
ing to the nano dimension of a particle has been revealed.88–90

Therefore, the discussion about the relevance of other physico-
chemical parameters such as shape, surface reactivity, and
solubility as described above is still ongoing.

After identifying the valuable metrics for exposure assess-
ment, it is important to apply suitable measurement tech-
niques in order to gain the required information. As each
analytical technique has its limitations, different measuring
principles should be applied—if possible in combination—to
gain comprehensive insight into the characteristics of an
aerosol.55,91 For a thorough particle characterization, the
measurement of particle sizes, mass size distribution, number
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concentration and surface area concentration is required. In
order to retain particles for further characterization, a sample
of the aerosol should be retained. A listing of suitable instru-
ments for aerosol characterization is given by Maynard et al.91

and Plitzko et al.92

As the concentration and nature of aerosols can alter over
time and space,55,56,93 the ENM characteristics in terms of
size, shape, composition or solubility may differ. Therefore,
the characterization of the aerosol fate is an essential prerequi-
site for exposure and toxicological assessment.94 The site of
ENM exposure remains a critical issue. The latest develop-
ments have therefore moved towards the application of per-
sonal monitors to monitor and assess the aerosol a worker is
actually being exposed to.91,95,96

Since workers are more likely to be exposed to ENMs com-
pared to consumers, more effort has been directed to the
exposure assessment in occupational environments.
Nevertheless, there are several studies that have determined
the exposure to ENMs from consumer products such as
sprays.57–59,61,97,98 An approach suitable to evaluate toxicity has
to consider specific release scenarios and the life cycle of
ENMs for a realistic exposure assessment. For a further investi-
gation of ENM exposure in daily life scenarios, it might be
reasonable to adopt testing approaches that are already estab-
lished for workplace monitoring.97

2.4. Exposure conditions for toxicity testing

For the evaluation of ENM toxicity, the application of a realistic
dose is crucial.21 The results on the adverse effects of ENMs
were obtained in a number of studies at unrealistic high
doses.77,99–102 Furthermore, toxicological studies on ENMs
should be performed with nano-sized particles in order to
investigate a potential size-related effect. In most situations,
ENMs will rapidly form aggregates and agglomerates.94,103

Thus, depending on the type of exposure scenario, e.g., local
or temporal variation, exposure to larger agglomerates, as, for
example, achieved by dry particle dispersion, might provide
more realistic results.104 Additionally, the agglomeration be-
havior is strongly influenced by the environment in which a
particle is released.105 As a consequence thereof, the toxico-
logical properties of a material might be influenced by the
respective medium, e.g., workplace or wet room air. The aggre-
gates and agglomerates of ENMs are not necessarily stable in
case a change of the external environment occurs. Such a
change may trigger disaggregation or de-agglomeration of par-
ticles, leading to an altered material deposition in the respirat-
ory tract. Therefore, the specific environmental conditions
have to be considered for exposure and toxicity assessments.
Generally, the employed aerosolization techniques, such as
brush dust feeding, spark discharge, or nebulization systems,
produce aerosols exhibiting different characteristics, such as
agglomeration state or liquid constituents. In addition, the
kind of aerosol generation impacts on particle size and
characteristics as discussed elsewhere.106 A large number of
studies exist describing the use of aerosol generators fitting for
the respective study design which depends on the desired

ENM size, their state of mono-/polydispersity or degree of
humidity.107–109 When generators are not able to produce the
desired aerosol characteristics, combined methods have to be
used, e.g., the addition of a differential mobility analyzer to
obtain a monodispersed aerosol.109 The generating mecha-
nisms typically used are nebulization, atomization, electro-
spraying, and brush dust feeding.59,107–112 Aerosol generation
from nanofibers and nanotubes may require particular con-
sideration. More detailed information on fiber generation has
been reported by Oberdörster et al.111 and Polk et al.112

For the investigation of ENM fate, the influence of other
substances on material alteration needs to be considered. This
aspect is necessary for assessing their potential effects as
human exposure to ENMs hardly occurs without alteration by
any chemical substance and might lead to significantly
changed characteristics. Substances causing ENM modifi-
cation may originate either from the products they are used in,
e.g., as sprays, or from reactions in the atmosphere. The evap-
oration of the droplets with suspended ENMs during the use
of “nano” sprays, for example, is often a rapid process depend-
ing on the droplet composition. It has been suggested that
evaporation can lead to agglomeration of the ENMs within the
droplet, forming larger particles with a different physical and
physiological behavior.59 This may also cause other constitu-
ents to dry on the particles’ surface. This carrier mechanism,
also called “Trojan Horse” mechanism,113,114 may carry sub-
stances via ENMs into compartments that are not reached in
the absence of these materials. It is therefore important to
understand the interplay of particulates and dissolved sub-
stances in droplets of liquid aerosol clouds in order to assess
potential risks to humans.

It can be summarized that the characteristics and exposure
conditions for ENMs have a major influence on their toxico-
logical behavior. Therefore, a thorough characterization of the
exposure atmosphere is required to allow conclusions on poss-
ible toxicological effects.

3. NM grouping

As the use of NM grows and the variety of their modifications
increases even more, complete testing of each and every indi-
vidual NM regarding possible hazards would be an enormous
and almost unending endeavor. For chemicals, in order to
facilitate and economize risk assessment – in addition to redu-
cing unnecessary testing – the grouping of substances is
already a well-established procedure.115,116 Due to their more
complex characteristics, such grouping is still under discus-
sion for NMs. For them – in contrast to chemicals – more
diverse compositions occur, exhibiting various size distri-
butions, shapes, agglomeration/aggregation states or surface
modifications. In addition, these characteristics can change
over time while a NM ages or is exposed to different environ-
ments which may, for example, influence the ENM surface. To
nevertheless apply a classification system to NMs, several con-
cepts have been suggested. These are, for example, based on
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the NM’s morphology (e.g., size and shape), its chemical com-
position (e.g., metal and metal oxides), its biokinetics and per-
sistency (e.g., solubility, uptake, and fate), its modes of action,
i.e., the observable, secondary effects (e.g., frustrated phagocy-
tosis) or its underlying mechanism (e.g., toxic release and
Trojan Horse effect), or its source-to-adverse-outcome-pathway
(SAOP).117–119 So far no decisive strategy has been established
as no NM characteristic has been identified as the sole cause
for the observed toxicological effects. Instead, these
approaches overlap reflecting the connection of the physico-
chemical properties or the toxicological effects, as the NM
solubility and persistence, for instance, are inevitably related
to their chemical composition but also to any surface modifi-
cation. This interdependency adds to the complexity of identi-
fying and categorizing the NM characteristics which are
already impeded by the NM diversity and their aging pro-
cesses. Therefore, grouping strategies using tiered approaches
and the separation of the NM characteristics into intrinsic,
system-dependent, and composition-related properties are
suggested.120,121 The assessment and mapping of NMs accord-
ing to these factors in combination with computational ana-
lysis, i.e., principal component analysis (PCA), may eventually
be able to help select categories and sort the NMs.122

Looking at the toxic effect of a NM, generally four groups of
underlying mechanisms can be seen which are also reflected
in the aforementioned grouping approach criteria and caused
by (a) the contact with the NM and are determined by its physi-
cal properties (e.g., shape, volume and surface), (b) the dis-
solution behavior, i.e., the release of toxic chemicals of the
NM, (c) the carrier mechanism, i.e., the transportation of toxic
substances adsorbed on the NM’s surface into otherwise in-
accessible regions and (d) the biological/toxic effect of the NM
itself or its coating. Additionally, NMs can exhibit several of
these effects in combination. In order to develop risk assess-
ment that is capable of handling the immense amount of NMs
– including their various modifications – the link between
mode of action, underlying mechanism, and physico-chemical
characteristics has to be elucidated. As inhalation is a likely
exposure route in the day-to-day routine, focus should be put
on airborne NM and especially ENM utilized in consumer pro-
ducts, e.g., in sprays or powders. To limit the scope of this
work, we therefore mainly focus on airborne/inhaled ENMs
and provide an overview of ENM characteristics and the related
toxicity.

4. Influence of particle
characteristics on toxicity and
toxicokinetics of inhaled nanomaterial

The elucidation of particle biokinetics following inhalation is
pivotal in order to understand NP toxicity.123 For airborne
ENMs and particulate matter in general the human respiratory
system with its large surface area and relatively thin air–blood
barrier represents a potent entry into the body and secondary

organs via the blood circulation. As daily exposure to airborne
particles has occurred since the early days of human evolution,
protection and clearance mechanisms against such substances
have evolved in the different parts of the respiratory system.124

Depending on the ENM characteristics these defenses are
more or less effective and the deposition, uptake and fate of
the inhaled material can be influenced.

4.1. Influence of size and shape on ENM deposition and
clearance

Besides, of course, the anatomic structure of the specific res-
piratory system, the aerodynamic properties, e.g., mass, aerody-
namic diameter, and shape, are the main factors determining
the mechanisms for the deposition of inhaled NMs (see
Fig. 1).125–127 The elucidation of these mechanisms and the
related NM characteristics is therefore essential to understand
and possibly forecast the deposition of NMs and derive poten-
tial risks.

The influence of these physical properties as primary
characteristics is evident by following the human respiratory
pathway from the nasopharynx via the tracheobronchial
regions into the deeper lungs. First of all, material with main
aerodynamic diameters between 5 and 10 µm is deposited via
the mechanism of impaction in the nasopharyngeal region,
comprising the nose, mouth, pharynx, larynx, and olfactory
bulb.128–132 Impaction, which to a lesser extent also occurs in
the subsequent regions, affects these NMs as they are incap-
able of following the airstream within the airway – due to
their inertia – and collide with the walls.129,133 ENMs that are
able to pass the nasopharynx traverse the tracheobronchial
region with its increasing number of branches and finally
reach into the bronchioles. Here, primarily ENMs with aero-
dynamic diameters between 1 to 5 µm are deposited by sedi-
mentation processes which generally affect particles in more

Fig. 1 Schematic view of the human respiratory system and depiction
of the mechanism involved in the inhalation, deposition and clearance
of airborne ENMs.
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horizontal, narrower segments with lower airflow velocities by
gravitational pull.129–131,134 Smaller ENMs will be carried
further and ENMs with diameters between 10 and 20 nm will
eventually be deposited in the alveoli via a diffusion mecha-
nism caused by minimal gas flow, Brownian motion, and col-
lisions with air molecules. Considering non-spherical ENMs,
the deposition also depends on their shape. ENMs with at
least one elongated dimension, so-called high aspect ratio
nanoparticles (HARNs), will – depending on the airway –

collide with the airway walls in an interception mechanism
despite being theoretically small enough to remain airborne.
In conclusion, their physical properties, especially aero-
dynamic diameter and aspect ratio, influence the ENMs’
ability to penetrate further into the respiratory system and
thereby render them possible to deploy any toxic potential
there. The place of deposition and therefore their physical
characteristics can also influence any subsequent ENM clear-
ance. This includes nose-blowing or – if the ENMs were de-
posited further in the respiratory system – transport towards
the nasopharynx and subsequent swallowing or expectorat-
ing. This transport from trachea, bronchi or bronchioles – the
mucociliary escalator – is based on the respiratory epithelium
and its lining fluid produced by its goblet cells.135 The de-
posited material is adsorbed and transported by the beating
of its ciliated cells to the pharynx. The speed of the transport
varies depending on the physiological conditions and activity,
and is fastest in the upper respiratory system. Depending on
the place and deposited material, the clearance from the
nasopharynx alone, for instance, can result in clearance half-
times from tens of minutes to several hours.132,136

4.2. Influence on macrophagic phagocytosis and overload

As no ciliated cells – and therefore no mucociliary escalator –
are present in the alveolar region, the deposited ENMs may
only be removed by solubilization or macrophagic phagocyto-
sis.137,138 In the latter case the macrophages may in turn be
mobilized and subsequently cleared which again depends on
the ENM properties. The macrophagic phagocytosis which
comprises the stages of particle recognition, attachment, and
phagocytic uptake139 was found to be influenced by the ENM
size, their morphology, their dimensions and their agglom-
eration state.45,140 The observed size dependency was con-
nected to the first stage, the particle recognition stage.
Particle size and agglomeration state dependency was
observed in in vitro as well as in vivo studies but no definite
conclusion could be drawn yet. While Stearns et al. found a
time-dependent internalization of ultrafine, almost exclu-
sively agglomerated TiO2 NPs (50 nm) into A549 cells,141

Geiser et al. reported only low levels of phagocytosed, mostly
non-agglomerated TiO2 NPs (20 nm) after inhalation by
rats.142 The reasons for this may be the differences in the
models studied, i.e., in vivo vs. in vitro. Besides size and
agglomeration, the ENM surface is also a factor to influence
the steps of phagocytosis. Therefore, changes, such as any
coating or any corona surrounding the ENM, impact any sub-
sequent cellular reaction. The formation of a protein corona,

for instance, represents an important post-manufacturing
change to ENMs which is related to the inhalative process
and can increase macrophagic phagocytosis.143 Further
investigations of the protein corona formation during inhala-
tion showed that although a large total quantity of proteins is
bound, most of them can only be found in low numbers.144

This can lead to an enrichment of low abundant proteins and
may equalize the influence of other ENM features on their
cellular uptake. This is of special importance regarding the
applicability of intratracheal instillation tests.145

Certain conditions, occurring above a certain particle load,
can reduce mobility and macrophage-related clearance as was
first reported by Morrow in 1988.146 Under these conditions,
an impairment of mucociliary clearance causes particle
accumulation in the lungs linked to elevated particle distri-
bution to lung-associated lymph nodes. Several studies with
regard to clearance under these so-called overload conditions
in humans were conducted and resulted in retention half-
times between around 100 and over 700 days.147–149 In animal
experiments, retention half-times up to 240 days after long-
term exposure under overload conditions were reported for
rats.150 In addition to impaired clearance, secondary effects
such as inflammation, fibrosis and cancer may be induced.17

Initially, volume- or mass-/concentration-based approaches
including various thresholds were suggested and were, for
instance, based on the hypothesis that macrophage mobility
is largely impaired above 6% and completely stopped at
more than 60% of the volumetric particle load for the rat
lung.146 In opposition to these, the total particle surface area
was suggested as an appropriate metric for the measurement
of overload conditions by others.151,152 In this approach, a
threshold of 0.02–0.03 m2 nanoparticle surface area per gram
lung is assumed based on the relation between polymorpho-
nuclear cells (PMNs) and lung burden.152 In addition to par-
ticle volume or surface area, a small particle diameter seems
to facilitate lung overload. The retention half-life of 500 days
for 20 nm TiO2 NM in the lungs was found to be significantly
higher compared to that of 250 nm TiO2 NM, having a reten-
tion half-time of 170 days.153 Furthermore, there was stronger
inflammation observed with the small particles in contrast to
the larger ones. Studies on other nano-GBPs such as carbon
black, TiO2, polystyrenes, cobalt (Co), and nickel (Ni) are in
support of this.154 Overload conditions may also influence the
clearance of other contaminants like microorganisms and
different studies indicate that in situations in which the alveo-
lar macrophages are already loaded with UFPs or ambient par-
ticles, the clearance and killing of microorganisms, e.g.,
Streptococcus pneumoniae, is impaired.155–157 A reduced intern-
alization probably caused by increased oxidative stress is
assumed to be the reason. The NM shape was also observed to
strongly impact the phagocytic clearance. When a particle
cannot be successfully engulfed by macrophages, for example,
HARNs, any further clearance step is hindered. Furthermore,
this inability to encapsulate these particles can lead to an
increased toxicity via frustrated phagocytosis as explained
later.
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4.3. Translocation from the pulmonary region into secondary
organs and subsequent effects

If not being cleared, ENMs can cross the pulmonary barrier,
reach the blood stream and therefore be translocated into sec-
ondary organs.7,158 This again can depend on their particle
size, surface area, or surface charge, as was recently, for
instance, shown for gold (Au) ENM.159 Furthermore, the reten-
tion in secondary organs was also found to change and
different results depending on the method of ENM adminis-
tration, e.g., intratracheal instillation or intravenous injection,
indicate an effect of differences in protein corona formation.
Secondary organs such as the liver, kidney, brain, or cardio-
vascular system may subsequently suffer over time. Adverse
effects as a result of such NP translocation and respective
retention have been associated with, for instance, several neuro-
degenerative pathologies like Alzheimer’s and Parkinson’s
disease, or simply with physiological aging.160 On the other
hand, ENM clearance via the mucociliary escalator as well as
ingestion by grooming in animal testing leads to material
translocation to the nasopharyngeal region and enabled sub-
sequent swallowing.161

4.4. Differences in nanomaterial solubility and impact on
their fate and toxicity

As mentioned before, nano-sized materials can generally be
divided into soluble and poorly soluble. And although solubi-
lity as a property of the inhaled, deposited ENMs was not dis-
cussed so far, it has to be taken into account when their fate
and toxicity are assessed.

In the case of airborne ENMs, any dissolution after inhala-
tion and deposition in the respiratory tract naturally affects
the ENM persistence and subsequent fate in the organ and
entire organism.162 Besides the aforementioned mucociliary
clearance and following excretion, the dissolution of the de-
posited ENMs therefore contributes to clearance from the res-
piratory tract. Dissolved material can access the blood stream
and eventually the body.163 Depending on the solubility, the
International Commission on Radiological Protection (ICRP)
proposed three different classes to categorize particulate
matter which differ by their pulmonary clearance in humans:
soluble material exhibits a retention half-time of less than 10
days, partly soluble matter has a retention half-time between
10 to 100 days and poorly soluble material has retention
times over 100 days.164 The European Center for
Ecotoxicology and Toxicology of Chemicals (ECETOC) pro-
posed a dissolution half-time in artificial lung fluids slower
than any macrophage-mediated clearance as the definition
for poorly soluble particles (PSPs) in the respiratory
tract.162,165–169

Besides clearance and fate, the dissolution also impacts the
toxicity and several elements used in ENMs are known to be
toxic in ionic form, e.g., Ag, zinc (Zn), or copper (Cu).
Dissolution can therefore also induce toxicity based on the
release of the ionic, toxic constituents as shown for various
ENMs. The effects of indium (In) containing ENMs, for

instance, which are commonly used in microelectronics and
are associated with increased In body fluid levels as well as the
development of interstitial lung diseases in workers,170 were
elucidated by Gwinn et al.171 The underlying mechanism
based on phagocytosis and subsequent dissolution in the
macrophage media was identified by inhibition of either the
internalization or the phagolysosomal acidification. Reduced
toxicity in both cases could be related to the blocking of
phagocytosis in the former experiment, while ENM uptake still
took place in the latter and decreases in toxicity could thus be
attributed to an inhibited dissolution. For zinc oxide (ZnO)
nanowires, a macrophage-mediated dissolution after phago-
cytosis was also found and resulted in toxicity similar to that
of ionic zinc.172 The cause of the ZnO nanowire toxicity was
therefore concluded to be related to this pH-dependent dis-
solution rather than their high aspect ratio. Such intracellular
ion release after ENM internalization and induction of cyto-
toxicity and oxidative stress was also proved for normally low-
soluble Co-containing particles in BEAS-2B cells.173 It was
demonstrated that a much higher total cobalt amount was
found after treatment with particular Co3O4 than with soluble
CoCl2, the toxicity indicating a more rapid internalization for
the ENM. Additionally, based on similar quarter maximal
inhibitory concentrations (IC25) observed in both cases, the
toxic effects are suggested to be dominantly related to intra-
cellular dissolution. Despite being insoluble in the physiologi-
cal pH environment, these nano-sized materials can therefore,
after being dissolved in macrophages, still induce toxicity or
reach the blood stream. These observations, i.e., a potential
stronger endocytic ENM uptake in combination with toxic
effects after intracellular solubilization, also underline again
that the nano-sized character may affect the toxicity without
directly causing it.

Dissolution as well as its speed are generally influenced by
a variety of factors which are related either to the ENM charac-
teristics (e.g., size, chemical composition, and surface chem-
istry) or – as seen in the aforementioned examples – to the pro-
perties of the respective location (e.g., solvent and pH).174

While a theoretical connection between ENM size and dis-
solution generally applies, the process of dissolution is
complex.

Regarding the impact of ENM properties, the aforemen-
tioned size-dependent dissolution was, for instance, investi-
gated for Ag ENM for epithelial and macrophage cells, and
increased dissolution as well as subsequent toxicity were
reported for smaller ENMs.175 Additionally, the surface coating
was also scrutinized and a reduced dissolution for polyvinyl-
pyrrolidone (PVP)-coated NMs was seen compared to citrate-
coated Ag ENMs. Further ENM-related aspects like morphology
and curvature, agglomeration state or surface modification by
adsorbed species or ENM coatings can affect the ENM simul-
taneously and have opposing effects. Due to all influencing
factors, predictions are hard to make but the following trends
can generally be seen as long as only one aspect is examined at
a time.176 Dissolution of smaller ENMs is faster. Positively
curved (convex) structures exhibit a higher solubility than
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negatively curved (concave) ones, which is connected to the
ENM morphology and their surface porosity. A higher degree
of aggregation results in lower solubility. These observations
are based on aspects like diffusion layer and surface area as
well as thermodynamic properties. Furthermore, adsorbed
molecules on the surface can function as a hindrance or pro-
moter of dissolution. This last feature illustrates that EMN
characteristics and the properties of the site in question are
highly connected, as the adsorbed species depend on the
environment and the pathway the ENM traversed. The for-
mation of a protein corona is a good example as it – by itself –
depends on the ENM characteristics, especially several surface-
related properties, e.g., surface charge, curvature or chemical
surface modification, but is also influenced by the proteins
present at the site of exposure.177 Then again, it influences the
subsequent ENM behavior and can, for instance, change the
following cellular uptake, dissolution and eventual toxicity.
This linkage and its complex impact on any resulting toxicity
for inhaled ENMs were recently again demonstrated for ZnO
nanowires. Their interaction with human epithelial cells has
been investigated with regard to an adsorbed, natural pulmon-
ary surfactant.178,179 Although a higher ENM internalization
into the cells was observed for nanowires that had adsorbed
the surfactant, a reduced dissolution speed was found.
Although an initial toxic response was therefore decreased due
to this reduction, the elevated uptake eventually led to an
overall increased toxicity.

As mentioned before, the site of dissolution and the related
environment the ENM passed before are reflected in the para-
meters that also affect the ENM dissolution, and any sub-
sequent fate as well as toxicity. These parameters, e.g., solvent,
pH, possible adsorptions on the surface, and already existing
constituent concentration, vary between species, organs and
cells.163,180,181 For instance, varying macrophage-mediated dis-
solution rates for different species were found in a comparison
between humans and canines for cobalt oxide (Co3O4) par-
ticles,182 but similar capacities were found in humans and
rabbits with regard to manganese oxide (Mn2O3).

183 For In-
containing ENMs, a difference between cell types could also be
observed as only macrophages, but not epithelial cells, exhibi-
ted more efficient dissolution and strong toxicity after ENM
internalization.171 For Ag ENMs, the analysis even revealed
different dissolution rates and toxicities between cell lines of
the same cell type, e.g., epithelial cells.184 In the case of the
aforementioned corona formation, a relation to the exposure
route is evident. Any already dissolved ENM material, on the
other hand, is connected to the cell’s history, Similarly, other
intracellular conditions, such as pH, are related to its current
status.

The complexity of the dissolution behavior which depends
on a variety of ENM-related characteristics and conditions
based on the environment and dissolution site is schemati-
cally shown in Fig. 2. The fact that some ENM characteristics
can have an impact on the clearance and fate, while in turn
being influenced by the ambient cell, underscores the need for
detailed investigation.

4.5. Species extrapolation

Besides being impacted by the NM characteristics, deposition
as well as any following clearance are also influenced by the
respective organism. This is evident in their unlike anatomy,
which results in differences between animals, e.g., rats and
mice, and humans, for instance, regarding the airflows in the
nasopharyngeal region or in the respiratory system. For this
reason, findings such as the translocation into the olfactory
bulb reported for ZnO-NPs in rats,185 or brain damage
observed in canines due to the translocation of UFPs via the
olfactory bulb186,187 need to be cautiously considered with
respect to any human toxicological risk assessment.
Furthermore, in a comparative inhalation study between rats,
mice, and hamsters by Bermudez et al., species-specific dis-
tinctions were also found regarding the clearance under over-
load conditions.188 They observed a more effective clearance
for hamsters and a more severe toxicological impact on rats.
Sayers et al. also recently investigated the different depositions
of micro- and nano-sized C60 particles after 13 weeks of inhala-
tion by rats and mice with identical concentrations.189 While
similar retention half-times were observed for both C60 particle
sizes in mice, in rats the nanomaterial resulted in slower clear-
ance kinetics compared to the micro-sized material. Generally,
these differences between species regarding anatomy, clear-
ance, and any resulting response and toxicity, reported
elsewhere,190–194 have to be considered for toxicological
studies. This underscores the importance of the appropriate
tests and questions if, for instance, overload conditions –

observed for rodents – are equally applicable to humans.165,195

In particular, rats seem to be more susceptible to NP exposure
in terms of inflammatory responses and tumor formation.196

This discussion of whether or not interspecies comparison is

Fig. 2 Parameters influencing NM dissolution, which are related to the
ENM characteristics (right side) or related to the conditions of the
system.
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applicable for inhalation toxicity is ongoing197 and bioassays
as well as mathematical models try to overcome the difficulties
to allow interspecies extrapolation.198,199 Therefore, the appli-
cation of the appropriate test system is pivotal to correlate the
data with human exposure and risk assessment, and recent
advances in the development of such systems will be presented
later on.

4.6. Toxicity/modes of action

As indicated by the highlighted linkages between ENM charac-
teristics and their behavior, the toxicity of ENMs is not only
connected to their nano-sized property but instead affected by
a variety of characteristics. These can, as was stated before, be
categorized into intrinsic, system-dependent and composition-
related properties. Related to their route of exposure, dis-
solution, clearance, and possible translocation, nano-sized
materials can cause local as well as systemic toxicity, and epi-
demiological studies have, for instance, linked environmental
UFPs to increased mortality.200,201 As mentioned before, dosi-
metric considerations of NMs changed from the classical view
of bulk mass or concentration to, for instance, surface area as
the metric. Due to the observation that the mass dose is only a
surrogate for the part of a particle dose that actually induces
toxicity, the term biologically effective dose (BED) was adopted
for nanotoxicology.162 The term was originally established in
radiobiology202 and in nanotoxicology refers to that toxicologi-
cally active fraction of the retained dose that really induces an
adverse effect. This shift puts the focus on the respective indi-
vidual NM characteristics as the cause for the observed toxico-
logical effects, e.g., the long, biopersistent fibers within the
overall inhaled asbestos. The understanding of the underlying
mechanisms enables a better risk assessment and can allow
the development of optimized, less toxic ENMs, i.e., safer by
design. The addition of polystyrene coatings to CNTs, for
instance, was shown to be able to reduce their toxicity while
keeping the structure intact.203 But the elucidation of the coat-
ings and their diverse effects is still ongoing as was observed
for the coating of CBNPs with benzo[a]pyrene, 9-nitroanthra-
cene, or other polycyclic aromatic hydrocarbons (PAHs).204

While the first two lowered the ROS release in various cell
lines, likely due to the reduced surface area, the last one led to
an increased toxicity via apoptosis. Together, this indicates
that the biological effect of these coated CBNPs is connected
to the interplay of the surface area reduction and the toxicity
induced by the coating itself. This complexity of the ENM pro-
perties and their relation to a toxic response illustrates that
appropriate test systems are required which do not only
address the “nano”-size characteristics.

Therefore, the different modes of action and mechanisms
for NM toxicology have to be analyzed and assessed. The com-
plexity of this task is further increased when looking at oxi-
dative stress, for example. Its formation in response to ENM
treatment has been observed for a variety of nano-sized
materials205,206 and is regarded as the imbalance between the
incidence of the so-called reactive oxidative species (ROS) and
their depletion by antioxidant processes and reagents. ROS are

always present under physiological conditions and normally
well regulated in cells. While different reactions are respon-
sible for causing such imbalances, their mechanisms can be
categorized into (I) an increased formation of ROS directly due
to the NM introduced into the cell, (II) a more indirect way by
affecting the mitochondria which are involved in cellular res-
piration, or (III) quenching of cellular antioxidants.207 This
abnormal increase of ROS after NM internalization is con-
sidered to be the primary nanotoxicological process leading to
increased oxidative stress and responsible for various second-
ary pathophysiological effects.208 The importance of oxidative
stress also becomes evident in the possible generation of DNA
damage accompanying an inflammatory reaction triggered by
inhaled ENM.209,210 One example is the aforementioned, so-
called frustrated phagocytosis, i.e., the impaired clearance of
HARNs from the alveolar region by macrophagic phagocytosis.
As these elongated NMs cannot be completely internalized and
processed by the macrophages and their phagolysosomal
agents, an increased production and release of toxic agents
into the environment ensues. This release from affected
macrophages includes ROS which in turn can induce an elev-
ated inflammatory reaction in the affected area. This effect is
not only governed by the length of the NM and the respective
organism’s capacity but also influenced by their specific mor-
phological properties. For instance, while MWCNTs generally
can also induce frustrated phagocytosis,48 curled MWCNTs
were shown to be rather cleared instead.211 On the other hand,
NM-mediated toxicological effects are often associated with
genotoxicity, either directly or indirectly. Direct genotoxicity
may occur when ENMs penetrate into the cell nucleus and
directly interact with DNA or cellular proteins that are involved
in chromosome segregation. And while, for instance, some
TiO2 NMs are able to induce genotoxicity, inconsistencies
between various studies of aquatic organisms illustrate the
complexity of the effect and the assessment itself.212 Indirect
genotoxicity, on the other hand, may occur when the ENM in
question causes imbalances of the cell’s oxidative state, for
instance, by depletion of cellular antioxidants,213,214 which
again can cause DNA damage.215

5. Test systems for nanomaterial
inhalation

As stated before, numerous ENM and ENM modifications
need to be assessed and—even considering the aforemen-
tioned grouping approaches—the required amount of tests
necessitates the use of new and alternative test systems.
Besides the use of test animals for the investigation of toxico-
logical effects and elucidation of the respective ENM character-
istics, the development of novel in vitro models has therefore
become an important endeavor in toxicology research in
recent years.

Besides the choice of test animal, it is – as discussed before
– crucial to develop an in vitro system which is able to mimic
the complex in vivo situation as closely as possible by consider-

Toxicology Research Review

This journal is © The Royal Society of Chemistry 2018 Toxicol. Res., 2018, 7, 321–346 | 329

Pu
bl

is
he

d 
on

 0
1 

Fe
br

ua
ry

 2
01

8.
 D

ow
nl

oa
de

d 
by

 R
SC

 I
nt

er
na

l o
n 

21
/0

5/
20

18
 1

1:
45

:0
4.

 
View Article Online

http://dx.doi.org/10.1039/c7tx00242d


ing the different mechanisms affecting nanotoxicity. This chal-
lenge becomes very difficult as even cells from the same origin
can respond differently.216–218 This is also known for coculture
systems219 as well as for 3D cell models.218 The next part of
this review summarizes the different cellular systems available
and their application in the toxicological assessment of ENMs.

Although in vitro and in silico tests are nowadays commonly
used for toxicity testing, animal experiments are still the main-
stay for studying chemicals as well as inhalable ENMs.220 A
variety of technical guidelines (TGs) for such studies have been
developed by the OECD, for instance, TG 412,221 TG 413,222 or
TG 453.223 While TG 412 addresses subacute inhalation toxi-
city, TG 413 gives recommendations about chronic and long-
term toxicity testing. TG 453 combines chronic studies with
carcinogenicity studies. All TGs recommend rats as the test
animal of choice with an exposure time of 6 hours per day at
5 days per week. This is suggested for three or more different
doses and one negative control group. The exposure duration
amounts to 28 days and 90 days as recommended in TG 412
and TG 413, respectively, and 12–24 months in TG 453,
depending on whether the chronic design is applied solely or
in combination with the carcinogenicity study design. The
assessment of particle translocation, particle biokinetics and
particle organ burden based on TG 412 was already conducted
in many projects addressing regulatory concerns.26,224–226 TG
413 and TG 453 have so far been applied to the long-term toxi-
city assessment of TiO2.

227

Besides the inhalation studies following these OECD TGs,
in vivo studies have also been conducted by intratracheal instil-
lation.220,226 Compared to inhalation, intratracheal instillation
is cheaper and easier to use and allows for a more controlled
application. In contrast to inhalation, where the test substance
is administered as an aerosol or vapor via the nose, mouth, or
nose and mouth, for intratracheal instillation, a bolus injec-
tion is given directly into the lungs.225 Since the local dose,
administration and possible system-dependent alterations
resemble actual life situations more accurately, inhalation is
the preferred exposure route for the toxicity testing of respir-
able substances. To address animal welfare and high costs of
animal experiments, the quest for novel in vitro methods
emerged. These shall be based on the 3R principles from
Russell and Burch which stressed the replacement, reduction
and refinement of animal testing.228,229

5.1. Exposure methods

Besides the right choice of the respective cell model, depend-
ing on the question to be answered, the type of ENM appli-
cation has been the subject of discussion during the last few
years. Standard in vitro toxicity studies were carried out under
submerse culture conditions where the particles were dis-
persed and subsequently apically applied on the cells.219 As
these conditions do not reflect the real inhalation process
where particles are airborne and not dispersed in a medium,
different particle exposure methods were designed. Hence,
studies now often use ALI systems230–232 which allow the cells’
exposure to ENM-containing aerosols.233 In addition, to enable

the assessment of the effects of airborne ENMs, ALI systems
offer other advantages, like more realistic inhalation con-
ditions or a reduced change of particle characteristics which
lead to an exposure system closely mimicking the in vivo situ-
ation.233 Thus, different ALI systems have been introduced in
the last few years, the Vitrocell and the Cultex system being the
primarily applied ones.232,234–236 Because particle deposition
in both systems is based on sedimentation and gravitation,237

the deposited particle mass is relatively low.218 To overcome
this, Lenz et al. developed the so-called ALI cell exposure
(ALICE) system which allows particle deposition rates greater
than 50%.237 In addition, exposure systems using electrostatic
particle deposition238,239 or thermophoretic forces240 were
designed to increase the deposition rate or to improve particle
deposition on cells, respectively.

5.2. Single cell line in vitro models

As nano-sized materials are deposited in the bronchial and pri-
marily the alveolar regions of the lungs,131 research and devel-
opment into novel in vitro models focused on cell lines from
different origins, all of them exhibiting advantages and disad-
vantages (see Table 1). One of the most commonly used cell
lines for toxicological investigations of inhalable ENMs is the
A549 cell line which was derived from a human lung
adenocarcinoma.230,233,241–243 A549 cells were used by
Demokritou et al. to study, for example, the toxicological
effects of CeO2 ENMs on cell lines and on animals and it was
found that CeO2 does not cause cytotoxicity in vitro, but in vivo
cytotoxicity was clearly observed.244 Other researchers, such as
Mülhopt et al., used this cell line and found a particle concen-
tration-dependent lactate dehydrogenase (LDH) release after
wood stove exhaust exposure which indicates a particle-related
cytotoxicity on A549 cells.233 Furthermore, Oeder et al. con-
ducted a metabolomics and transcriptomics study where
increased oxidative stress and proinflammatory signaling in
A549 cells were observed after exposure to heavy fuel oil, while
adverse effects in protein biosynthesis, cellular stress, cell
adhesion, and cell junction were observed with diesel fuel.245

Although A549 cells represent a human alveolar model, justify-
ing the widespread use, they have the disadvantages of being
of carcinogenic character and not forming tight junc-
tions,243,246 which sets them apart from true-to-life situations.

To overcome this drawback, the later developed BEAS-2B
cell line was derived from a non-tumorigenic, immortalized
human bronchial epithelia cell line by Reddel et al. in 1988,
using an adenovirus 12-SV40 hybrid virus.247 The functionality
of its tight junctions was then investigated by Noah et al.248

As they closely resemble an actual human lung, BEAS-2B
cells were used in many studies to examine the cellular effects
of different particles at the air–liquid interface (ALI) as well as
under submerse exposure conditions.233,249–251 Recent appli-
cation fields for BEAS-2B cells cover investigations regarding
the toxicity of e-cigarettes and environmental particulate
matter. Oeder et al. showed with their metabolomics and tran-
scriptomics study that diesel fuel and heavy fuel oil can
change many cellular processes like protein biosynthesis,
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Table 1 Studies regarding the development and application of different cell lines (top), of cocultures (center) and of different 3D models (bottom)a

Cell lines/
coculture/3D
model Origin Characteristics Nano-sized material Exposure Tested method/end points Ref.

A549 Human lung
adenocarcinoma

No tight junctions,219

carcinogenic, model
for type II243

CeO2; SiO2-coated
CeO2

Submerse Cytotoxicity 244

CeO2 Submerse TEER, cytotoxicity, inflammation,
genotoxicity, oxidative stress

249

CeO2 ALI Cytotoxicity, inflammation,
genotoxicity, oxidative stress,
gene expression

218

TiO2, CeO2 Submerse
ALI

Cytotoxicity, inflammation,
genotoxicity, oxidative stress

219

Fluorescein sodium ALI Cytotoxicity 233
Heavy fuel oil and
diesel fuel exhaust

ALI Proteomics, metabolomics 255

CuO ALI Cytotoxicity, inflammation 216
CeO2 ALI TEER, cytotoxicity, genotoxicity 256

BEAS-2B Human bronchial
epithelium

Tight junctions, non-
carcinogenic

CeO2 ALI Cytotoxicity, inflammation,
genotoxicity, oxidative stress,
gene expression

218

CeO2 Submerse TEER, cytotoxicity inflammation,
genotoxicity, oxidative stress

249

Heavy fuel oil and
diesel fuel exhaust

ALI Transcriptomics 255

CeO2 Submerse Cytotoxicity, inflammation, gene
expression

257

ZnO-NMs Submerse Cytotoxicity 251
Cigarette and
e-cigarette smoke

ALI Genotoxicity 232

16HBE14o- Human bronchial
epithelium

Cilia,258 tight
junctions259

TiO2-NMs Submerse Inflammation, oxidative 241
TiO2, Ag, SiO2 Submerse Cytotoxicity, inflammation, TEER 254

Calu-3 Human bronchial
adenocarcinoma

Tight junctions,
microvilli,
carcinogenic

(SiO2-coated) CeO2,
(SiO2-coated) ZnO

Submerse Cytotoxicity, TEER,
immunofluorescence staining

253

SWCNT, MWCNT Submerse Cytotoxicity, TEER 252
clarithromycin
microparticles

ALI Cytotoxicity, TEER 260

hAELVi Human alveolar
epithelium

Tight junctions, non-
carcinogenic

n.d. n.d. n.d. 246

THP-1 & A549 Human monocytic CeO2, TiO2 Submerse,
ALI

Cytotoxicity, inflammation,
oxidative stress

219
Human alveolar epithelium

THP-1 &
16HBE14o- &
HLMVEC

Human monocytic TiO2, Ag, SiO2 Submerse Cytotoxicity, inflammation,
oxidative stress, TEER

254
Human bronchial epithelium
Human lung microvascular endothelial cells

THP-1 & A549 &
Ea.hy926 &
HMC-1

Human monocytic SiO2 rhodamine-
labeled, DEPM

ALI Cytotoxicity, inflammation,
oxidative stress TEER,
fluorescence measuring of
translocation

231
and
261

Human alveolar epithelium
Human endothelia cells
Human mast cells

MucilAirTM Human lung bronchial epithelium CeO2 ALI Cytotoxicity, inflammation,
oxidative stress, genotoxicity,
gene expression

218

CeO2 Submerse Cytotoxicity, inflammation,
oxidative stress, genotoxicity

249

MWCNTs ALI Cytotoxicity, inflammation, cilia
beating frequency, mucociliary
clearance, gene expression

262

EpiAlveolar Human lung alveolar epithelium n.d. n.d. n.d. 263
PCLS Rat PVP-coated Ag,

ZnO, quartz
microparticles

Submerse Cytotoxicity, inflammation,
multiphoton microscopy, cell
proliferation

264

CeO2 ALI Cytotoxicity, inflammation,
oxidative stress

265

CeO2 ALI Cytotoxicity, inflammation,
oxidative stress

266

Mice SiO2 Submerse Inflammation 267
Human CeO2, SiO2, ZnO,

Ag, MWCNTs
Submerse Cytotoxicity, inflammation,

oxidative stress
268
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metabolic pathways, and cellular connections and can cause
oxidative stress as well as inflammation signaling.245 Thorne
et al. reported a study comparing the genotoxicity of cigarette
and e-cigarette smoke. They were able to show that cigarettes
cause clear genotoxicity by inducing DNA double strand
breaks whereas e-cigarette smoke does not show any genotoxi-
city.232 Kuper et al. compared the toxicity of CeO2 ENMs
between different in vitro models showing that the exposure of
A549 and BEAS-2B to CeO2 ENMs resulted in a slight increase
in genotoxicity for the BEAS-2B cells whereas MucilAir as a 3D
cell model was not affected.249 In addition to the above-men-
tioned cell lines, other bronchial cell lines such as Calu-
3252,253 and 16HBE14o- are also applied to study the inter-
actions of lung cells with nanoparticles.241,254 Since the depo-
sition of nano-sized airborne material primarily occurs in the
alveolar region and subsequent retention or translocation is
one of the key factors for toxicological risks of ENMs, alveolar
epithelia cell models may represent a suitable model for the
toxicity testing of inhalable ENMs. The recently developed cell
line hAELVi combines the advantages of a non-tumorigenic
human alveolar epithelia cell model with a functional intact
barrier, and this cell line should therefore be considered for
future studies of ENM inhalation toxicity.246

5.3. Coculture models

To better understand the toxicology and translocation mecha-
nisms of ENMs on the one hand and better mimic the
complex human respiratory system on the other, the inter-
action of different pulmonary cells has to be considered. The
development of coculture and 3D systems has therefore been a
focal point of interest and endeavors during the last few years.
While the cell lines used for coculture models are grown as 2D
monolayers separated by a membrane, the different cells in 3D
systems are combined to generate histological structures that
resemble the in vivo situation more closely. For instance, Loret
et al. investigated the toxic and inflammatory potential of air-
borne TiO2 and CeO2 particles using a coculture system con-
taining A549 and THP-1 cells.219 Under ALI as well as sub-
merse conditions, these ENMs can induce cytotoxicity, inflam-
mation and oxidative stress. Furthermore, the authors could
show that the coculture system is more sensitive regarding an

inflammatory response than the A549 monoculture. Hoet et al.
on the other hand generated a tricultured model comprising
16HBE14o-, THP-1 and HLMVEC cells and found that immune
cells have a strong influence on the integrity of the intracellu-
lar barrier.272 Furthermore, the system has been proved to be a
suitable tool to determine cytotoxicity, oxidative stress and the
inflammation potential of TiO2, SiO2 and Ag nanoparticles.254

In addition, a coculture system consisting of the four cell types
A549, THP-1, Ea.hy926 and HMC-1 was developed by Klein
et al. and was shown to closely mimic the alveolar barrier
found in vivo.231 Although submerged testing usually led to
overestimated toxic effects, ALI conditions indicated it to be an
appropriate physiological model to examine the translocation
of SiO2 nanoparticles.254 Besides SiO2 ENMs, only diesel
exhaust particulate matter was investigated using this system
but – likely due to low level exposure – no significant changes
in viability or inflammatory response were observed.261

5.4. Three-dimensional cell models and organ-like systems

In addition to cocultures, new 3D cell models have been
explored as more complex and advanced models. These
models are designed to emulate the in vivo structure.
MucilAir™ presents a 3D bronchial model system that
includes ciliated beating cells as well as mucus producing
goblet cells.273 This particular model allows for the testing of
toxicity and the ability to cross the biological barriers of many
chemicals as demonstrated by Reus et al. and Sauer et al.228,274

Using the MucilAir™ system, the particulate effects of CeO2 on
cytotoxicity and genotoxicity as well as inflammation could
also be observed by Kooter et al. and Kuper et al.218,249

Another promising model was developed by Walles et al. using
a vascularized scaffold derived from a porcine jejunal segment
called BioVaSc which was subsequently incubated with fibro-
blasts and human primary bronchial cells. Model characteriz-
ation revealed a 3D system mimicking the human airway
which is composed of airway epithelia cells, basal cells, goblet
cells, and ciliated cells. Because of these high similarities, an
evaluation of whether these cells represent a more appropriate
system for pulmonary toxicity studies should be conducted.275

As inhalable nano-sized materials primarily deposit in the
bronchial and alveolar regions of the lungs, alveolar cell

Table 1 (Contd.)

Cell lines/
coculture/3D
model Origin Characteristics Nano-sized material Exposure Tested method/end points Ref.

Organ-on-a-
chip

GIT/Caco-2, HT29-MTX; liver/HepG2/C3A Carboxylated
polystyrene

Submerse Dextran translocation,
immunofluorescence staining

269

Lung/primary human airway epithelial cell,
goblet cells, ciliated beating cells

n.d. n.d. Inflammation, gene expression,
cilia beating frequency

270

Lung/primary human airway epithelial cells;
GIT/Caco2

n.d. n.d. TEER 271

a ALI – air−liquid interface; Caco2 – human colon adenocarcinoma cell line; CuO – copper oxide; DEPM – diesel exhaust particulate matter; GIT –
gastrointestinal tract; HepG2/C3A – human hepatoma cell line; HT29-MTX – human colon adenocarcinoma cell line; LDH – lactate dehydrogen-
ase; n.d. – no data; PCLS – precision cut lung slices; PVP – polyvinylpyrrolidone; TEER – transepithelial electrical resistance. For cocultures, the
combined cell lines are indicated by &.
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models are needed as well to address the toxicological risk of
respirable NMs. To study NM toxicity on 3D alveolar cells, the
so-called EpiAlveolar model was developed and depicts a
system composed of macrophages and epithelia cells located
at the apical side, and endothelia cells at the basal side. The
system is therefore likely to mimic the in vivo alveolar region
and may in the future be used to evaluate questions regarding
particle retention, clearance and toxicity.263

The cultivation of whole organs has been a complex endea-
vor for more than 60 years.276 But only in the 1990s, when
Siminski et al. developed a method to cut whole organs after
agarose embedding, precision cut lung slices (PCLS) have been
established.277 Nowadays, PCLS can be generated from rats,264

mice,267 and humans.278 Sauer et al. investigated 16 ENMs on
rat PCLS including CeO2, SiO2, ZnO, Ag and MWCNTs and
found a cytotoxic and inflammatory potential of CeO2,
MWCNTs and TiO2.

268 In addition, upon ion release, Ag and
ZnO ENMs caused tissue destruction, an observation which
was absent in the case of more insoluble ENMs like TiO2,
CeO2, SiO2, and MWCNTs. The reduction of cell viabilities in
PCLS was also reported for Ag and ZnO ENMs by Hirn et al.,
whereas micro-sized quartz particles showed no toxicity.264

Moreover, PCLS were used to assess the toxic potential of a
CeO2-based catalyst but only small effects were seen for oxi-
dative stress pathways and tumor necrosis factor alpha (TNF-α)
and adenosine triphosphate (ATP) metabolism.69,266 Taking
also the microfluid model systems of the organ of interest into
account, more advanced concepts to emulate the in vivo situ-
ation were developed.279 These so-called organs-on-a-chip
were, for example, used to analyze the translocation of 50 nm
polystyrene particles across a gastrointestinal tract model. The
lowered occurrence of effects on subsequent liver cells revealed
that the gastrointestinal tract represents a strong barrier for
most of these particles.269 Only a small fraction that crossed
the barrier resulted in an aspartate aminotransferase release
which indicated liver cell damage. Another organ-on-a-chip
model which imitates the human lung was developed by
Benam et al.270 Due to the inclusion of mucus producing
goblet cells, ciliated beating cells, and functionally intact tight
junctions, this lung model resembles the in vivo situation very
well but studies are actually still outstanding. In addition,
Henry et al.271 as well as Jain et al.280 recently developed new
organ-on-a-chip models with features required for mimicking
pulmonary structures. But the impact of these organ-on-a-chip
models on nanotoxicology testing also remains to be
evaluated.

In summary it can be stated that cell lines provide a stan-
dardized, relatively easy-to-use and well-established utility to
study the toxicity of respirable ENMs. Due to their limited
ability to resemble in vivo 3D structures and to mimic intercel-
lular communication, the usability as models for ENM inhala-
tion remains questionable. Coculture and 3D models which
feature such multi-cell type buildups and interactions may
resemble the in vivo situation much better. Furthermore, such
systems can emulate the in vivo spatial structure and organiz-
ation, which is necessary for any organ function. Nevertheless,

even these newly developed models do not enable a complete
artificial reproduction of the highly complex lung structure.
PCLS, on the other hand, may provide an opportunity to over-
come this issue since they are directly derived from the lungs
and thus contain all different kinds of lung cells within the
respective 3D structure. However, as the generation of PCLS is
clearly more complicated and more expensive than standard
cell culturing, it remains to be clarified if they will be broadly
established in the field of nanotoxicology. For that reason, the
organ-on-a-chip method seems to be a more practical tool
whose microfluidic variants even enable the imitation of the
blood flow. The organ-on-a-chip therefore has the potential to
introduce an applicable and feasible in vitro platform to study
the pulmonary toxicology of nano-sized materials. However,
further development and evaluation are needed and may
include the combination with PCLS.

6. Summary and outlook

These newly established test systems or the ones still in devel-
opment will be needed to assist in the enormous task to inves-
tigate the ENM characteristics and assess their toxicokinetics.
The decreased size of ENMs in comparison with their bulk
materials was initially considered to be a decisive factor for
their divergent biokinetic behavior and assumed to provoke
additional toxic effects. As summarized here, mechanisms
relevant for particle toxicity like deposition, clearance, or trans-
location were found to significantly influence particle toxi-
cology as well.89,281 Then again, these biokinetic properties
can be attributed to further more detailed particle character-
istics such as shape, surface area, reactivity, or solubility (see
Fig. 3). These characteristics are often interrelated with one
another while some are affected by the ambient conditions at
the site of exposure. These findings certainly call for the re-
evaluation of exposure limits. So, in the case of nano-sized
GBPs, for example, a 4-fold higher inflammatory potency has
been assumed for microscaled material when the parameter
“mass” is used instead of “surface area” as the dose metric.16

And while size is one of these characteristics influencing pro-
cesses such as deposition or dissolution, there is as yet no con-
vincing evidence for the presence of a nano-specific toxicity
following inhalation, and no step change is found when going
from micro- to nanoparticles.89,282 Biological responses and
hazards that were reported for ENMs, for example, oxidative
stress, inflammation, or proliferation, have also been found
for non-nano-sized materials.283 These observations clearly
argue against the differentiation of “perilous” nano-sized and
“uncritical” micro-sized material which is often taken as the
basis for regulations and recommendations so far. With regard
to carcinogenicity, the phenomenon of lung overload is
assumed as the main mechanism for both nano- and micro-
sized GBPs, at least based on the available animal data.146,284

However, other observations, such as the in vivo dissolution of
inhaled, low-soluble ENMs, e.g., a rapid lung clearance of
BaSO4, still show the need for further research.285 As dis-
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solution can lead to an entirely different distribution pattern
in extrapulmonary organs in comparison with the transloca-
tion of insoluble particles, a closer look at these processes
under physiological conditions is required. With regard to par-
ticle shape, the discovery that the carcinogenic effects
observed in asbestos and connected to its high aspect ratio
and rigidity12 can also be seen in other fibrous materials is
alarming.161,286 Due to their often small aerodynamic dia-
meter, these objects are able to penetrate deep into the respir-
atory system.287–289 As mentioned before, the potential carcino-
genic properties of such materials are understood to be related
to their high aspect ratio and rigidness.290 Most importantly,
numerous fibrous materials such as MWCNTs,291 silicate
nanotubes (SiO2-NTs),

292 glass fibers,293 or silicon carbide
whiskers (SCWs)294 were shown to possess carcinogenic
potency. However, other non-fibrous HARN materials like gra-
phene platelets were also shown to exhibit such effects295 and
have been reported to induce frustrated phagocytosis and
inflammatory responses as well.296,297 In consideration of
these findings summarized above, a grouping of nano-
materials117 according to toxicity-related characteristics seems
a suitable way to facilitate toxicological risk assess-
ment.90,119,298,299 To address the changes that occur during the
ENM uptake in vivo, such as agglomeration and protein corona

formation, a more pathway-related approach may be preferred
to group nano-sized materials according to their complete life
cycle ranging from formation via uptake until possible modifi-
cation in the different target tissues of an organism.119,298

Clearly, further research will be necessary to understand all of
these modes of action, their mechanisms and the individual
linkages between the specific ENM characteristics. As this
paper illustrates, the topic at hand is extensive, and complex,
and thus calls for a clearer proactive classification of new
ENMs.
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