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ABSTRACT

Trichloroethylene (TCE) and tetrachloroethylene (PCE) are structurally similar olefins that can cause liver and kidney
toxicity. Adverse effects of these chemicals are associated with metabolism to oxidative and glutathione conjugation
moieties. It is thought that CYP2E1 is crucial to the oxidative metabolism of TCE and PCE, and may also play a role in
formation of nephrotoxic metabolites; however, inter-species and inter-individual differences in contribution of CYP2E1 to
metabolism and toxicity are not well understood. Therefore, the role of CYP2E1 in metabolism and toxic effects of TCE and
PCE was investigated using male and female wild-type [129S1/Svlm]], Cyp2e1(—/-), and humanized Cyp2el [h\CYP2E1] mice.
To fill in existing gaps in our knowledge, we conducted a toxicokinetic study of TCE (600 mg/kg, single dose, i.g.) and a
subacute study of PCE (500 mg/kg/day, 5 days, i.g.) in 3 strains. Liver and kidney tissues were subject to profiling of oxidative
and glutathione conjugation metabolites of TCE and PCE, as well as toxicity endpoints. The amounts of trichloroacetic acid
formed in the liver was hCYP2E1~ 12951/Svlm] > Cyp2el(—/—) for both TCE and PCE; levels in males were about 2-fold
higher than in females. Interestingly, 2- to 3-fold higher levels of conjugation metabolites were observed in TCE-treated
Cyp2el(—/—) mice. PCE induced lipid accumulation only in liver of 12951/Svim]J mice. In the kidney, PCE exposure resulted in
acute proximal tubule injury in both sexes in all strains (hCYP2E1 ~ 12951/Svlm] > Cyp2e1(—/—)). In conclusion, our results
demonstrate that CYP2E1 is an important, but not exclusive actor in the oxidative metabolism and toxicity of TCE and PCE.

Key words: trichloroethylene; tetrachloroethylene; cytochrome P450 2E1; toxicokinetics; toxicodynamics.

Trichloroethylene (TCE) and tetrachloroethylene (PCE) are struc-
turally similar olefins and high-production volume chemicals
that have been used in chemical synthesis, metal degreasing,
dry cleaning, and other industrial applications (U.S. EPA,
2011a,b). TCE and PCE are extensively present in air, soil, and
surface and ground water supplies (IARC, 2014). They are also
frequently found at the hazardous waste sites on the National
Priorities List (ATSDR, 2014). TCE and PCE are also detectable in
human blood samples collected in the National Health and
Nutrition Examination Survey (Jia et al., 2012). TCE and PCE are

classified as “carcinogenic to humans” and “probably carcino-
genic to humans,” respectively, by the International Agency for
Research on Cancer (Guha et al., 2012). They also can cause non-
cancer effects in liver and kidney (Cichocki et al., 2016). TCE and
PCE are among the top 10 chemicals of concerns for the risks to
human health and environment under the revised Toxic
Substances Control Act (U.S. EPA, 2017).

Tissue-specific toxicity of TCE and PCE results from metabo-
lism through the oxidative and glutathione (GSH) conjugation
pathways (Figure 1). Oxidation of TCE and PCE occurs on the
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Figure 1. Overview of the metabolic pathways of TCE and PCE. Upon absorption, TCE and PCE can either be oxidized via CYPs or conjugated with GSH via GSTs.
Abbreviations: TCE, trichloroethylene; PCE, tetrachloroethylene; CH, chloral hydrate; TCOH, trichloroethanol; TCA, trichloroacetate; TCAC, trichloroacetyl chloride;
TCOG, trichloro-glucuronide conjugate; DCA, dichloroacetate; DCVG, S-(1, 2-dichlorovinyl)-GSH; DCVC, S-(1, 2-dichlorovinyl)-cysteine; NAcDCVC, N-acetyl-S-(1, 2-
dichlorovinyl)-cysteine; TCVG, S-(1, 2, 2-trichlorovinyl)-GSH; TCVC, S-(1, 2, 2-trichlorovinyl)-cysteine; NAcTCVC, N-acetyl-S-(1, 2, 2-trichlorovinyl)-cysteine; GGT,
gamma-glutamyl transferase; DP, dipeptidase; NAT, n-acetyl transferase; FMO, flavin monooxygenase; CCBL, cysteine conjugate beta-lyase.

double bond via cytochrome P450s (CYPs) to form an epoxide in-
termediate, which is subsequently metabolized to oxidative
species, including trichloroacetic acid (TCA) and/or TCE-specific
metabolite trichloroethanol (TCOH) (Cichocki et al., 2016). TCA is
a ligand to mouse and human peroxisome prliferator-activated
receptor alpha (PPARo) (Zhou and Waxman, 1998), which may
be associated with cell proliferation in liver (Laughter et al.,
2004). Both TCE and PCE are also metabolized by GSH conjuga-
tion via GSH-S-transferases (GSTs) to generate dichloro- or tri-
chloro-GSH conjugates (DCVG/TCVG) (Lash et al.,, 2000). These
conjugates can be further metabolized by hepatic or renal
gamma glutamyl transferase and dipeptidase to form cysteine
conjugates (S-(1, 2-dichlorovinyl)-cysteine [DCVC]/ S-(1, 2, 2-tri-
chlorovinyl)-cysteine [TCVC]), and then are subject to n-acetyla-
tion to form NAcDCVC or NACTCVC. These can be further
bio-activated by a number of enzymes, including cysteine s-
conjugate beta lyase, flavin monooxygenase, and CYPs, to form
nephrotoxic metabolites such as reactive thiols (Volkel and
Dekant, 1998) and sulfoxides (Elfarra and Krause, 2007; Lash
et al., 2001, 2003; Ripp et al., 1997; Werner et al., 1996). For both
TCE and PCE, various CYPs play a critical role in generating
metabolites that cause toxicity in both liver and kidney.

Among the CYPs isoenzymes, CYP 2E1 (CYP2E1) is the major
contributor to oxidation of chlorinated solvents (Kim and

Ghanayem, 2006; Nakajima et al., 1993; Ramdhan et al., 2008).
CYP2E1 is highly variable in expression (12-fold) in human liver
(Lin and Lu, 2001) and interindividual differences in CYP activity
are thought to be a major contributor to population variability
in adverse effects of TCE and PCE (Cichocki et al., 2016). In stud-
ies with TCE, both hepatotoxicity and production of oxidative
metabolites were ameliorated in CYP2E1 knockout mice (Kim
and Ghanayem, 2006; Ramdhan et al,, 2008), albeit little is
known about the exact role of CYP2E1 in TCE toxicokinetics. In
experiments with PCE, one study posited that CYP2E1 can con-
tribute to PCE toxicity (Hanioka et al.,, 1995), but another study
concluded that CYP2E1 is not the critical enzyme in sub-chronic
effects of PCE (Philip et al., 2007). No study examined metabo-
lism or toxicity of PCE in CYP2E1 knockout or humanized mice.

Therefore, in this work, we aimed to address existing knowl-
edge gaps on the role of mouse and human CYP2E1 in the me-
tabolism and toxicity of TCE and PCE. Because several studies
already established that CYP2E1 is playing a role in liver effects
of TCE, but its precise role in the formation of TCE metabolites
is largely unknown, we conducted a toxicokinetic study of TCE
in male and female 129S1/SvlmJ, Cyp2el(—/-), and humanized
(hCYP2E1) mice. For PCE, we aimed to test whether CYP2E1 plays
a role in the toxicity of PCE by using the same genetic models
and a sub-acute study design.
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MATERIALS AND METHODS

Chemicals. TCE (purity >99.5%), PCE (>99.9%), TCA (>99.0%),
TCOH (>99.0%), 2-bromobutyric acid (>97%), chloroform
(>99.9%), and formic acid (>95%) were obtained from Sigma-
Aldrich (St Louis, Missouri). Methanol (>99.9%) was from Fischer
Scientific (Hampton, New Hampshire). DCVC (>98.0%), S-(1, 2-
dichlorovinyl)-cysteine-'3Cs-**N (DCVC*, purity >95.0%, isotopic
purity >98.0%), S-(1, 2-dichlorovinyl)-GSH(DCVG, >98.9%), and
S-(1, 2-dichlorovinyl)-GSH-'3C,-'°N (DCVG*, purity >90.0%, iso-
topic purity >98.0%) were obtained from TLC Pharmaceutical
Standards (Aurora, Canada). N-acetyl- (NAcDCVC, 99.8%), N-ace-
tyl-S-(1, 2-dichlorovinyl)-cysteine-'3C, ds; (NAcDCVC®, purity:
97.6%, isotopic purity: 99.0%), and NACTCVC (purity: 99.7%) were
purchased from Toronto Research Chemicals (Toronto,
Canada). S-(1, 2, 2-trichlorovinyl)-GSH-"C,-'°N (TCVG*, purity:
90.4%), TCVC-'3C5-*N (TCVC*, purity: 97.5%), and N-acetyl-S-(1,
2-dichlorovinyl)-cysteine-"*C3-"*N (NAcTCVC*, purity: 99.0%)
were used as internal standards for TCVG, TCVC, and NAcTCVC,
respectively. TCVG (purity: 98.9%), TCVC (purity: 98.4%), and all
stable isotopically labeled internal standards were synthesized
by Dr Avram Gold at the University of North Carolina at Chapel
Hill.

Animals and treatments. Male and female wild type, Cyp2e1(—/-),
and hCYP2E1 mice on 12951/SvlmJ (Sv129, The Jackson
Laboratory, Bar Harbor, Maine) were used in this study.
Transgenic mice were bred and genotyped by PCR before being
used in this study. The primer sequences are detailed in
Supplementary Table 1. Mice were housed in polycarbonate
cages on Sani-Chips irradiated hardwood bedding (P.J. Murphy
Forest Products, Montville, New Jersey), and supplied with NTP-
2000 (Zeigler Brothers, Gardners, Pennsylvania) wafer diet and
water ad libitum on a 12 h light-dark cycle. After a week-long ac-
climatization, mice were intragastrically administered with TCE
or PCE (Figure 2). All treatments and procedures were approved
by the Institutional Animal Care and Use Committee at the
University of North Carolina at Chapel Hill.

In a study of TCE toxicokinetics, mice were administered a
single dose of 600 mg/kg TCE or vehicle (5% Alkamuls EL-620 in
saline). The dose was selected based upon previous mouse
studies showing that this amount was well tolerated in acute,
90-day, and 2-year studies (Buben and O’Flaherty, 1985; Luo
et al., 2018; National Toxicology Program, 1990; Yoo et al., 2015a).
In addition, mice form approximately 100-fold less GSH conju-
gation metabolites (Chiu et al., 2009), which justifies the use of a
dose that is higher than the environmental exposure to TCE.
After dosing, mice were anesthetized (pentobarbital, 50 mg/kg
i.p.) and sacrificed by exsanguination through the vena cava at 2,
5,12, and 24 h (n = 24 per group per time point). Mice dosed
with vehicle were sacrificed at 5 h after gavage. Livers and kid-
neys were collected, blotted dry, and snap-frozen in liquid nitro-
gen. Serum was prepared by using Z-gel tubes (Sarstedt,
Darmstadt, Germany). All tissues and serum were stored at
—80°C until analyzed.

In a study of PCE metabolism and toxicity, mice were treated
for 5 days with single daily dose (9 am) of 500 mg/kg/day PCE or
vehicle (5% Alkamuls EL-620 in saline). The dose was selected
based upon previous studies showing no saturation of PCE oxi-
dation at similar doses (Buben and O’Flaherty, 1985; Philip et al.,
2007), and that this amount was well tolerated in acute, 90-day,
and 2-year studies (Buben and O’Flaherty, 1985; Cichocki et al.,
2017a; Luo et al., 2017; National Toxicology Program, 1977). Mice
were given drinking water containing 5-bromo-2'-deoxyuridine
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Figure 2. Schematic representation of study designs. Male and female mice
from 3 strains (12951/SvimJ wild type, Cyp2el(—/-) and hCYP2E1) were used in
these studies. One study examined toxicokinetics of TCE in a single dose (600
mg/kg, gavage) study where samples were collected for up to 24 h. Second study
examined metabolism and toxicity of PCE that was administered for 5 consecu-
tive days (500 mg/kg, gavage); samples were collected 2 h after the last dose.
Alkamuls EL-620 (5%, 10 ml/kg) was used as an aqueous emulsion vehicle for ad-
ministration of both chemicals. Vertical lines indicate time points of sample col-
lection. Down-arrows indicate chemical treatments. Endpoints collected in each
study are shown as a bulleted list. Raw data for each animal and endpoint are
reported in Supplementary Tables 2 and 3.

(BrdU) 72 h prior to sacrifice. Mice were anesthetized and sacri-
ficed by exsanguination through vena cava 2 h after the last dose
of PCE or vehicle (n = 4-7 per group). Serum was prepared by us-
ing Z-gel tubes, and then stored at —80°C until analyzed. Tissue
sections from left liver lobe and kidney were fixed in 10% forma-
lin and embedded in paraffin. The remaining tissues were snap-
frozen in liquid nitrogen and stored at —80°C until analyzed.

Protein measurement of CYP2E1. Total proteins were extracted
from 20 mg of liver and kidney samples using T-PER Tissue
Protein Extraction Reagent (Thermo Scientific, Rockford,
Illinois) with Halt Protease Inhibitor Cocktail (Thermo
Scientific). Protein concentration was determined using Pierce
BCA Protein Assay Kit (Thermo Scientific) and a DTX 880
Multimode detector (Beckman Coulter, Brea, California). Protein
extract (20 pg) was loaded onto a Mini-Protein TGX Precast Gel
(Bio-Rad, Hercules, California) and transferred to a polyvinyli-
dene difluoride membrane. Membrane was blocked with
Odyssey Blocking Buffer (LI-COR, Lincoln, Nebraska), probed
with CYP2E1 primary antibody (1:5000, Catalog No.: ab28146,
Abcam, Cambridge, Massachusetts) or beta-actin primary anti-
body (1:2500, Catalog No.: ab8227, Abcam) overnight at 4°C,
washed with 0.1% Tween 20 in 0.01 M PBS buffer, probed with
goat anti rabbit IgG antibody (1:2500, Catalog No.: AP132P,
Millipore, Billerica, Massachusetts) for 90 min at room tempera-
ture, and detected using an Odyssey Infared Imaging system
(LI-COR).

Quantification of TCA. Tissue levels of TCA were measured using
the US EPA method 815-B-03-002 (Domino et al., 2003) with
slight modifications. Tissues (50 mg) were spiked with 11 nmole
of internal standard (2-bromobutyric acid), and homogenized in
1 ml of methanol:chloroform (1:1). After centrifugation at 14 000
x g for 10 min, supernatant was mixed with 1.5 ml of metha-
nolic sulfuric acid (10%, v:v). The mixture was incubated in wa-
ter batch at 55°C for 2 h to derive respective methyl esters. The
derivative was then mixed well with 2 ml of methyl tert-butyl
ether (MTBE) and 3 ml of sodium sulfate buffer (150 g/L). The up-
per layer was collected and mixed well with 3 ml of saturated
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sodium bicarbonate. Again, the upper layer was collected, con-
centrated under nitrogen stream to a volume of approximately
20 pl, and analyzed via gas chromatography mass spectrometry.
Quantitative analyses were achieved by using the peak area ra-
tios of TCA to internal standards in an 8-point calibration curve
(0,4.1, 12.3, 37.0, 111.1, 333.3, 1000, and 3000 nmole spiked TCA).

Quantification of TCOH. Liver or kidney tissues (30 mg) were ho-
mogenized in 0.5 mL of sodium acetate (0.1 M, pH 4.6), spiked in
1000 units of beta-glucuronidase, and incubated in a thermo-
mixer overnight at 37°C. The incubated homogenate was spiked
with 20 pl of ethyl benzene (1000 nmol/ml), and then incubated
in 1.5 ml of 10% sulfuric acid in methanol at 50°C for 1 h.
Afterwards, the incubated solution was evenly mixed with 2 ml
of MTBE and 3 ml of sodium sulfate (150 g/l), and centrifuged at
2500 x g for 3 min. The MTBE layer was neutralized by 3 mL of
saturated sodium bicarbonate, collected, and concentrated with
nitrogen gas to approximately 20 ul for GC-MS analysis (Song
and Ho, 2003). Quantitative analyses were achieved by using the
peak area ratios of TCOH to ethyl benzene in an 8-point calibra-
tion curve (0-1200 nmol TCOH/g tissue).

Quantification of D/TCVG, D/TCVC, and NAcD/TCVC. Tissue levels
of dichloro and trichloro conjugates of TCE and PCE (D/TCVG, D/
TCVC, and NAcD/TCVC) were evaluated as reported in (Luo
et al,, 2017, 2018). In brief, tissue homogenate underwent a
liquid-liquid extraction with 400 pl of methanol: chloroform
(1:1) and a solid-phase extraction using a weak anion C-18 car-
tridge (Strata-X-AW, Phenomenex, Torrance, California). The el-
uent was dried under vacuum, and reconstituted with 50 ul of
methanol:water (20:80) with 0.1% acetic acid. Tissue levels of
metabolites were quantified by using the peak area ratios of
standards to isotopically labeled internal standards in an 8-
point calibration curve (0, 0.25, 0.5, 1.25, 2.5, 6.25, 18.75, and
31.25 pmole) via UPLC-MS/MS.

Serum alanine aminotransferase and aspartate aminotransferase.
Serum alanine aminotransferase (ALT) and aspartate amino-
transferase (AST) were determined by commercially available
kits (Sigma Aldrich) according to the manufacturer’s
instructions.

Triglyceride measurements. Serum and liver triglycerides were
measured with a commercially available kit (Wako, Richmond,
Virginia) according to the manufacturer’s instructions.

Histopathological evaluation. Formalin-fixed/paraffin embedded
liver and kidney sections were stained with hematoxylin/eosin
(H&E). Stained H&E slides were evaluated in a blind manner by
a certificated veterinary pathologist.

KIM-1 immunohistochemistry staining. Kidney sections were dew-
axed in xylene and rehydrated in graded ethanols, and then
subjected to hydrochloric acid and pepsin antigen retrieval.
Endogenous peroxidase activity was blocked with peroxidase
and alkaline phosphatase blocking reagent (Dako, Carpinteria,
California) at 25°C for 10 min. Thereafter, kidney sections were
subsequently incubated with goat anti-mouse TIM-1/KIM-1/
HAVCR (R&D systems, Minneapolis, Minnesota; 2 pm/ml, 10
min, room temperature) and secondary goat IgG HRP-
conjugated antibody (R&D systems; 1:100, 10 min, room temper-
ature) using Dako Antibody Dilution solution (Dako), and visual-
ized by Dako Liquid DAB + Substrate chromogen System (Dako).
Processed slides were counterstained with hematoxylin for

5 min. Quantitative analysis was performed by using Image-Pro
Premier 9.1 (Media Cybernetics, Silver Spring, Maryland) at 200x
magnification. Five fields of kidney section were randomly se-
lected to calculate the percentage of positive versus total proxi-
mal tubules.

BrdU immunohistochemistry staining. Kidney sections were subject
to de-paraffinization, rehydration, antigen retrieval, and peroxi-
dase blocking procedures as described above. Thereafter, Dako
EnVision System HRP kit with a monoclonal antiBrdU antibody
(1:200 dilution, M074401-8, Dako) was used for detection of
BrdU-incorporated nuclei. Quantitative analysis was performed
by using Image-Pro Premier 9.1 (Media Cybernetics) at 200x
magnification. Five fields of each kidney section were randomly
selected for evaluation. Data are presented as a fraction of posi-
tively stained nuclei versus total proximal tubule nuclei (%).

RESULTS

Protein Expression of CYP2E1

CYP2E1 status in various strains was verified by genotyping be-
fore the study. In addition, to quantify the effects of treatments
on CYP2E1 protein levels, we conducted Western
blotting experiments. In agreement with previous studies of
Cyp2el(—/—-) and hCYP2E1l transgenic mice (Lu et al, 2010),
CYP2E1 expression in liver was higher in hCYP2E1 mice than in
Sv129 mice, it was undetectable in Cyp2el(—/—) mice (Figure 3).
Protein levels of CYP2E1 were much greater in liver than in kid-
ney, also concordant with previous reports of tissue-specific dif-
ferences in CYP2E1 expression in the mouse (Yue et al., 2014).
Low expression of CYP2E1 in mouse kidneys is also consistent
with low levels of CYP2E1 in human kidneys (Fagerberg et al.,
2014). In addition, protein levels of CYP2E1 were slightly higher
in liver of male mice as compared with female mice. This sex-
dependent difference was even more pronounced in kidneys
where no detectable CYP2E1 protein was found in females. The
sex difference was not observed in the liver of Sv129 mice
(Nakajima et al., 2000) or CD-1 mice (Hoivik et al., 1995); however,
it was observed in kidney of CD-1 mice (Hoivik, et al., 1995)
where protein level of CYP2E1 was higher in male mice as com-
pared with female mice. We found that TCE induced expression
in CYP2E1 only in liver of female mice of both hCYP2E1 and
Sv129 strains, suggesting that TCE treatment and sex hormones
may regulate liver expression of CYP2EL.

The Role of CYP2E1 in Toxicokinetics of TCE

We sought to examine TCE toxicokinetics as a factor of CYP2E1
status in each strain and sex. We examined concentration-time
profiles of TCA, TCOH, DCVG and NAcDCVC in liver (Figure 4). In
male Sv129 mice, we found that liver toxicokinetics of TCA,
TCOH, and DCVG were similar to those reported in previous
studies using 129S1/SvIimJ mice (Yoo et al.,, 2015a,c), B6C3F1/
J mice (Luo et al, 2018), and Collaborative Cross mice
(Venkatratnam et al., 2017). The area under curve (AUC) analysis
of the metabolite levels revealed sex-dependent differences in
liver toxicokinetics of TCE. In Sv129 mice, AUC was higher in
male mice as compared with female mice for TCA and TCOH
(2.2-fold for TCA and 33.9-fold for TCOH), but lower for DCVG
and NAcDCVC(1.9-fold for DCVG and 1.6-fold for NacDCVC). The
sex-dependent differences in liver toxicokinetics for TCA and
TCOH were also observed in the previous study (Yoo et al,
2015c), whereas the sex differences for liver toxicokinetics of
DCVG and NAcDCVC have not been previously investigated.
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Figure 4. Comparative analysis of liver (Li) toxicokinetics of major oxidative (TCA and TCOH), and GSH conjugation (DCVG) metabolites of TCE (600 mg/kg) in (A) male
and (B) female 129S1/Svim] (SV129), Cyp2el(—/—), and hCYP2E1 mice. Average kinetic profiles (left panels, strains are identified by symbols as shown in an inset in the
top left graph) and AUC (right panels) are shown (n = 2—4 per group per time point, as detailed in Supplementary Table 2).
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In agreement with the lack of CYP2E1 expression, the AUCs
were 2.9-fold lower for TCA, and 1.4-fold lower for TCOH in
male Cyp2el(—/—) mice as compared with those in male Sv129
mice. A decrease in formation of oxidative metabolites of TCE
was less pronounced in female Cyp2el(—/—) mice. Interestingly,
elimination of TCA in the liver was slower in Sv129 mice as
compared with Cyp2el(—/—) and hCYP2E1 mice. Slower forma-
tion of TCOH was most pronounced in male Cyp2el(—/—) mice
with a peak concentration (Cpax) at 5 h and the differences in
the timing of Cpay for TCOH between Cyp2el(—/—)and hCYP2E1
mice may have affected the AUC values. Interestingly, the AUC
of DCVG was 1.5- to 2.4-fold higher in Cyp2el(—/-) mice of both
sexes, but 2.9- to 3.2-fold lower in hCYP2E1 mice as compared
with Sv129 mice. For the AUCs of NAcTCVC, similar trend was
observed in male mice but not in female mice.

Metabolites from GSH conjugative pathway have been pos-
tulated to cause kidney toxicity; therefore, we also examined
concentration-time profiles of TCA, DCVG, DCVC, and
NAcDCVC in the kidney (Figure 5). In male Sv129 mice, we found
that kidney toxicokinetics of TCA, DCVG, and DCVC was similar
to that previously reported in 129S1/SvimJ] mice (Yoo et al.,
2015c), B6C3F1/] mice (Luo et al., 2018), and C57BL/6] and NOD/
ShiLt] mice (Yoo et al., 2015b). Similar to the observations in the
liver, there were pronounced sex-dependent differences in kid-
ney levels of TCA, TCOH (Supplementary Table 4), and
NAcDCVC. In male Sv129 mice, the kidney AUC values were 2.2-
fold higher for TCA, but 2.5-fold lower for NAcDCVC compared
with female mice. With respect to the CYP2E1-mediated effects,
the kidney AUCs were 1.6- to 5.1-fold lower for TCA, and 1.9- to
3.3-fold lower for TCOH in Cyp2el(—/—) mice as compared with
Sv129 mice, whereas these differences were less pronounced in
female mice. Interestingly, in both male and female mice, the
elimination of TCA was the slowest in the kidney of Sv129 of
the strains examined herein. The AUC of DCVG was 1.4- to 1.9-
fold higher in Cyp2el(—/—) mice, but 1.2- to 1.4-fold lower in
hCYP2E1 mice, as compared with Sv129 mice.

Comparison of the Effect of CYP2E1 on Metabolisms of TCE and PCE
Much less is known about metabolism and toxicity of PCE, as
compared with TCE (Cichocki et al., 2016). No study has tested
the role of CYP2E1 in metabolism of PCE. Therefore, we com-
pared the levels of key oxidative and GSH conjugation metabo-
lites of TCE and PCE in the liver and kidney of 3 strains of mice
2 h after the last dose (Figure 6). The comparison for TCA levels
between TCE-treated and PCE-treated mice has limitations be-
cause TCE was administered as a single dose while PCE treat-
ment was repeated over 5 days; still, the patterns of differences
between sexes and strains are informative. In Sv129 strain, liver
levels of TCA were about 2-fold higher in PCE-treated male and
female mice as compared with TCE-treated mice. In our recent
study in B6C3F1 mice we found that at equimolar doses, more
TCA was found in both liver and kidney tissue from PCE-
exposed mice compared with TCE-exposed groups (Zhou et al.,
2017). In male and female Cyp2el(—/—) mice, TCA level in liver
was about half of that in Sv129 mice. At the same time, TCA lev-
els in liver of hCYP2E1 mice were the same as in Sv129 mice, in
both males and females.

Importantly, there are major differences in the flux of me-
tabolism through GSH pathway for PCE as compared with TCE,
even though we consider different dosing designs between TCE
and PCE. Metabolites from GSH conjugative pathway are rapidly
excreted within 24 h after dosing. In addition, the relationship
between T/PCE dose and GSH metabolites is linear within the
dose range used in this study. Therefore, the comparison for

GSH conjugates between TCE and PCE is more relevant than
that for TCA levels. In the liver, the GSH conjugate of PCE—
TCVG—was found to be present at over 5-fold greater levels
than DCVG. Kidney GSH metabolites of PCE—TCVC and
NAcTCVC—were found in the amounts greater than one order
of magnitude than DCVC and NAcDCVC. Interestingly, levels of
TCVG in the liver and TCVC in the kidney were lower in male
Cyp2el(—/—) mice, but unchanged in female Cyp2el(—/—) mice.
NACTCVC in the kidney was lower in male and female
Cyp2el(—/—) mice as compared with either Sv129 or hCYP2E1
mice.

Effect of CYP2E1 on PCE-Induced Liver and Kidney Toxicity

We also examined whether strain-specific differences in PCE
metabolism are associated with differences in toxicity in liver
and kidney. Liver toxicity was investigated by histopathological
evaluation, triglycerides measurements, and assessment of cell
proliferation. Treatment with PCE for 5 days induced lipid accu-
mulation in the liver of male Sv129 mice, but had no such effect
in male Cyp2el(—/—) or hCYP2E1 mice (Figure 7A). This histo-
pathological finding was confirmed by measurements of liver
and serum triglycerides. Liver triglycerides were about 6-fold
higher and serum about 2-fold lower in PCE-treated male Sv129
mice as compared with vehicle-treated mice (Figs. 7B and 7C).
Similar observations were made in female mice of 3 strains,
with PCE effect being observed only in Sv129 mice (raw data are
available in Supplementary Table 3). There was no PCE-induced
acute liver injury as assessed by serum ASTs and ALT, and there
was no significant effect on liver cell proliferation
(Supplementary Table 3).

Kidney effects of PCE were evaluated by measuring proximal
tubule injury and cell proliferation in male (Figure 8) and female
mice (Supplementary Table 3). We found that PCE treatment in-
duced proximal tubule injury (16.4%-39.3% increase in KIM-1
positive proximal tubules), an effect that was significant in
male and female Sv129 mice and male hCYP2E1 mice. No in-
crease in cell proliferation was found in the kidney of PCE-
treated male mice; in fact, cell proliferation was lower in PCE-
treated male Sv129 mice compared with strain-matched control
group. Interestingly, we found higher basal levels of proximal
tubule injury and cell proliferation in kidneys of female mice as
compared with male mice (Supplementary Table 3).

DISCUSSION

The role of CYP2E1 in TCE metabolism has been studied by com-
paring wild-type mice and CYP2E1 transgenic mice (Forkert
et al., 2006; Kim and Ghanayem, 2006; Ramdhan, et al., 2008).
Even though these studies focused on CYP2El-mediated toxic
effects of TCE, CYP2E1-mediated effects on metabolism were
also investigated by measuring the urinary excretion of TCA
and TCOH. Decreased TCA and TCOH levels were found in urine
of Cyp2el(—/—) mice; however, the internal dosimetry of these
oxidative metabolites in liver and kidney, as well as that of GSH
conjugation metabolites, was not explored in these studies. To
address this significant data gap, we conducted a study of
concentration-time profiles of both oxidative and GSH conjuga-
tion metabolites of TCE in liver and kidney. Furthermore, we in-
cluded both Cyp2el(—/—) and hCYP2E1 mice and both males and
females to provide insights into the role that CYP2E1 plays in
TCE metabolism. We also extended this study to investigate the
CYP2El-mediated metabolism and toxic effects of a related
chemical of human health concern, PCE.
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Figure 5. Comparative analysis of kidney (Kd) toxicokinetics of oxidative (TCA), and GSH conjugation metabolites (DCVG, DCVC, and NAcDCVC) of TCE (single dose, 600
mg/kg) in (A) male and (B) female 12951/Svim] (SV129), Cyp2el(—/-), and hCYP2E1 mice. Average kinetic profiles (left panels, strains are identified by symbols as shown
in an inset in the top left graph) and AUC (right panels) are shown (n = 2-4 per group per time point, as detailed in Supplementary Table 2).

First, we found that CYP2E1 plays a role in generation of oxi-
dative metabolites of TCE in liver and kidney. Formation of TCA
from TCE in liver was reduced by about 65% without the expres-
sion of CYP2E1, which concurs with previous observations in
urine of Cyp2el(—/—) mice (Ramdhan et al, 2008). However,
Cyp2el(—/—) mice still can generate TCA from TCE, suggesting
that other CYPs, such as CYP2F and CYP2B1, may also partici-
pate in TCE oxidation (Forkert et al, 2005). Interestingly,
Cyp2el(—/—) mice exhibit a retarded Tp,.x for TCOH, but generate
a comparable amount of TCOH in liver. In addition, hCYP2E1
mice, which had the highest level of CYP2E1 expression in liver,
formed the lowest amount of TCOH. Collectively, these results
suggest that CYP2E1 plays a major, but not exclusive, role in
converting TCOH to TCA. Importantly, in absence of CYP2E1 ex-
pression, an increase in generation of GSH conjugates was ob-
served. This result supports the notion that even though GSH
conjugation is a minor pathway of TCE metabolism in the
mouse, CYP-mediated oxidation does compete with GSH
conjugation.

Second, we observed differences in the extent of metabolism
between TCE and PCE, and that CYP2E1 also has a role in forma-
tion of TCA in PCE-treated mice. It has been assumed that PCE
metabolism and toxicity are similar to TCE due to their struc-
tural similarity (Cichocki et al., 2016). Even though qualitative

and quantitative differences in oxidative metabolisms between
TCE and PCE are known (IARC, 2014; U.S. EPA, 2011a,b), data on
GSH conjugation metabolism are still limited. Overall, the flux
to both oxidative and GSH conjugation metabolites is higher in
PCE-treated mice compared with TCE-treated mice. Taking into
account the dose differences, we found that PCE-produced me-
tabolite levels were approximately 3-fold greater for TCA, 4-fold
greater for the GSH conjugate, and 25-fold greater for cysteine
and n-acetyl cysteine conjugates. These quantitative differen-
ces are in agreement with those reported recently (Luo et al.,
2017, 2018; Zhou et al., 2017).

In addition, our results show that CYP2E1 status could mod-
ify GSH conjugative metabolism differently between TCE and
PCE. Knocking out the expression of CYP2E1 led to increases in
DCVG, DCVC, and NAcDCVC, but decreases levels of TCVG,
TCVC, and NACTCVC in livers and kidneys. In PCE-treated mice,
CYP2E1-mediated oxidation was not competing with the GSH
conjugation. This suggests that other CYPs could be important
in PCE oxidation. An in vitro study also showed that PCE oxida-
tion is primarily catalyzed by the CYP2B family, rather than
CYP2E1 (White and De Matteis, 2001). The role for CYP2E1 in the
conversion from TCOH to TCA may also account for, at least in
part, the competition between oxidation and GSH conjugation
pathways in TCE-treated mice. TCOH is a TCE-specific
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Figure 6. Comparative analysis of liver (Li) and kidney (Kd) levels of major oxidative (TCA), and GSH conjugation (DCVG, DCVC, and NAcDCVC for TCE; TCVG, TCVC,
and NAcTCVC for PCE) metabolites. Data for (A) TCE (600 mg/kg) and (B) PCE (5 daily doses, 500 mg/kg) in male and female 12951/Svim] (Sv129), Cyp2el(-/-), and
hCYP2E1 mice are shown. Metabolite levels shown are for a 2 h time point after dosing. Data are shown as mean * SD. Bars with different letters are significantly differ-

ent (1-way ANOVA with Newman-Keuls post hoc test, p < .05).

metabolite (Chiu et al., 2007; Zhou, et al., 2017) and the conver-
sion from TCOH to TCA is thought to be catalyzed by CYPs (Lash
et al., 2014). Lack of CYP2E1 was likely the cause of TCOH accu-
mulation, which in turn impedes the initial oxidation of TCE.
Correspondingly, the total flux through GSH conjugation would
increase in CYP-deficient individuals.

Third, we found that presence of mouse CYP2E1 results in
PCE-induced liver steatosis, while kidney effects of PCE are
largely unaffected by CYP2E1 status. Liver fat accumulation has
been reported in PCE-treated mice but not in TCE-treated mice
(Buben and O’Flaherty, 1985; Cichocki et al., 2017b). However,
liver steatosis was observed in TCE-treated, Pparz(—/—) and
hPPAR« transgenic mice (Ramdhan et al., 2010). PPAR« activation

results in an increase in fatty acid catabolism in liver
(Rakhshandehroo et al.,, 2010; Ramdhan, et al., 2010), and the
suppression of PPARo activation causes hepatosteatosis.
Interestingly, hepatic level of TCA, a PPARq activator, was the
highest in liver of wild type mice compared with Ppara(—/—) and
hPPAR« transgenic mice (Yoo et al., 2015c), supporting the
aforementioned hypothesis. In our study, the amount of TCA
generated in PCE-treated mice was even greater than that in
TCE-treated mice; however, we found fat accumulation in the
liver of Sv129 mice. Surprisingly, there was no liver steatosis in
PCE-treated Cyp2el(—/—) and hCYP2E1 mice. These observations
suggest that, aside from PPARq activation, CYP2E1 status also
may affect lipid metabolism in liver. Additional studies are
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required to uncover the underlying molecular mechanisms be-
hind the CYP2E1-mediated effects of PCE in mouse liver.

Similar to no effect of CYP2E1 status on GSH conjugation
metabolite formation from PCE, we found no effect of CYP2E1
status on kidney injury. We did observe an increase in KIM-1
staining in PCE-treated mice, showing that kidney is a target tis-
sue in the mouse. It has been postulated that the bio-activation
of TCVC and NAcTCVC, catalyzed by renal B lyase or other
enzymes such as flavin monooxygenase and CYP3A, is a critical
step for nephrotoxicity of PCE (Irving et al,, 2013; Lash et al,,
1994). It is likely that CYP2E1 may also play a role in sulfoxida-
tion of cysteine and n-acetyl cysteine conjugates of PCE, as it
was shown that CYP2E1 is involved in sulfoxidation of S-methyl
N, N-diethylthiolcarbamate (Madan et al., 1995) and diethyldi-
thiocarbamate methyl ester (Madan et al., 1998).

Fourth, our data provide important clues into sex differences
in metabolism and toxicity of chlorinated solvents. Protein lev-
els of CYP2E1, as well as the oxidative metabolites of TCE and
PCE, were higher in liver and kidney of male mice as compared
with female mice. The sex-dependent difference in metabolism
of TCE was previously reported (Yoo et al., 2015c). Indeed, stud-
ies showed that steroid sex hormones can regulate constitutive

expression of CYP2E1 in mice (Konstandi et al., 2013; Penaloza
et al., 2014), which can further modulate chemical-induced tox-
icity (Hu et al., 1993).

We also note that this study is not without limitations. First,
the experimental designs were not identical between TCE and
PCE arms of the study. Still, we are able to indirectly compare
TCE and PCE metabolites, and we report that there are potential
differences in GSH conjugative metabolism between TCE and
PCE. However, a direct comparison between toxicokinetics of
TCE and PCE will further advance our knowledge in the relation-
ship between metabolism and toxicity. Second, due to difficul-
ties in breeding transgenic mice, the number of Cyp2el(-/-)
mice were limited. Future studies may benefit from increasing
the sample size and breeding scale, if technically and economi-
cally possible.

In summary, this study provides a comprehensive analysis
of the role of CYP2E1 in the metabolism and toxicity of TCE and
PCE. CYP2E1 status affects levels of both oxidative and GSH con-
jugation metabolites in mouse liver and kidney. We conclude
that CYP2E1 is an important, but not exclusive actor in the oxi-
dative metabolism and toxicity of TCE and PCE. CYP2E1 status
also affects liver fat accumulation in PCE-treated mice.
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Figure 8. Effects of PCE on (A) proximal tubule injury and (B) cell proliferation in kidney of male 12951/Svim] (SV129), Cyp2el (—/—), and hCYP2E1 mice treated with 5
consecutive daily doses of vehicle (V, Alkamuls EL-620) or PCE (P, 500 mg/kg). The top figures show the representative images of KIM-1 or BrdU staining with 400x mag-
nification. Quantitative results of proximal tubule injury and cell proliferation are expressed as % positive/total proximal tubules or nuclei, and are summarized in the

lower bar charts. Asterisks denote significant difference by paired t test (p < .05).
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