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Abstract
Depression is a major health problem with a high prevalence and a heavy socioeconomic burden in western societies. It is
associated with atrophy and impaired functioning of cortico-limbic regions involved in mood and emotion regulation. It has been
suggested that alterations in neurotrophins underlie impaired neuroplasticity, which may be causally related to the development
and course of depression. Accordingly, mounting evidence suggests that antidepressant treatment may exert its beneficial effects
by enhancing trophic signaling on neuronal and synaptic plasticity. However, current antidepressants still show a delayed onset of
action, as well as lack of efficacy. Hence, a deeper understanding of the molecular and cellular mechanisms involved in the
pathophysiology of depression, as well as in the action of antidepressants, might provide further insight to drive the development
of novel fast-acting and more effective therapies. Here, we summarize the current literature on the involvement of neurotrophic
factors in the pathophysiology and treatment of depression. Further, we advocate that future development of antidepressants
should be based on the neurotrophin theory.
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Introduction

Depression has emerged over the past decades as a major
debilitating disease with a high prevalence in occidental pop-
ulations, resulting in profound social and economic burden
(Lopez and Murray 1998; Nestler et al. 2002; Pincus and
Pettit 2001; Wittchen et al. 2011). Despite recent advances
in neuroscience research, the neurobiological mechanisms un-
derlying the pathophysiology of depression remain poorly

understood. The development and course of major depressive
disorder (MDD) are likely to be mediated by a complex inter-
action between genetic and environmental factors, and the
associated heterogeneity of the disease makes it difficult to
develop effective therapeutic treatments (Keers and Uher
2012). So far, many classes of antidepressants have been dis-
covered and marketed for the treatment of depression.
However, currently available antidepressants display signifi-
cant limitations, including a delayed onset of action, low re-
sponse rates, and relapse after treatment cessation, which re-
main major drawbacks for a disease with relatively high sui-
cide rates (Angst et al. 2002). To date, clinical and preclinical
studies have linked depression to structural and cellular alter-
ations, such as neuronal loss and synaptic dysfunction, in
cortico-limbic brain regions controlling mood and emotions
(Duman and Aghajanian 2012). Among many candidates,
neurotrophic growth factors and related signaling pathways
constitute major players in neuroplasticity, and current evi-
dence indicates that impairment in growth factor signaling is
associated with depressed mood (Pittenger and Duman 2008).
Interestingly, currently prescribed antidepressants have been
shown to increase neuroplasticity when exerting their thera-
peutic effects (Tardito et al. 2006). Hence, a deeper
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understanding of the exact molecular, cellular, and structural
plasticity mechanisms involved in antidepressant action might
lead to the identification of key effectors and provide further
insight into the development of novel fast-acting and more
effective therapies. Here, we summarize the current literature
on the implication of neurotrophic factors and associated sig-
naling pathways in depression and antidepressant treatments.
First, a brief overview of the brain regions and circuits impli-
cated in the pathophysiology of depression and in the response
to antidepressants is highlighted. Further, evidence for the
involvement of neurotrophic factors and associated signaling
pathways in depression and its current treatment is described.
Finally, a perspective towards the development of novel anti-
depressant drugs is given.

Brain regions and neurocircuits involved
in depression: neuroanatomical evidence

Amygdala

The amygdala is an integrant part of the limbic system impli-
cated in cognitive and emotional processing, in particular that
involved in fear and anxiety (Aggleton 1993; LeDoux 2000).
This infers to this structure a central role in the regulation of
emotion and in consequence, in mood-related pathology.
Although volumetric magnetic resonance imaging (MRI)
studies so far revealed contrasting results, with studies show-
ing either an increase (Frodl et al. 2003; Lange and Irle 2004;
Vassilopoulou et al. 2013) or a decrease in amygdalar volume
in depressed patients (Bellani et al. 2011; Kronenberg et al.
2009; Lorenzetti et al. 2009), most of the functional MRI
(fMRI) studies showed an increased activity of the amygdala
in depressed patients during encoding of negative but not neu-
tral or positive stimuli. Indeed, studies in depressed patients
have shown exaggerated left and right amygdala activity when
confronted with emotional facial expressions (Canli et al.
2005; Peluso et al. 2009; Sheline et al. 2001). Similarly,
Drevets et al. using positron emission tomography (PET) im-
aging reported an increase in amygdala activation and metab-
olism in MDD patients (Drevets 2003). The fact that higher
amygdala activity was often observed after negative stimuli
would explain the higher ability for depressed individuals to
encode and remember negative rather than positive informa-
tion, therefore contributing to the negative bias observed in
depressed patients (Groenewold et al. 2013; Hamilton and
Gotlib 2008).

Interestingly, in studies using diffusion tensor imaging or
MRI, abnormal microstructure and connectivity of the amyg-
dala and the medial prefrontal cortex (PFC) patients (Arnold et
al. 2012) as well as reduced functional coupling between the
amygdala and the supragenual PFC (Matthews et al. 2008)
were reported in remitted MDD. These findings suggest that

MDD might result, at least in part, from a failed ability to co-
activate a top-down cognitive control network during emotion
processing (Matthews et al. 2008). This is supported by data
from Pezawas et al. (2005) who reported that, in individuals
carrying the short (s) allele of a variable number of tandem
repeats in the 5′ promoter region of the serotonin transporter
gene (5-HTTLPR), increased anxiety—and consequently an
increased risk for depression—was associated with a reduced
amygdala–anterior cingulate cortex connectivity. These data
further support the hypothesis of the alteration of the negative
feedback from the PFC to the amygdala in depressed patients
(Pezawas et al. 2005).

In rodent, while a decrease in basolateral amygdalar vol-
ume has been associated with an increase in both fear and
stress reactivity in mice (Yang et al. 2008), an enhanced den-
dritic arborization, elongation, and spine density, providing
evidence for increased synaptic connectivity within the amyg-
dala, were reported after chronic stress exposure in rats (Vyas
et al. 2006; Vyas et al. 2002). These data were in line with
those showing an enhanced activity of the basolateral amyg-
dala and long-lasting anxiety-like responses in rats that re-
ceived repeated injections of urocortin, an agonist of cortico-
tropin releasing factor (CRF) receptors (Rainnie et al. 2004).
This further suggests that depression-like behavior is associ-
ated with increased amygdala activity.

Interestingly, antidepressants have been shown to normal-
ize most of these defects. Indeed, a meta-analysis from MRI
studies showed that amygdalar volume was increased in med-
icated patients (Hamilton et al. 2008). Given that amygdala
hyperactivity could lead to the amygdalar volume reduction
observed in depression (Siegle et al. 2003), it could therefore
be expected that antidepressants would decrease amygdala
activity as well. Indeed, several meta-analyses concluded that
antidepressants facilitate positive emotional stimuli process-
ing in MDD patients and reduce the activity of negative emo-
tions (Delaveau et al. 2011), concomitant with a normalization
of amygdala activity (Chen et al. 2014; Victor et al. 2010).

Hippocampus

The hippocampus is also a major structure within the lim-
bic system known to be highly vulnerable to stress and
other environmental factors. This region is critical in di-
verse cognitive processes and in the regulation of emo-
tions (Bartsch and Wulff 2015). MRI analyses revealed
reduced hippocampal volume in patients suffering from
both first episode and recurrent depression (Bremner et
al. 2000; Cole et al. 2011; Frodl et al. 2007). Besides, a
correlation between volume reductions and total duration
of major depression has been reported more than 20 years
ago (Sheline et al. 1996). These results have been further
confirmed by several meta-analyses that show, e.g., a de-
creased hippocampal volume only in MDD patients
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having suffered from depression for 2 years or who had
more than one episode (McKinnon et al. 2009) or
evidencing deficit in hippocampal volume deficits in re-
current but not in first episode MDD patients (Schmaal et
al. 2016), although this last study gave rise to some de-
bate (Fried and Kievit 2016). It has also been proposed
that reductions in hippocampal volume may not antedate
illness onset but that hippocampal volume may decrease
most in the early years after illness onset (MacQueen et
al. 2003). Post-mortem analysis in MDD patients sug-
gested an increase in the density of pyramidal, granule,
and glial cells combined with a decrease of soma size of
pyramidal cells (Stockmeier et al. 2004). This could indi-
cate that the decrease in cellular neuropil might account
for the reduced hippocampal volume found in depressed
subjects.

Furthermore, disrupted functional hippocampal connectiv-
ity within the prefrontal and parietal cortex has been revealed
by fMRI in MDD patients (Cao et al. 2012; Delaveau et al.
2011; Jaworska et al. 2015; Milne et al. 2012; Toki et al.
2014).

Animal studies revealed that chronic stress causes atro-
phy of apical dendrites of pyramidal neurons in the CA3
region of the hippocampus (Magarinos et al. 1996; Vyas
et al. 2002; Watanabe et al. 1992). Exposure to excess
glucocorticoids in rats showed decreased apical branching
numbers and apical dendrite length (Woolley et al. 1990),
suggesting a role for the activation of the hypothalamo-
pituitary-adrenal (HPA) axis in remodeling hippocampal
morphology. A wealth of data have clearly evidenced a
correlation between hyperactivity of the HPA axis and
the development of depression (Frodl and O’Keane
2013). Indeed, HPA axis activation is mainly triggered
by stress, which has been shown to be strongly involved
in inducing depression (Kendler et al. 1995). In addition,
various models of chronic stress exposure in rodents have
indicated a decrease in neurogenesis in the dentate gyrus
(DG) of the hippocampus, involving a reduced prolifera-
tion, survival, and differentiation of neural stem cells
(Eisch and Petrik 2012).

When treated with antidepressants (Boldrini et al. 2013; Fu
et al. 2013; Sheline et al. 2003) or electroconvulsive therapy
(ECT) (Nordanskog et al. 2014), depressed patients showed
increased hippocampal volume. Interestingly, a meta-analysis
reported that antidepressants could decrease the hypersensitiv-
ity to negative stimuli by decreasing hippocampus hyperacti-
vation (Delaveau et al. 2011). Similarly, antidepressant such
as imipramine could restore the total number of cells in the
hippocampus impaired by social defeat stress in mice (Van
Bokhoven et al. 2011). In addition, the same antidepressant
could increase the number of hippocampal neurons in Flinders
Sensitive Line rats, a genetic rat model of depression that
shows impaired cell proliferation (Chen et al. 2010).

Altogether, these findings provide further evidence of the
crucial role of the hippocampus in depression.

Prefrontal cortex

The PFC is functionally connected with several brain struc-
tures, for processing sensory input and mediating executive
motor functions. The ventromedial PFC and the orbitofrontal
cortex are involved in the cognitive processing of emotional
stimuli originating from the limbic system (e.g., amygdala,
ventral striatum, hippocampus, and hypothalamus) and are
especially engaged in memory consolidation and retrieval
(Ongur and Price 2000; Price 1999). As such, the PFC plays
a major role in regulating the appropriate emotional response
such as fear or anxiety.Moreover, the PFC has been associated
with decision-making, personality expression, social behav-
ior, and hedonic responses (Mitterschiffthaler et al. 2003).

Neuroimaging studies showed a reduction in size of multi-
ple areas of the PFC in subjects diagnosed with MDD
(Bremner et al. 2002; Drevets 2000). In line with those stud-
ies, post-mortem brain analysis of depressed patients revealed
reduced neural cell size and neural and glial cell densities as
well as synapse number in the dorsolateral and subgenual PFC
(Cotter et al. 2002; Kang et al. 2012; Öngür et al. 1998;
Rajkowska et al. 1999). The PFC is strongly connected with
the amygdala and the hippocampus and the activity of its
different subdivisions has been widely studied in depressed
patients. Hence, although studies seemed consistent in show-
ing a lower activity of dorsolateral PFC in resting state anal-
yses of MDD patients (Fitzgerald et al. 2008; Hamilton et al.
2012; Limon et al. 2016; Zhang et al. 2015a; Zhong et al.
2016), meta-analyses of this region during task processing
and especially in response to emotional stimuli with a negative
valence have shown either a higher activity (Miller et al. 2015;
Wang et al. 2015b; Zhang et al. 2013) or a lower activity
(Groenewold et al. 2013; Hamilton et al. 2012; Zhang et al.
2015a). This might be due to the various parameters of the
studies such as age of individuals, severity of depression, or
whether there were medicated or not. The last point corrobo-
rates the hypothesis of impaired executive functions leading to
emotional biases and dysregulation inMDD. Furthermore, the
study of other PFC subregions tended to show a hyperactivity
of the ventrolateral, the orbitofrontal, and ventromedial PFC
in MDD patients (Groenewold et al. 2013; Limon et al. 2016;
Miller et al. 2015).

Regarding preclinical studies, chronic restraint stress
caused a significant reduction in the number and length of
apical dendritic branches of pyramidal neurons in PFC areas
(Cook and Wellman 2004). Similar results were observed in
rats that received chronic administration of corticosterone. In
this rodent model for stress-related disorders, a drastic dendrit-
ic reorganization of pyramidal neurons was also reported in
the medial PFC (Wellman 2001). Furthermore, in rats
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expressing a depressive-like behavior, cell activity measured
by c-Fos immunoreactivity was decreased in the ventromedial
PFC (Lim et al. 2015). These data were supported by a study
showing a decrease in both the excitatory and inhibitory neu-
ronal functions in the PFC and a disturbed neurotransmitter
homeostasis in the social defeat mouse model of depression
(Veeraiah et al. 2014).

PFC abnormalities observed either in MDD patients or in
rodent models are partly corrected by antidepressants. An 8-
week escitalopram treatment was shown to reduce irregular high
functional connectivity in the bilateral dorsal medial PFC in
MDD patients (Lyttle et al. 2015; Wang et al. 2015a) and, in
rats, a 2-week administration of a selective serotonin reuptake
inhibitor (SSRI), fluvoxamine, restored dendritic length and
spine densities but not cortical thickness after early-life stress
exposure (Lyttle et al. 2015). Furthermore, it appeared that both
high- and low-frequency electrical ventromedial PFC stimula-
tions in rat models of depression attenuated depressive-like be-
havior (Bruchim-Samuel et al. 2016; Lim et al. 2015).

Ventral striatum

Finally, a preponderant role for the ventral striatum has also
been reported in major depression. The fundamentals of the
natural reward system are attributed to the dopaminergic con-
nections between the ventral tegmental area (VTA) and the
nucleus accumbens (NAc). In this respect, the NAc and the
VTAmay play a role in mediating the anhedonic symptoms of
depression (Nestler and Carlezon Jr. 2006; Russo and Nestler
2013; Yadid and Friedman 2008). Depressed patients show an
attenuated activation of the VTA-NAc pathway or the NAc
itself when compared to normal patients in fMRI analyses
(Epstein et al. 2006; Furman et al. 2011; Pizzagalli et al.
2009; Smoski et al. 2009). In rodent models of depression, a
reduced dopaminergic activity in the NAc (Shirayama and
Chaki 2006) with a disturbed burst firing of VTA neurons
was also observed (Friedman et al. 2008).

Deep brain stimulation (DBS) of the NAc has been shown
to influence the functionality of efferent projections of the
NAc to the hippocampus (Settell et al. 2017). DBS targeting
the NAc was shown to exert antidepressant, anxiolytic, and
hedonic effects, notably in treatment-resistant depression
(Bewernick et al. 2010; Giacobbe et al. 2009; Schlaepfer et
al. 2008). These effects have been proven to be long-lasting
and stable for up to 4 years (Bewernick et al. 2012; Malone Jr.
et al. 2009). While MDD patients demonstrated reduced ven-
tral striatal activation during anticipation of gain and loss, a
treatment with the SSRI escitalopram was able to normalize
this hyporesponsiveness (Stoy et al. 2012). Preclinical studies
also showed that, in response to NAc DBS, more neuronal
precursors were found in the dentate gyrus of the hippocam-
pus, hinting at enhanced adult neurogenesis (Schmuckermair
et al. 2013). NAc DBS may also alter the morphology of the

PFC, with increases in apical and basilar dendrite length
(Falowski et al. 2011).

Overall, despite few discrepant findings, studies so far sug-
gest that MDD is associated with structural and functional
changes in brain regions, especially those described above,
and alterations in their mutual connectivity (for summary,
see Fig. 1). These changes are the likely result of alterations
in neuroplastic processes that regulate synaptic connectivity
and maintain neuronal integrity. Understanding the nature and
molecular underpinnings—including neurotrophic signal-
ing—of these processes may provide new clues for succesful
pharmacological interventions. The next sections explore al-
terations of neuroplasticity in the context of MDD.

Neuroplasticity changes in MDD
and the effects of antidepressant therapies

Neuroplasticity: definition

Neuroplasticity can be defined as the ability of the nervous sys-
tem to respond to intrinsic or extrinsic stimuli by reorganizing its
structure, function, and connections (Cramer et al. 2011). It in-
cludes different mechanisms as described in an excellent review
by Castren and Hen (2013). One of them is neurogenesis, the
formation of newborn neurons in proliferative areas. The regions
identified so far in the rodent adult brain are the subventricular
zone (SVZ) and the subgranular zone (SGZ) of the DG in the
hippocampus. Another mechanism of plasticity is the modifica-
tion of mature neuronal morphology, involving axonal and den-
dritic arborization and pruning, an increase in spine density, and
synaptogenesis. At a functional level, long-term potentiation
(LTP) is themainmechanismmediating plasticity. The transcrip-
tional regulation of genes involved in neuroplasticity by epige-
netic mechanisms also contributes to synaptic plasticity.
Altogether, these processes mediated the dynamic and adaptive
changes in synaptic strength (Castren and Hen 2013).

Neuroplasticity changes in MDD

While neuroplasticity in rodents has been well documented
during the last decades, the study of neuroplasticity in the
human brain largely remains indirect, mostly because of meth-
odological limitations as well as ethical constraints.

However, some alternative methods such as the assessment
of the hippocampal DG volume by MRI, magnetic resonance
spectroscopy (Bergmann et al. 2015; Ho et al. 2013), and more
recently the use of 14C in genomic DNA labeling (Spalding et
al. 2013) have provided some valuable information on human
neuroplasticity. Most of the post-mortem studies have now ev-
idenced that in adult humans, new neurons continued to be
generated with a modest decline during aging (Eriksson et al.
1998; Reif et al. 2006; Spalding et al. 2013). Although recently
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questioned by Sorrells et al. (2018) who suggested that human
neuroplasticity could differ from other species, it has been nev-
ertheless confirmed that in human DG, about 700 new neurons
were generated per day whatever the age (Boldrini et al. 2018).

Beside neurogenesis, it is also rather well-established that
LTP can be induced in the human CNSwith similar molecular
mechanisms than those observed in rodent models (Bliss and
Cooke 2011). Human LTP has first been demonstrated in iso-
lated cortical tissue obtained from patients undergoing sur-
gery, and recent studies have shown that LTP-like phenomena
can be obtained in the human cortex as well by using repetitive
presentations of sensory stimuli while recording event-related
potentials from the scalp (Clapp et al. 2005a, b).

In MDD, neuroimaging and post-mortem studies in
humans indicate that structural changes are often observed in
the course of this pathology. Structural MRI studies have re-
vealed reduced hippocampal volume in individuals during a
depressive episode in comparison to patients in remission
(Kempton et al. 2011), while increased hippocampal dendritic
atrophy and cell death as well as reduced LTP and BDNF
expression have also been reported (Miller and Hen 2015;
Pittenger 2013). While MRI studies were rather consistent
with the observation of a reduced DG size in patients with
depression or anxiety disorders (Boldrini et al. 2013;
Bremner et al. 2000; Cole et al. 2011; Frodl et al. 2007;
Huang et al. 2013), post-mortem studies in depressed patients
showed important disparities regarding neurogenesis,

showing either no difference (Reif et al. 2006) or a decrease
in the number of DG progenitor cells (Lucassen et al. 2010).
Although these findings make it tempting to speculate on re-
duced levels of neurogenesis in MDD, further investigations
making use of more specific techniques are needed to better
understand the dynamics of adult neurogenesis in MDD.
However, other attempts to measure human brain plasticity
in the course of MDD have demonstrated functional alter-
ations such as those observed at LTP level. For example,
visual-evoked potential amplitudes in the visual pathway
were, compared to matched control subjects, decreased in pa-
tients with depression (Normann et al. 2007; Bubl et al. 2015)
and also in bipolar disorder patients (Elvsashagen et al. 2012).

In preclinical depression-like models as well, consistent
data have reported a decrease in the proliferation and survival
of hippocampal neurons when the HPA axis was dysregulated.
Hence, using proliferation and survival cell markers such as
BrdU, Ki-67, or DCX, impaired neurogenesis was observed in
rodent models of depressive-like behavior. These models in-
cluded transgenic mice (Paizanis et al. 2010), corticosterone-
induced mouse model of depression/anxiety (Zhang et al.
2014b), or rats subjected to chronic mild stress (Morais et al.
2017 and see Anacker and Hen 2017 for a review). Beside
neurogenesis, numerous studies have also reported that syn-
aptic plasticity was also greatly impaired in stress models of
depression (Pittenger 2013). Severe stress has also been
shown to inhibit LTP (Kim and Diamond 2002) and enhance

dl PFC

vm/vl
PFC AMY HIP

VTA

Healthy Pa ent MDD Pa ent

Higher

Ac vity

Lower normal

Legend:

Fig. 1 Summary of the neuroanatomical changes observed in MDD
patients. In the MDD brain, the dotted lines correspond to the brain
volume in a healthy patient. In the HIP and the dlPFC, the alternative
blue and red colors show the discrepancies reported in the different
studies regarding their activities in MDD patients. The thinner arrows

and lines show reduced connectivity between the regions. dlPFC,
dorsolateral prefrontal cortex; vm/vlPFC, ventromedial/ventrolateral pre-
frontal cortex; HIP, hippocampus; AMY, amygdala; VTA, ventral teg-
mental area. See text for more details. This illustration was taken from
BServier medical art^ (http://www.servier.fr/servier-medical-art)
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LTD (Xu et al. 1997) in the hippocampus and in prefrontal
pyramidal cells (Goldwater et al. 2009).

Altogether, these data strongly suggest synaptic plasticity is
strongly affected in MDD, at both structural and functional
levels, and that these alterations are similar to those evidenced
in rodent studies.

Effects of antidepressant therapies on plasticity

Electroconvulsive therapy

Recent clinical studies showed that electroconvulsive therapy
(ECT) promoted structural plasticity including increased vol-
ume and morphometric changes in the hippocampus and the
amygdala along with improved clinical responses, especially
in patients with a smaller hippocampal volume (Joshi et al.
2016; Nordanskog et al. 2010; Tendulkar et al. 2013). ECT
may also reduce cortical excitability and, thereby reverse in-
creases in the excitability of cerebral cortex, during treatment-
resistant depression (Sackeim et al. 1983). In addition, low-
frequency trains of transcranial magnetic stimulation (rTMS)
applied on several regions of the brain to induce LTP- and
LTD-like changes in neuronal activity produced identical ef-
fects to those achieved with ECT in depressive patients
(Fitzgerald and Daskalakis 2011).

Similar results have been demonstrated in rodent models of
depression (Nakamura et al. 2013; Schloesser et al. 2015) and
non-human primates (Perera et al. 2007).

Exercise

Exercise has also shown beneficial effects on plasticity.
Although it has been proven that exercise in MDD patients
reduced depressive symptoms (Herring et al. 2012; Ota and
Duman 2013; Schuch et al. 2016), neuroplasticity per se has
not yet been monitored in patients in these conditions, due to
the limitations mentioned in section BNeuroplasticity changes
in MDD.^ However, a meta-analysis has suggested that acute
aerobic, but not strength exercise, increases basal peripheral
BDNF concentrations, although this effect was only transient
(Knaepen et al. 2010). A recent study showed an increase in
synchronous neuronal responses during a task that requires an
upregulation of cognitive control when exercise was com-
bined with meditation (Alderman et al. 2016). In preclinical
studies, swimming showed antidepressant-like effects on an-
hedonia in stressed rodents along with a normalization of a
stress-induced BDNFmRNA expression decrease (Jiang et al.
2014). A 21-day exercise regimen in rats transiently increased
LTP in the DG of the hippocampus (Radahmadi et al. 2016),
although recent data suggested that, if motor activity could
exert positive effects on cognitive processes, it was under very
controlled conditions (D’Arcangelo et al. 2017) and that acute
swim stress could also led to LTD (Tabassum and Frey 2013).

Antidepressant treatments

Few studies have directly addressed the effects of antidepres-
sant therapy on neuroplasticity in the human brain. Imaging
studies have provided data showing that, e.g., in MDD pa-
tients taking medication for 3 years, the left hippocampus
increased in volume compared to the beginning of the study
(Frodl et al. 2008). Interestingly, the volume of the left hippo-
campus has also been shown to enlarge under lithium treat-
ment in elderly bipolar patients, probably through a neuropro-
tective effect (Zung et al. 2016).

Regarding neurogenesis per se, the analysis of post-
mortem brains of MDD patients treated with nortriptyline
and clomipramine showed an increase of neural progenitor
cells and dividing cells in the DG, as compared to healthy
controls (Boldrini et al. 2009). In addition, the same group
reported that both the fewer mature granule neurons and the
smaller DG and granule cell layer volume found in post-
mortem brain tissue of depressive patients were reversed by
antidepressant treatment (Boldrini et al. 2013). Interestingly, a
meta-analysis concluded that depressed patients with a de-
creased hippocampal volume showed lower response/
remission rates after antidepressant treatment (Colle et al.
2016).

In a rodent model of depression, both reduced hippocampal
proliferation and increased cell death were reversed by chron-
ic administration of antidepressants (Pilar-Cuellar et al. 2013).
Adult hippocampal neurogenesis was proposed to be required
for the therapeutic action of antidepressants (David et al.
2009; Djavadian 2004; Klempin et al. 2013; Sahay and Hen
2007; Santarelli et al. 2003). Accordingly, chronic treatment
with a SSRI such as fluoxetine increased hippocampal
neurogenesis through the generation of newborn cells in the
DG (Boldrini et al. 2009; Encinas et al. 2006; Malberg et al.
2000; Santarelli et al. 2003; Surget et al. 2011). In addition,
serotonin and noradrenaline reuptake inhibitor (SNRI) antide-
pressants, like SSRIs, also modulate neurogenesis and plastic-
ity. Neurogenesis in the DG of the hippocampus was increased
following chronic venlafaxine administration to rats (Mostany
et al. 2008). Similarly, chronic venlafaxine treatment proved
to be efficient in preventing the deleterious effects of restraint
stress on hippocampal neurogenesis and BDNF protein ex-
pression (Xu et al. 2006). Likewise, tricyclic antidepressants
(TCAs) have also been shown to modulate hippocampal
neurogenesis. Clomipramine was able to counteract the
stress-induced inhibition of proliferation in the hippocampus
(Liu et al. 2008). Chronic imipramine and desipramine treat-
ment increased cell proliferation in the SGZ (Pechnick et al.
2011; Santarelli et al. 2003; Schiavon et al. 2010).

In addition to their effects on neurogenesis, evidence has
also been generated that antidepressants can regulate other
types of plasticity. Treatments with classical antidepressants
are indeed able to modulate LTP within the hippocampus
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(Wang et al. 2008) and chronic fluoxetine administration has
also been demonstrated to increase synaptic plasticity in naive
rats (Stewart and Reid 2000).

Overall, these data showed that antidepressants have a rath-
er beneficial effect on neuroplasticity. However, they still
show lack of efficacy in some depressed patients. Indeed,
MDD is a complex disorder of which the etiology remains
unclear and that cannot be simplified by neuroplasticity dys-
functions as the only targetable factor.

Neurotrophins and other growth factors

Growth factors have been proven to be strongly involved in
regulating plasticity by impacting upon almost all of the
neuroplas t ic i ty processes ment ioned in sec t ion
BNeuroplasticity changes in MDD and the effects of antide-
pressant therapies,^ including neuronal survival, differentia-
tion, and proliferation (Crutcher 1986; Lu et al. 2014).
Accordingly, this section focuses on the main studied growth
factors that have been described thus far, from their general
functions to their role in MDD. This is summarized in Table 1
and Fig. 2.

Brain-derived neurotrophic factor or BDNF

General function

BDNF is a neurotrophin involved in the growth, differentia-
tion, and survival of neurons and has also been shown to
represent an important factor in the regulation of neurogenesis
and synaptic plasticity (Lu et al. 2014). It exerts its neuro-
trophic effects by activating the tropomyosin-related kinase
receptor B (TrkB) (Chao and Hempstead 1995). It also binds,
albeit with a lower affinity, to the p75NTR receptor, which is
generally known to promote proteolysis and apoptosis (Boulle
et al. 2012). BDNF is abundantly expressed in the mammalian
brain, with the highest concentrations found in the hippocam-
pus and cortex (Ernfors et al. 1990).

BDNF and neuroplasticity

Several in vitro studies have been conducted in order to un-
ravel the effects of BDNF on plasticity. Indeed, when PC12
cells transfected with TrkB were stimulated with BDNF for
48 h, neurite outgrowth was increased compared to the non-
treated cells (Cazorla et al. 2011). Interestingly, in growth
medium B27-deprived primary hippocampal cells, BDNF
stimulation was able to promote dendritic outgrowth and spine
formation (Park et al. 2016) and this neuroplastic effect is
probably achieved through intracellular signaling cascades
(Cavanaugh et al. 2001; Obrietan et al. 2002). As such,
BNDF has been shown to increase the activity of the

mitogen-activated protein kinase (MAPK) cascade promoting
survival in neural cell cultures (Hetman et al. 2002).

In vivo evidences also support the critical role of BDNF in
plasticity. In particular, mutation studies have demonstrated
the role of this neurotrophin in structural and synaptic plastic-
ity. Total BDNF deficiency is lethal and most of the mice
lacking BDNF die during the second postnatal week
(Ernfors et al. 1994). However, heterozygous BDNF knockout
mice survive into adulthood and the use of these mice evi-
denced that BDNF was required for several forms of LTP
(Aarse et al. 2016). This was in agreement with data that
showed that BDNF infusion in the rat hippocampus induced
LTP and triggered synaptic strengthening (Bramham 2007;
Ying et al. 2002). At morphological level, these mice display
a specific hippocampal volume reduction (Lee et al. 2002;
Magarinos et al. 2011) similarly to what was found in hetero-
zygous TrkB mice (von Bohlen und Halbach et al. 2003) but
in contrast to p75NTR-deficient mice (Dokter et al. 2015), sug-
gesting a link between hippocampal volume and BDNF-
mediated TrkB signaling (von Bohlen und Halbach et al.
2003; von Bohlen Und Halbach and von Bohlen Und
Halbach 2018). In addition, in the hippocampus, BDNF in-
creases the total length, but not the branching, of apical den-
drites within the CA1 stratum radiatum, without affecting
basal dendrites in the stratum oriens (Alonso et al. 2004).
However, in mutant mice in which bdnf excision mediated
by Cre recombinase led to an almost total disappearance of
BDNF in the brain, the volume of the hippocampus was most-
ly unchanged except for small changes in dendritic branches
in restricted segments and signs of a modest delay in spine
maturation (Rauskolb et al. 2010). Although these data and
other (Baquet et al. 2004) indicate a temperate effect of BDNF
in the maintenance of the cellular architecture of the adult
brain, most of the studies evidenced its central role in neuronal
plasticity.

BDNF in MDD

BDNF in MDD has been largely documented. However,
many of the studies addressed peripheral (blood) BDNF con-
centration, with the assumption that blood BDNF could be a
biomarker reflecting that of brain tissue (see, e.g., Klein et al.
2011). However, there is no evidence that serum BDNF is
related to brain BDNF and neuroplasticity. The origin of se-
rum BDNF has been now clearly documented and was dem-
onstrated to come from the progenitors of platelets (Chacón-
Fernández et al. 2016). Nevertheless, lowered serum concen-
trations of BDNF have often been associated with MDD
(Karege et al. 2002, 2005; Sen et al. 2008, Molendijk et al.
2011). A thorough meta-analysis by Molendijk et al. showed
that, despite demonstrable study heterogeneity, serum BDNF
levels are overall lower in depressed patients (Molendijk et al.
2014). These findings were recently confirmed by two other
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meta-analytic efforts (Polyakova et al. 2015; Kishi et al.
2017). However, the significant variation between available
assays (Polacchini et al. 2015) prevents the use of serum
BDNF (and other neurotrophins) levels as a reliable biomarker
for mood disorders.

Nevertheless, within the CNS, a reduction in BDNF and
TrkB expression in the hippocampus and PFC has been re-
ported in post-mortem brain tissue of suicide victims
(Dwivedi et al. 2003; Pandey et al. 2008). One of the most
common functional single nucleotide polymorphism (SNP) in
the Bdnf gene is rs6265, causing a valine to methione substi-
tution at codon 66 (val66met). This polymorphism affects the
activity-dependent secretion of BDNF (Egan et al. 2003).
Although at first, a negative association between the val66met
polymorphism and hippocampal volume has been reported
(Frodl et al. 2007), this observation was not supported by a
meta-analysis that did not evidence any association between
hippocampal volume and the val66met genotype in neuropsy-
chiatric patients, perhaps because of the too many different
disorders analyzed in this study (Harrisberger et al. 2015).
Yet again, several other meta-analyses did confirm the associ-
ation between the val66met polymorphism and an increased
susceptibility to mood disorders (Hosang et al. 2014; Li et al.
2016; Yan et al. 2014; Zou et al. 2010). Finally, a recent study
showed that subjects with the Met allele of the Bdnf gene had
an increased risk for depression (Youssef et al. 2018). In this
study, post-mortem analyses showed that depressed patients
also have lower BDNF levels in the anterior cingulate cortex
(ACC) and the caudal brainstem compared to non-depressed
subjects, providing further evidence implicating low brain
BDNF and the BDNF Met allele in major depression risk
(Youssef et al. 2018).

BDNF and antidepressant treatments

The effect of antidepressants on BDNF expression and the
role of BDNF in the treatment of MDD have been widely
studied (see Castren and Kojima 2017 for a review).
Interestingly, it has been shown that BDNF expression was
increased in post-mortem brains of depressed patients treated
with antidepressant drugs as compared to non-treated patients
(Chen et al. 2001; Dunham et al. 2009).

The involvement of BDNF in the efficacy of antidepressant
treatments has been demonstrated mainly in rodent models.
Lee et al. developed a val66met mouse analogue, i.e.,
BDNFmet/met mice (Chen et al. 2006), and subsequent exper-
iments showed that this genetic variant decreased fluoxetine
efficacy through impaired synaptic plasticity defined by a re-
duction of theta-burst stimulation-induced LTP as well as im-
pairments in the survival of newborn cells in the hippocampus
(Bath et al. 2012; Ninan et al. 2010) and a deficit in synaptic
transmission in the PFC (Pattwell et al. 2012). In addition,
BDNF expression in the brain of rats was upregulated afterT
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chronic antidepressant drug exposure and ECT (Altar et al.
2003; Balu et al. 2008; Jacobsen and Mork 2004; Nibuya et
al. 1995). Interestingly, some studies have shown that
antidepressant-like effects observed in mouse models of de-
pression after chronic administration of antidepressants were
reversed by TrkB antagonist injection (Boulle et al. 2016; Ma
et al. 2016; Yasuda et al. 2014) and that inhibition of TrkB
signaling blocked the effects of antidepressants (Saarelainen
et al. 2003). Interestingly, in addition to its effects on BDNF
expression, autophosphorylation of TrkB by antidepressants
has also been reported by the group of Castren (Rantamaki et
al. 2007; Saarelainen et al. 2003) suggesting that TrkB can be
transactivated independently from neurotrophins, as demon-
strated in the case of glucocorticoid receptors (Jeanneteau et
al. 2008). Indeed, a study by Rantamaki et al. (2011) showed a
rapid action of imipramine on TrkB phosphorylation in either
presence or absence of BDNF, suggesting that antidepressants

do not require BDNF to activate TrkB, an effect that was
independent of 5-HTT. These results highlight the potential
direct effect of the BDNF-TrkB signaling pathway in the
mechanism of action of antidepressants (Autry and
Monteggia 2012) and evidenced that TrkB is a valuable target
to treat depression.

Brain region-specific BDNF effects

In rodents, direct infusion of BDNF in the hippocampus
(Deltheil et al. 2008, 2009; Shirayama et al. 2002; Sirianni
et al. 2010) and midbrain (Siuciak et al. 1997) showed
antidepressant-like effects. In contrast, an opposite, pro-
depressive effect was reported after infusion of BDNF in the
VTA or the NAc (Eisch et al. 2003). The same disparity was
present using region-specific knockdown of BDNF expres-
sion. Impairment of BDNF signaling in the DG of the
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Fig. 2 Neurotrophin level changes observed in MDD patients with or
without antidepressant treatment. Observed changes in neurotrophin
levels, in MDD patients whether or not under antidepressant treatment,
represented in the different brain areas involved in depression, and in
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hippocampus (Taliaz et al. 2010) elicited pro-depressive be-
havior, whereas knockdown of BDNF in the NAc had an
antidepressive effect (Berton et al. 2006). Interestingly, condi-
tional knockout in the forebrain resulted in an increase in
depressive-like behavior in female but not male mice
(Monteggia et al. 2007) and, furthermore, decreased the effi-
cacy of the antidepressant desipramine (Monteggia et al.
2004). This conditional knockout of BDNF in the forebrain
displayed the same sex-specific incongruity in stress-induced
depressive-like behavior (Autry et al. 2009). A different study
using adeno-associated viral-mediated knockout of BDNF in
the DG and CA1-region of the hippocampus showed that a
loss of BDNF function in the hippocampus attenuated antide-
pressant drug treatment efficacy (Adachi et al. 2008).

Taken together, these data suggest that BDNF could be
considered as a key therapeutic molecule against depression
(Allen et al. 2015).

Fibroblast growth factor or FGF

General function

The fibroblast growth factor (FGF) family has been described
as a major player in proliferation and maturation of neurons in
the SVZ and SGZ of the hippocampal DG (Woodbury and
Ikezu 2014). The FGF family is composed of 18 ligands and
4 subtypes of receptors. FGF1 is expressed mostly in neurons
while FGF2 is expressed in both neurons and glial cells. FGF1
and FGF2 are the most studied ligands of this family and have
been shown to be dysregulated in mood disorders (Turner et
al. 2006; Turner et al. 2012). They can bind all four receptor
subtypes in order to activate the phospholipase C-γ (PLC-γ1
MAPK and AKT pathways (Turner et al. 2006; Turner et al.
2012). In addition, FGF1 and FGF2 were evidenced to play a
critical role in the regulation of synaptic plasticity (Di Liberto
et al. 2014).

FGF in neuroplasticity

Intracerebroventricular (ICV) injection of FGF2 induced
neurogenesis in both the SVZ and SGZ (Jin et al. 2003;
Mudo et al. 2009; Rai et al. 2007). Mice with a complete
loss-of-function FGF2 allele showed a significant decrease
in newly generated neurons but no reduction in proliferating
cells (Werner et al. 2011). The additional increase in cell death
in the hippocampus indicated a faulty neurogenesis following
FGF2 knockout (Werner et al. 2011). Conditional knockout
experiments with FGF receptor 1 (FGFR1)-null mice show
defective LTP and neurogenesis (Zhao et al. 2007), suggesting
that the FGF2-FGFR1 interaction might represent an impor-
tant mediator of neurogenesis.

FGF in MDD

Post-mortem brain analysis in humans revealed a lower ex-
pression of FGF1 and FGF2 in the dorsolateral PFC and the
ACC of patients with MDD (Evans et al. 2004). In addition,
FGF2 was decreased in the hippocampus of depressed pa-
tients, whereas FGFR1 was increased (Gaughran et al.
2006). In rodents, Turner et al. reported reduced mRNA ex-
pression of FGF2 and its main receptor FGFR1 in the CA1,
CA2, CA3, and DG following social defeat stress, a well-
established model of depression (Turner et al. 2008a).
Injection of FGF2 was also shown to reduce depressive-like
behavior in rats (Turner et al. 2008b). Amore recent study also
reported that increased cell proliferation in the PFC following
FGF2 infusions might also be involved in the antidepressant
actions of FGF2 (Elsayed et al. 2012).

Vascular endothelial growth factor or VEGF

General function

Vascular endothelial growth factor (VEGF) is primarily
known for its induction of angiogenesis and modulation of
vascular permeability during embryogenesis and growth, as
well as pathological events such as in tumorigenesis. It can
bind to different receptors: receptor tyrosine kinases (VEGFR)
1 and 2 with a higher affinity for VEGFR1. In addition,
mounting evidence suggests that VEGF can be considered
as a potent neurotrophic factor, inducing neurogenesis, neuro-
nal survival and proliferation, glia survival, and glia migration
(Carmeliet and Ruiz de Almodovar 2013).

VEGF in neuroplasticity

Interestingly, experimental studies showed that VEGF dis-
plays robust neuroprotective effects in cell models of ischemia
and hypoxia (Jin et al. 2000) as well as a positive effect on
neuronal growth, maturation, and proliferation under
normoxic conditions (Khaibullina et al. 2004; Rosenstein et
al. 2003; Silverman et al. 1999; Sondell et al. 1999; Zhu et al.
2003). A role in the development of dendrites and axons has
also been described for VEGF (Khaibullina et al. 2004; Licht
et al. 2010; Rosenstein et al. 2003; Sondell et al. 1999).
Moreover, ICV administration of VEGF increased neuropro-
tection and neurogenesis in the adult rat brain after ischemia
(Sun et al. 2003). More specifically, ICV administration of
VEGF increased neurogenesis in both the SVZ and the SGZ
of the DG with enhanced proliferation of neurons, astroglia,
and endothelial cells (Jin et al. 2002), while VEGF-B knock-
out mice showed impaired neurogenesis (Sun et al. 2006).
Hence, the overexpression of VEGF in the hippocampus
using an adeno-associated viral vector in rats resulted in in-
creased neurogenesis and was associated with improved
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learning and memory (Cao et al. 2004; During and Cao 2006).
Interestingly, VEGF can promote neurogenesis by stimulating
endothelial cells in order to release other neurotrophic factors
(Yamada 2016). In addition, ependymal cells can synthesize
VEGF leading to a stimulation of the VEGFR2 and inducing
proliferation of neuronal precursors and enhanced formation
of new neurons in the hippocampus (Nowacka and
Obuchowicz 2012).

VEGF in MDD

A multitude of studies have investigated the plasma concen-
tration of VEGF in MDD patients, but the data and interpre-
tation remain conflicting possibly due to the differences in
study designs (see review by Clark-Raymond and Halaris
2013) In addition, as mentioned above, there is currently no
evidence that blood levels of neurotrophins reflect those of the
brain, making causal inferences of the role of VEGF in MDD
based on blood concentrations rather speculative.
Nevertheless, angiogenesis seemed to be mediating the
SSRI-induced upregulation of neurogenesis through VEGF
(Yamada 2016). Indeed, higher hippocampal angiogenesis
and neurogenesis have been found in SSRI-treated MDD pa-
tients when compared with untreated or healthy individuals
(Boldrini et al. 2012). Chronic stress in rats decreased the
expression of VEGF and its receptor in the hippocampus
(Heine et al. 2005). Furthermore, VEGF is required for the
proliferation of neural stem-like cells in the hippocampus fol-
lowing ECT treatment (Elfving and Wegener 2012; Segi-
Nishida et al. 2008). In a similar manner, VEGF also seems
to be required for the behavioral action of various antidepres-
sant drugs in rodent models of depression (Greene et al. 2009;
Sun et al. 2012; Warner-Schmidt and Duman 2007; Warner-
Schmidt and Duman 2008).

Glial cell line-derived neurotrophic factor or GDNF

General function

Glial cell line-derived neurotrophic factor (GDNF) was first
discovered in a glial cell line but is expressed in many brain
regions. It is a member of the transforming growth factor β
(TGF-β) superfamily and is important for neuronal survival
especially for dopaminergic and serotonergic neurons. It binds
to the GDNF-family receptors α1 (GFRα1) activating tyro-
sine kinase signaling (Sharma et al. 2016).

GDNF in neuroplasticity

Experimental studies in animal models evidenced a neuropro-
tective role of GDNF, and ICV infusion of GDNF increased
progenitor cell proliferation in the DG (Dempsey et al. 2003)
and SVZ (Kobayashi et al. 2006). Similarly, infusion of

GDNF in the striatum of rats increased progenitor cell prolif-
eration in the hippocampus and substantia nigra (Chen et al.
2005). Moreover, GDNF induced differentiation of DG-
derived neural precursors into astrocytes in vitro (Boku et al.
2013). Further, the use of an adeno-associated viral vector that
induced overexpression of GDNF in the rat cortex provided
neuroprotection against ischemia-induced injury (Tsai et al.
2000).

GDNF in MDD

Only a few clinical studies examined the role of GDNF in
MDD, and contrasting findings between brain and blood ex-
pression are reported (Sharma et al. 2016). A recent post-
mortem brain analysis showed an increase of (GDNF) expres-
sion in the parietal cortex of MDD patients (Michel et al.
2008). To our knowledge, this is the only region that has been
studied in humans with respect to GDNF, although several
studies have investigated the serum level of GDNF in MDD
(Diniz et al. 2012a, b; Pallavi et al. 2013; Zhang et al. 2008)
and under antidepressant treatment (Zhang et al. 2008).

In addition, antidepressant exposure increased GDNF re-
lease in a rat C6 glioblastoma cell line (Hisaoka et al. 2001),
whereas lithium treatment in rats resulted in increased GDNF
concentrations in the PFC and occipital cortex but a decrease
in the hippocampus (Angelucci et al. 2003b). In mice exposed
to chronic ultra-mild stress, an increase in Gdnf mRNA ex-
pression was observed in the hippocampus. This modification
was partly reversed by chronic administration of the antide-
pressant agomelatine (Boulle et al. 2014). Furthermore, work
on the same mouse model showed that GDNF, with other
neurotrophins, could be involved in mediating the behavioral
response to antidepressants (Uchida et al. 2011). Thus far, the
exact involvement of GDNF in the etiology of depression is
not fully understood, but its neuroprotective capacity might
make it an interesting future target for antidepressant
treatment.

Insulin-like growth factor or IGF-1

General function

Insulin-like growth factor (IGF-1) and its receptor IGF-1R are
found in many tissues including the brain (Aberg et al. 2006).
It influences growth and differentiation processes (Frysak et
al. 2015). IGF-1 has been designated as a potential therapeutic
target for neurodegenerative diseases such asMDD (Szczesny
et al. 2013).

IGF-1 in neuroplasticity

IGF-1 induced differentiation of neuronal precursors
(Anderson et al. 2002; Arsenijevic and Weiss 1998) and
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proved to be neuroprotective in cerebellar granule neurons in
vitro (D’Mello et al. 1993). IGF-1 knockout mice showed a
decrease in total brain size and SGZ volume, further
supporting the importance of IGF-1 in neurodevelopment
(Beck et al. 1995). Developmental research in mice has re-
vealed the importance of IGF-1 in hippocampal neurogenesis
and synaptogenesis (O’Kusky et al. 2000). Furthermore, ICV
infusion of IGF-1 ameliorated the age-related decline in hip-
pocampal neurogenesis (Lichtenwalner et al. 2001), while pe-
ripheral administration of this growth factor could induce hip-
pocampal neurogenesis in rats (Åberg et al. 2000).

IGF-1 in MDD

Although clinical studies showed somewhat inconsistent find-
ings, they however mainly revealed higher IGF-1 levels in the
serum of depressed patients, which declined during effective
antidepressant treatment (Bot et al. 2016; Kopczak et al. 2015;
Szczesny et al. 2013). In contrast, IGF-1 was high in cerebro-
spinal fluid of antidepressant-treated patients (Schilling et al.
2011). These data suggest differential actions of IGF-1 in the
periphery and the brain.

However, preclinical studies using conditional knockout
mice showed that a decrease in either systemic or hippocam-
pal IGF-1 levels could increase the susceptibility to develop
depressive-like behavior (Mitschelen et al. 2011). In addition,
in corticosterone-treated rats, a decrease of IGF-1 in both the
hippocampus and serum has been reported. However, physi-
cal exercise using continuous running was not able to reverse
this diminution while it did prevent depressive-like behavior
(Yau et al. 2014). Interestingly, since IGF-1 can readily pass
the blood-brain barrier (Pan and Kastin 2000) in contrast to
BDNF, its effects on the brain can be achieved by direct in-
jection into the blood. In line with this notion, when adminis-
trated chronically, a peripheral injection of IGF-1 in a mouse
model of depression was shown to induce antidepressant-like
behaviors, comparable to commonly used antidepressants
(Duman et al. 2009). In addition, an increase of peripheral
IGF-1 by direct injection of IGF-1 or inhibition of IGF-1
binding protein displayed anxiolytic and antidepressant ef-
fects in rodents (Duman et al. 2009; Hoshaw et al. 2005;
Malberg et al. 2007; Park et al. 2011), which might be attrib-
uted, at least in part, to increased serotonin levels in the brain
(Hoshaw et al. 2008). Of note, intranasal administration has
been proposed in order to provide a shorter path for IGF-1 to
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Fig. 3 Neurotrophins increase neuroplasticity through the activation of
three main signaling pathways. Neurotrophins bind to their receptors in
order to promote three main signaling pathways: the MAPK/ERK, the
PI3-K, and the PLCγ signaling cascades. Once activated, they stimulate
neuroplasticity, especially synaptic plasticity, neurotransmission and
neuronal survival, growth, and differentiation. An increase of
neuroplasticity is likely to induce antidepressant effects. BDNF, brain-

derived neurotrophic factor; TrkB, tropomyosin-related kinase receptor
B; FGF, fibroblast growth factor; FGFR, fibroblast growth factor recep-
tor; VEGF, vascular endothelial growth factor; VEGFR, vascular endo-
thelial growth factor receptor; GDNF, glial cell line-derived neurotrophic
factor; GFRα1, GDNF-family receptor-α; IGF-1, insulin-like growth fac-
tor 1; IGF-1R, insulin-like growth factor 1 receptor; NGF, nerve growth
factor; TrkA, tropomyosin-related kinase receptor A
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enter the brain (Paslakis et al. 2012), avoiding unwanted ef-
fects of IGF-1 in peripheral tissues.

Nerve growth factor or NGF

General function

Nerve growth factor (NGF) is a growth factor first described
as a neurite outgrowth factor (Olson 1967). Later, NGF
proved to be involved in neuronal repair and survival
(Kromer 1987; Shigeno et al. 1991; Sofroniew et al. 2001;
Zhao et al. 2004). NGF has been implicated in proliferation
and differentiation of neuronal stem cells (Cattaneo and
McKay 1990) and more recently in neurogenesis in the stria-
tum (Frielingsdorf et al. 2007; Zhu et al. 2011) and in regulat-
ing hippocampal plasticity (Conner et al. 2009).

NGF in MDD

To date, only a few studies have investigated the role of this
trophic factor in MDD and only at peripheral level.

In the Flinders Sensitive Line (FSL) rat model of depres-
sion, ECTwas found to increase NGF levels in the hippocam-
pus (Angelucci et al. 2003a). In addition, subcutaneous NGF
injections show antidepressant effects (Overstreet et al. 2010).

This—non-exhaustive—review of the literature further un-
derlines the potential effects of the different members of the
neurotrophin family in the alteration of neuroplasticity often
observed in depression-like disorders, as summarized in
Fig. 3.

Future directions: targeting growth factor
signaling with synthetic small molecules,
focus on the BDNF/TrkB pathway

Over the last decades, convergent studies suggested that the
BDNF/TrkB signaling pathway was a main actor in the devel-
opment and course of mood disorders, in particular depres-
sion, as well as in the action of currently available antidepres-
sants. Because of the poor efficacy of antidepressants and their
delayed therapeutic effect, there is a need to find novel and
more efficacious compounds. The use of BDNF itself turned
out to be rather difficult because of its unfavorable pharmaco-
kinetic profile. Indeed, peripheral administered BDNF hardly
crosses the blood-brain barrier and has a very short half-life.
Interestingly, the recent data suggesting that antidepressant
could also directly transactivated TrkB (Rantamaki et al.
2011) point to this receptor as a main molecular target for
treating depression. Thus, attempts to develop new molecules
that directly target TrkB signaling have been undertaken as
proposed by Tsai (2007).

TrkB agonists

7,8-Dihydroxyflavone

The most extensive examined TrkB agonist so far is 7,8-
dihydroxyflavone (DHF). It was first described as an antiox-
idant and later identified as a TrkB agonist after a screening of
flavone derivatives (Choi et al. 2010, Liu et al. 2010). Many
experiments have been performed and have revealed promis-
ing results regarding antidepressant-like properties. Recent
studies show that DHF has antidepressant effects in mice
displaying LPS-induced depressive-like behavior in the tail
suspension test (TST) and the forced swim test (FST)
(Zhang et al. 2014a). In the learned helplessness model of
depression in rats, a single bilateral infusion of DHF in various
subregions of the hippocampus and in the infralimbic medial
PFC induced antidepressant effects (Shirayama et al. 2015).

Furthermore, DHF has been shown to normalize dendritic
spine structure in an LPS model of depression (Zhang et al.
2014a) and to increase neurogenesis in the hippocampus of
naïve mice (Liu et al. 2010). Besides its effect on depressive-
like behavior, further studies have tested DHF on cognition.
Indeed, restoration of memory deficits in 5XFAD and APP/
PS1 mouse models of Alzheimer’s disease (AD) have been
shown after both acute and chronic administration of DHF
(Bollen et al. 2013; Devi and Ohno 2012; Zhang et al.
2014c), while it did not seem to exert this effect when injected
chronically in APP23PS45 transgenic mice (Zhou et al. 2015).
Because memory impairments were observed in MDD pa-
tients (Dere et al. 2010; Millan et al. 2012), the recovery of
memory deficits in animal models of AD after administration
of DHF could be expected. Liu et al. optimized the molecule
by synthesizing various bioisosteric derivatives and showed
an even more pronounced antidepressant effect in both the
FST and TST requiring a lower dose for a more potent effect
(Liu et al. 2010; Liu et al. 2012).

Other promising agonists

Gedunin is a tetranortriterpenoid isolated from the Indian
neem tree. Its derivative, deoxygedunin, seems to be a prom-
ising selective TrkB agonist, showing protective effects
against apoptosis, both in vitro, in hippocampal neurons incu-
bated with a toxic dose of DMSO, and in vivo, in mice that
received kainic acid (Jang et al. 2010). Antidepressant effects
of deoxygedunin have also been shown after subchronic treat-
ment, displaying reduced immobility in the FST (Jang et al.
2010).

LM22A-4 was designed to mimic the loop II domain of
BDNF and proven to be a partial agonist. In vitro work
showed that LM22A-4 has neuroprotective properties
(Massa et al. 2010). It was first shown as an effective molecule
to reverse respiratory abnormalities (Kron et al. 2014; Schmid
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et al. 2012) and to improve functional recovery after stroke
(Han et al. 2012). Furthermore, it was also shown to reverse
alcohol drinking in mice.

TDP6 and 29D7 have been shown to represent other prom-
ising BDNF mimetic molecules able to promote
oligodendrocyte-mediated myelination in vitro (Wong et al.
2014) and to enhance neuronal survival and neurotic out-
growth in vitro and in vivo as well as to provide long-lasting
neuroprotection against neonatal hypoxic-ischemic brain inju-
ry (Kim et al. 2014; Qian et al. 2006).

TAM-163, an antibody targeting TrkB, has been shown to
be a partial TrkB agonist but only tested as an agonist agent for
body weight regulatory disorders (Perreault et al. 2013).

Another way to activate Trk receptors is to potentiate their
neurotrophic-mediated activation. BMS355349 has been de-
scribed as a selective potentiator of NT-3 mediated TrkA and
TrkB receptor activity and has proven to induce neurogenesis
(Chen et al. 2009; Lewis et al. 2006).

To sum up, further investigations are required regarding the
action of TrkB agonists in mood disorders, but their observed
neuroprotective effects so far are promising.

TrkB antagonists

Knowing that, in a rat model of depression, increases in
BDNF in the VTA-NAc (Shirayama et al. 2015; Zhang et al.
2015b) induced pro-depressive-like effects (Eisch et al. 2003),
the use of partial antagonists as a treatment for diseases related
to nervous system dysregulations has been considered. To our
knowledge, only ANA-12 and cyclotraxin B, both described
as selective antagonists for TrkB, have been tested so far.

ANA-12 is a selective partial agonist that was first devel-
oped by Carzola et al. in 2011 using a structure-based in silico
screening (Cazorla et al. 2011). In their study, the authors
identified a low-molecular weight antagonist of TrkB that
could induce anxiolytic and antidepressant properties. While
ANA-12 was mainly used as a tool to block the BDNF/TrkB
complex in order to better understand the mechanism of action
of TrkB signaling (Montalbano et al. 2013), two recent studies
tried to use it as a therapeutic agent. When infused bilaterally
in the NAc, ANA-12 showed antidepressant properties in the
TST and FST in LPS-treated mice (Zhang et al. 2014a).
Moreover, in mice that exhibit a reduced social interaction,
ANA-12 infusion into the NAc has been shown to completely
block social avoidance (Walsh et al. 2014). When administrat-
ed intraperitoneally and alone, ANA-12 could also decrease
the immobility time in the TST and the FST in the same LPS-
treated mice.

Cyclotraxin B has been mainly used to antagonize BDNF/
TrkB signaling. Nevertheless, some behavioral studies have
been performed. While one study has observed anxiolytic
properties, this molecule did not seem to display clear antide-
pressant effects (Cazorla et al. 2010) but it may be suitable for

the treatment of neuropathic pain (M’Dahoma et al. 2015). In
spite of these interesting results, antagonists could also induce
cell death, an issue that should be addressed when considering
using these agents in chronic treatment regimens (Cazorla et
al. 2011; Takemoto et al. 2015).

It is often observed that in the presence of the endogenous
ligand, a synthetic molecule presents antagonistic properties.
This was, e.g., shown in a study where they screened several
potential TrkB agonists in cells stably transfected with TrkB.
When the cells were solely incubated with the synthetic mol-
ecules, an increase of TrkB phosphorylation was observed.
However, in presence of BDNF, the molecules lost their ago-
nistic effect and showed an antagonistic effect with a decrease
of P-TrkB (Cardenas-AguayoMdel et al. 2013). Thus, the use
of partial agonists or antagonists in order to treat mood disor-
ders seems to be a promising avenue of research. However,
whether we should agonize or antagonize the pathway is not
yet well defined. Also, further investigations have to be
achieved regarding the role of the BDNF/TrkB complex in
mood disorders, in order to have a better knowledge of how
to correct the dysregulation of this system in mental illness.

Concluding remarks

Growth factors and associated neurotrophic signaling play an
essential role in the development and maintenance of the cen-
tral nervous system (Anlar et al. 1999; Ford-Perriss et al.
2001; Greenberg et al. 2009). Accordingly, there is growing
evidence that abnormal trophic support in cortico-limbic re-
gions regulating mood and emotions may take part in the
pathophysiology of depression (Krishnan and Nestler 2008).
In addition, clean-cut evidence shows that antidepressants re-
quire neuroplasticity pathways to rescue the observed deficits
in neuronal and synaptic plasticity often associated with mood
disorders (Pittenger and Duman 2008). However, current
knowledge makes it difficult to conclude whether
neuroplasticity and neurogenesis represent a cause, a conse-
quence (or both), or an epiphenomenon of the pathological
processes associated with depression. Hence, future research
should focus on elucidating the exact involvement of neuro-
trophic signaling in the onset and course of major depression.
Furthermore, mounting evidence seems to indicate that
neurogenesis might not be required for the therapeutic action
of antidepressants (Bessa et al. 2009). In line with this hypoth-
esis, the usage of N-methyl-D-aspartate (NMDA) receptor an-
tagonists showed that acute induction of neuroplasticity path-
ways, e.g., increased BDNF signaling, was sufficient to pro-
duce a robust and prolonged antidepressant effect (Autry et al.
2011; Li et al. 2010). Hence, the rapid enhancement of hippo-
campal neuroplasticity—involving dendritic growth, spine
density, and synaptic transmission—represents an original
strategy to circumvent the delayed efficacy of current
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antidepressant drugs. Finally, the use of drugs that specifically
target neurotrophic signaling should provide more insights in
the role of neuroplasticity pathways in antidepressant re-
sponses. As growth factors and neurotrophins generally dis-
play a poor blood-brain barrier penetration and a short half-life
in plasma (Nave et al. 1985; Ochs et al. 2000; Poduslo and
Curran 1996), identification of small non-peptidic
neurotrophin mimetics, albeit challenging on its own, may
represent an interesting target for the development of a new
class of therapeutic agents for mood-related disorders.
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