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Abstract

Motivation: Many Gram-negative bacteria use type VI secretion systems (T6SS) to export effector

proteins into adjacent target cells. These secreted effectors (T6SEs) play vital roles in the competi-

tive survival in bacterial populations, as well as pathogenesis of bacteria. Although various compu-

tational analyses have been previously applied to identify effectors secreted by certain bacterial

species, there is no universal method available to accurately predict T6SS effector proteins from

the growing tide of bacterial genome sequence data.

Results: We extracted a wide range of features from T6SE protein sequences and comprehensively

analyzed the prediction performance of these features through unsupervised and supervised learn-

ing. By integrating these features, we subsequently developed a two-layer SVM-based ensemble

model with fine-grain optimized parameters, to identify potential T6SEs. We further validated the

predictive model using an independent dataset, which showed that the proposed model achieved

an impressive performance in terms of ACC (0.943), F-value (0.946), MCC (0.892) and AUC (0.976).

To demonstrate applicability, we employed this method to correctly identify two very recently

validated T6SE proteins, which represent challenging prediction targets because they significantly

differed from previously known T6SEs in terms of their sequence similarity and cellular function.

Furthermore, a genome-wide prediction across 12 bacterial species, involving in total 54 212 pro-

tein sequences, was carried out to distinguish 94 putative T6SE candidates. We envisage both this

information and our publicly accessible web server will facilitate future discoveries of novel T6SEs.
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1 Introduction

Gram-negative bacteria secrete proteins for a variety of cell survival

purposes, and recently a sophisticated nanomachine called the type

VI secretion system (T6SS) has been shown to function in delivering

effector proteins (termed T6SEs) into neighboring cells that may be

either eukaryotic or prokaryotic (Ho et al., 2014; Mougous, 2006;

Vettiger and Basler, 2016). In this way, the T6SS can be employed

for host cell subversion and pathogenesis, and also to eliminate bac-

terial competitors. Multiple gene clusters have been discovered that

encode components of the T6SS machinery, and are widespread

among Gram-negative bacteria (Boyer et al., 2009). Each T6SS has

multiple conserved mechanisms for recruiting its associated effectors

for secretion. In each case, effector recruitment involves direct or in-

direct association with the hemolysin co-regulated protein (Hcp)

and valine-glycine repeat G (VrgG) or proline-alanine-alanine-

arginine (PAAR) proteins of the T6SS, which are expelled together

during the translocation events (Cianfanelli et al., 2016).

Experimental methods for the discovery of T6SEs have primarily

been discovery-driven, knowledge/hypothesis-based methodologies:

specific analysis of T6SS-associated genes, proteomics-based methods

and screens of mutant libraries (Lien and Lai, 2017). In addition,

sequence-based analyses have been developed for predicting potential

effector candidates from genome sequence. For instance, variant

members of the VgrG and Hcp protein families with additional C-ter-

minal domains are promising T6SE candidates (Cianfanelli et al.,

2016; Jamet and Nassif, 2015; Ma et al., 2017a; Pukatzki et al.,

2009) with some characterized as T6SEs (Blondel et al., 2009; Brooks

et al., 2013; Dong et al., 2013; Flaugnatti et al., 2016; Ma et al.,

2017a; Pukatzki et al., 2007). Also, there is evidence of genetic link-

age between the known T6SS chaperones, such as DUF4123 of Tap-

1/TEC (Liang et al., 2015) and DUF2169 (Bondage et al., 2016;

Liang et al., 2015), and their cognate T6SE. More recently, conserved

domains have been used to identify T6SEs: Rhs/YD repeat

(Koskiniemi et al., 2013; Ma et al., 2017b; Murdoch et al., 2011;

Whitney et al., 2014), PAAR (Ma et al., 2014; Rigard et al., 2016;

Whitney et al., 2014), TTR (Flaugnatti et al., 2016; Shneider et al.,

2013) and MIX motifs (Salomon, 2016; Salomon et al., 2014, 2015)

have all been used as tools to identify tentative T6SEs. While these

bioinformatics approaches have identified some T6SEs they are lim-

ited to, and highly dependent on, the existing knowledge of biochem-

ical features and transport mechanisms of T6SEs.

We sought to develop a universal machine learning based

method to accurately predict T6SS effector proteins. We extracted a

wide variety of features from T6SEs based on their sequence profile,

evolutionary information and physicochemical property, and com-

prehensively analyzed the prediction performance of these features

using unsupervised and supervised learning. A set of SVM-based

models was then developed for these features, assembled as a

two-layer integrative to identify potential T6SEs, effectively and

robustly. This ensemble model was further tested using (i) an inde-

pendent dataset of 20 newly discovered T6SEs, and (ii) by assess-

ment of two newly discovered and experimentally validated T6SEs.

The results show that our proposed model achieved a much better

performance in terms of ACC (0.943), F-value (0.946), MCC

(0.892) and AUC (0.976) when compared with single feature based

models, one-layer ensemble models and two motif-based searching

methods. Additionally, by accurately recognizing new experimen-

tally validated T6SEs, the proposed model demonstrated its effect-

ivity and robustness toward identification of potential T6SEs.

Furthermore, with our genome-wide prediction across 12 bacterial

species, involving a total of 54 212 encoded protein sequences, we

were able to identify 94 putative T6SE candidates. Lastly, we de-

veloped an online bioinformatics server, termed Bastion6 (Bacterial

secretion effector predictor for type VI secretion system), to provide

a user-friendly T6SE prediction service. To the best of our know-

ledge, Bastion6 is the first machine learning based predictor for

T6SE prediction. We envisage this server will be widely used to fa-

cilitate discovery of novel T6SEs.

2 Materials and methods

An overview of the workflow of our Bastion6 methodology is illus-

trated in Figure 1. Briefly, three major stages are involved in the devel-

opment of Bastion6: (i) sequence analysis based on the curated

dataset; (ii) feature extraction, model training and construction and

(iii) feature analysis, model parameterization and performance assess-

ment using unsupervised analysis, supervised analysis and case study.

2.1 Data collection and preprocessing
To construct the training dataset, we extracted 178 known T6SE se-

quences from the SecretEPDB database (An et al., 2017) and 1132

non-effectors from the literature (Zou et al., 2013), and then

removed highly homologous sequences at the threshold of 90% se-

quence identity due to limited positive samples. We finally obtained

a training dataset containing 138 positive and 1112 negative protein

sequences (Supplementary Fig. S1).

To further evaluate the performance of our proposed ensemble

method, as compared with single feature based models and existing

motif-based T6SE searching methods, we generated an independent

dataset by extracting T6SEs from recently published works in the lit-

erature (Supplementary Table S1) and non-T6SEs from Vibrio para-

haemolyticus. After highly homologous samples (with more than

Fig. 1. Workflow of our developed Bastion6 approach
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90% similarity) were removed from our training dataset, we ob-

tained the final independent dataset with 20 positive and 200 nega-

tive samples. Aside, two very recently experimentally validated

T6SEs (Lin et al., 2017; Si et al., 2017) were used as case studies to

test the identifying capability of the proposed method.

2.2 Feature extraction
A protein’s amino acid sequence contains important intrinsic infor-

mation that dictates its properties. These include composition, per-

mutation and combination modes of amino acids, orders of amino

acids, similarities, homologies with other proteins, evolutionary in-

formation and physicochemical properties. While each type of fea-

ture may contribute to the characteristics of T6SEs, none of the

features is predominant among all T6SEs, or indeed constitutes a

sufficient and necessary determinant for a protein to be an effector.

Thus, extracting features from a wide range of properties would bet-

ter characterize T6SEs. In this work, we categorized this information

into three groups: sequence profile, evolutionary information and

physicochemical property.

2.2.1 Group 1: sequence-based features

Protein function is determined by the three-dimensional structure of

the protein itself, which in turn depends on the primary structure,

i.e. amino acid sequence (Anfinsen, 1972). Different proteins dif-

fer in the percentage compositions of amino acids, the modes of

combination of amino acids, and the orders of amino acids.

Accordingly, three types of sequence-derived features, including

amino acid composition (AAC), dipeptide composition (DPC) and

Quasi-Sequence-Order descriptors (QSO), were encoded to repre-

sent the above characteristics, respectively.

1. AAC is a widely used type of characterizing the occurrence fre-

quencies of 20 amino acids in a sequence and can thus generate

a 20-dimensional feature vector.

2. DPC describes the frequencies of dipeptides, each of which is

made up of a pair of amino acids. It thus generates a 400-dimen-

sional feature vector, which partially reflects the sequence order

information and fragment information.

3. QSO (Chou, 2000) describes the sequence order effect based on

the physicochemical distance between amino acids. The QSO de-

scriptors of the sequence can be calculated as:

Xr ¼
frP20

r¼1 fr þx
Pmaxlag

d¼1 sd

; r ¼ 1; 2; . . . ; 20;

Xd ¼
xsd�20P20

r¼1 fr þ x
Pmaxlag

d¼1 sd

; d ¼ 21;22; . . . ; 20þmaxlag;

sd ¼
XN�d

i¼1

ðdisti;iþdÞ2;d ¼ 1; 2; . . . ;maxlag;

8>>>>>>>>>><
>>>>>>>>>>:

where fr represents the normalized occurrence for amino acid r,

disti;iþd denotes the distance between the ith amino acid and the

(iþd)th amino acid of the sequence, N counts the amino acids of

the sequence, x denotes the weighting factor and maxlag defines the

maximum lag that should be no more than the length of the protein

sequence. Accordingly, by applying these formulas into Schneider-

Wrede physicochemical distance matrix (Schneider and Wrede,

1994) and another chemical distance matrix (Grantham, 1974), two

feature vectors were obtained, each of which combines Xr and Xd

in 20þmaxlag dimensions, with default values x¼0.1 and

maxlag¼30.

2.2.2 Group 2: evolutionary information-based features

An increasing number of studies have shown that including evolu-

tionary information is more informative than just sequence informa-

tion alone (An et al., 2018; Wang et al., 2017a; Zou et al., 2013).

Accordingly, such information can serve as a basis for additional

feature encodings (Wang et al., 2017b):

1. The Blocks substitution matrix (BLOSUM) is a substitution ma-

trix used to score local alignments between evolutionarily diver-

gent protein sequences. Due to its usefulness it has been applied

in many previous bioinformatics studies (Capra and Singh,

2008; Jones, 1999; Jones and Cozzetto, 2015; Wen et al., 2016).

In this work, we encoded a protein sequence by mapping its

amino acids onto the BLOSUM62 matrix to retrieve the residue

similarity values. Accordingly, we obtained a 175-dimentional

feature vector.

2. A position-specific scoring matrix (PSSM) is a L � 20 matrix,

where L is the length of its corresponding protein sequence. The

(i, j)th element of the matrix denotes the probability of amino

acid j to appear at the ith position of the protein sequence

(Wang et al., 2017a). By borrowing the idea of a DPC encoding

algorithm and applying it to a PSSM, DPC-PSSM is designed to

partially express the local sequence-order effect (Liu et al.,

2010). As a result, DPC-PSSM is represented by a 400-dimen-

tional feature vector, which utilizes the evolutionary information

and, moreover, reflects the sequence-order information. DPC-

PSSM can be calculated as:

Y ¼ y1;1; . . . ; y1;20; y2;1; . . . ; y2;20; . . . ; y20;1; . . . ; y20;20

� �T

yi;j ¼
1

L� 1

XL�1

k¼1

pk;i � pkþ1;j 1 � i; j � 20ð Þ

8>><
>>:

where pk;i denotes the element at kth row and ith column of PSSM,

and L denotes the row counts of the PSSM, which is equal to the

length of the corresponding protein sequence.

3. S-FPSSM is designed to extract evolutionary information deli-

cately based on the matrix transformation of the original PSSM

(Zahiri et al., 2013). The ‘filtered’ matrix FPSSM is produced

from PSSM in a preprocessing step during which all negative

elements of the PSSM are set to zero and all positive elements

greater than an expected value d (with a default value of 7) are

set to d. Consequently, all elements in FPSSM are in the range

from 0 to d. This step can help eliminate the negative elements’

influence on the positive ones when adding two elements during

matrix transformation. Based on the FPSSM, the resulting fea-

ture vector S ¼ ðS 1ð Þ
1 ; . . . ; S

1ð Þ
20 ; . . . ; S

20ð Þ
1 ; . . . ; S

ð20Þ
20 Þ can be defined

as follows:

s
ðiÞ
j ¼

XL

k¼1

fpk;j � dk;i

subject to

dk;i ¼ 1; rk ¼ ai

dk;i ¼ 0; rk 6¼ ai

i; j ¼ 1; . . . ; 20

(

where L denotes the total number of rows of the FPSSM, fpk;i de-

notes the element in the kth row and ith column of FPSSM, rk
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denotes the kth residue in the sequence, and ai denotes the ith amino

acid of 20 primary amino acids.

4. Pse-PSSM was originally proposed by Chou et al. and many empir-

ical studies demonstrated its usefulness in protein sequence analysis

(Chou and Shen, 2007). It is a reliable feature encoding method for

extracting evolutionary information based on the PSSM transform-

ation, and dimension normalization of the resulting feature vector.

Pse-PSSM can be described using the following formulae:

meani ¼
P20

k¼1 Ei;k

20
; i ¼ 1;2; . . . ;L

STDi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP20
u¼1 Ei;u �meani

� �
20

s
; i ¼ 1; 2; . . . ;L

Ti;j ¼
Ei;j �meani

STDi
; i ¼ 1;2; . . . ;L

Ha
j ¼

1

L� a

XL�a

i¼1

ðTi;j � Tiþa;jÞ2

�Tj
¼ 1

L

XL

i¼1

Ti;j

T
0 ¼ ½T1 ; . . . ;T20 �

H
0 ¼ ½Ha

1; . . . ;Ha
20�

Pa
PsePSSM ¼ ½T

0
;H

0 �

where Ei;k denotes the element in the ith row and kth column of the

original PSSM, and L denotes the length of the protein sequence.

Consequently, Pse-PSSM can be represented as a 40-dimentional

feature vector, which reflects the relationship between an amino

acid and its following ath amino acid in the sequence. In this work,

we used the default value a ¼ 1.

2.2.3 Group 3: physicochemical features

We included two types of physicochemical properties [i.e. compos-

ition, transition and distribution (CTD)], composition among CTD

(termed as CTDC) and transition among CTD (termed as CTDT)

(Xiao et al., 2015), which were previously designed to describe the

global composition of amino acid properties in protein sequence

(Dubchak et al., 1995).

1. There are seven types of physicochemical properties in this

work. For each property, 20 primary amino acids are catego-

rized into 3 different classes, according to their attributes

(Table 1). Thus, CTDC is represented as a 21-dimentional fea-

ture vector, obtained from a protein sequence, as follows:

CA ¼
nA

N
; A ¼ 1; 2;3

where nA denotes the number of amino acid type (class) A, and N

denotes the sequence length.

2. CTDT is a representation of the frequency with which a type A

residue is followed by a type B residue, or vice versa.

Accordingly, CTDT is a 21-dimentional feature vector and can

be calculated as follows:

TAB ¼
nAB þ nBA

N � 1

TBC ¼
nBC þ nCB

N � 1

TCA ¼
nCA þ nAC

N � 1

8>>>>>><
>>>>>>:

where nAB denotes the number of dipeptide AB in the sequence, and

N denotes the length of the sequence.

2.3 Integrative model construction
To address the imbalanced classification problem, we constructed N

(N¼100 in our setting) SVM classifiers and trained each of them

with a different subset of the training dataset (Chen and Jeong,

2009). More specifically, to construct an individual classifier, all the

positive samples and an equal number of negative samples randomly

selected from the training dataset were combined as training sam-

ples. For each SVM classifier, we adopted the Gaussian radial basis

kernel and performed a grid search to optimize the two parameters,

Cost (C) and Gamma ðcÞ, in the search space 2�10; . . . ;210g
�

. Thus,

for each feature, an ensemble SVM classifier (termed as single

feature-based model) was generated by averaging the prediction

scores of all the N SVM classifiers. In this way, the imbalanced clas-

sification problem is transformed and replaced by multiple balanced

data classification problems.

Different features correspond to different properties of proteins

and thus can be viewed as capturing distinct protein characteristics

from various perspectives, thereby resulting in different data distri-

butions (Chen and Jeong, 2009). Incorporating such knowledge may

help improve the prediction performance, as compared to models

that have been trained using a single feature only. For each group of

features, the prediction scores of single feature based models are

averaged to obtain a one-layer ensemble model. Lastly, prediction

scores of these one-layer ensemble models (corresponding to differ-

ent feature groups) are averaged to form an integrative two-layer en-

semble model for the final prediction (Fig. 1).

2.4 Performance evaluation
To measure the performance of the proposed method, we carried

out an unsupervised analysis, a supervised analysis (including 5-fold

cross-validation and independent tests) and case studies. Five

Table 1. Classification of 20 standard amino acid types according to seven specific types of physicochemical properties

Class 1 Class 2 Class 3

Hydrophobicity Polar R, K, E, D, Q, N Neutral G, A, S, T, P, H, Y Hydrophobicity C, L, V, I, M, F, W

Normalized van der

Waals volume

0–2.78 G, A, S, T, P, D, C 2.95–4.0 N, V, E, Q, I, L 4.03–8.08 M, H, K, F, R, Y, W

Polarity 4.9–6.2 L, I, F, W, C, M, V, Y 8.0–9.2 P, A, T, G, S 10.4–13.0 H, Q, R, K, N, E, D

Polarizability 0–0.108 G, A, S, D, T 0.128–0.186 C, P, N, V, E, Q, I, L 0.219–0.409 K, M, H, F, R, Y, W

Charge Positive K, R Neutral A, N, C, Q, G, H, I, L, M,

F, P, S, T, W, Y, V

Negative D, E

Secondary Structure Helix E, A, L, M, Q, K, R, H Strand V, I, Y, C, W, F, T Coil G, N, P, S, D

Solvent Accessibility Buried A, L, F, C, G, I, V, W Exposed R, K, Q, E, N, D Intermediate M, S, P, T, H, Y

Bastion6 2549

Deleted Text: <italic>-</italic>
Deleted Text: <italic>-</italic>
Deleted Text: <italic>-</italic>
Deleted Text: <italic>-</italic>
Deleted Text: -
Deleted Text: (
Deleted Text: )
Deleted Text: ,


performance measures including SN, SP, ACC, F-value and MCC

were used. These are defined as follows:

SN ¼ TP

TPþ FN

SP ¼ TN

TN þ FP

ACC ¼ TPþ TN

TPþ FPþ TN þ FN

F � value ¼ 2� TP

2TPþ FPþ FN

MCC ¼ TP� TNð Þ � ðFN � FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTN þ FPÞ � ðTPþ FPÞ � ðTN þ FNÞ

p
where TP, TN, FP and FN denote the numbers of true positives,

true negatives, false positives and false negatives, respectively.

3 Experimental results

3.1 Sequence analysis
One of the current tools for T6SE discovery is a motif-based search

called MIX (marker for type six effectors) focused on N-terminal se-

quence similarities found in a sample of T6SEs from Vibrio parahae-

molyticus (Salomon et al., 2014), and together with other analysis

has suggested common features may be present more broadly in the

N- and C- terminal sequences of T6SEs (Lien and Lai, 2017). To test

this hypothesis, a sequence analysis was conducted to characterize

the amino acid occurrences on the first 50N-terminal and 50C-ter-

minal positions of T6SEs (Supplementary Fig. S2A). The calculated

amino acid frequencies show no indication for a strongly conserved

sequence motif at either end of the proteins. Indeed, the only dis-

cernible position with a high conservation level (bit count twice

as high as the second highest stack) is found at position 1 of the

N-terminal sequences. However, a similarly high conservation is

also found for non-effector proteins (Supplementary Fig. S2B),

which can be distinguished at that position only by the relative

abundance of lysine (K) and phenylalanine (F) residues and a deple-

tion in proline (P) and arginine (R) residues. The C-terminal amino

acids of both T6SEs and non-effectors show a distinctively even con-

servation distribution, indicating that none of the positions plays a

major role in recognition. A more than twofold increase compared

to the average stack height is only observed for the very last position

of non-effector proteins, which is enriched in lysine (K) and glutam-

ate (E), but depleted in leucine (L).

3.2 Unsupervised analysis
To intuitively visualize the effect of different feature encodings on

the classification performance, we conducted an unsupervised ana-

lysis based on a randomly selected balanced dataset (due to the im-

possibility of visualizing all N balanced datasets) and demonstrated

the value of such analysis to ascertain whether the extracted features

can be used to effectively discriminate the T6SEs from non-effectors

(Hulsman et al., 2014). For each feature encoding, we mapped all

the samples (including both positives and negatives) onto the 2D

space (Fig. 2), so that the differences in the characterization of these

samples would be represented by their mutual distances in space.

Although the samples from both classes are not evenly distributed

across the 2D map, the embedding didn’t show a clear division into

distinct subgroups. To further investigate this, the data was pro-

cessed using K-means clustering. In this way, the samples in the pic-

ture were colored by their clustering labels, and shaped by the true

labels. The classified distribution of the data samples in each cluster

is shown as the bar chart in Figure 2 (with detailed results listed in

Supplementary Table S2).

DPC-PSSM outperformed all other feature encoding methods:

using DPC-PSSM, non-T6SEs dominated in Cluster 1 (accounting

for 99.1%) while T6SEs dominated in Cluster 2 (accounting for

84.6%). The apparently higher division and low mixture rate of two

classes of samples in each cluster strongly demonstrated the ability

of this encoding scheme to recognize the T6SEs from non-effectors.

Following DPC-PSSM, DPC, AAC and Pse-PSSM achieved a good,

comparable performance, with a moderate mixture rate within each

cluster. The good performances of these four encoding methods il-

lustrate that evolutionary information-based and sequence-based

features contribute the most to T6SE classification.

Note that although T6SEs dominated in Cluster 2 (96.9%) for

BLOSUM, there was a considerable number of T6SEs and non-

T6SEs aggregated together in Cluster 1 (43.9% of T6SEs and

56.1% of non-T6SEs). Moreover, there was an imbalance between

Cluster1 (containing 244 samples) and Cluster 2 (containing 32

samples) which could potentially impact the classification outcome.

3.3 Supervised analysis
We further evaluated the effect of each feature encoding in a super-

vised setting, enabling us to quantitatively assess them by using a set

of standard measures on 5-cross validation and independent tests.

All 5-fold cross validation tests in this work were conducted based

on N (N¼100 in our setting) balanced training datasets, and the

performance was averaged over these N balanced datasets.

3.3.1 Performance evaluation using 5-fold cross-validation tests

For each feature encoding method, an SVM classifier was trained

with optimally-tuned parameters and validated based on the train-

ing dataset by performing randomized 5-fold cross-validation tests.

The averaged results are shown in Table 2 and Figure 3A.

As can be seen, PSSM-based features achieved the overall best

performance in terms of ACC (>0.91), F-value (>0.91), MCC

(>0.83) and AUC (>0.96) (Table 2 and Fig. 3A). This suggested

that PSSM-based features were the most informative for T6SE classi-

fication, and its related features were considered as essential for

building accurate models. These observations agree well with previ-

ous bioinformatics studies (An et al., 2018; Wang et al., 2017a; Zou

et al., 2013). DPC-PSSM was shown to be the most powerful feature

encoding method, which consistently achieved the highest values of

SN (0.950), ACC (0.938), F-value (0.940), MCC (0.878) and AUC

(0.983). These results are in accordance with those in our unsuper-

vised analysis. Similarly, following the PSSM-based feature encod-

ing, AAC achieved the second-best performance reflected by the

ACC (0.873), F-value (0.872), MCC (0.748) and AUC (0.943). The

poorer performance of BLOSUM indicates that the substitution ma-

trix was less informative when compared with the PSSM, although

the former is more accessible and can be directly calculated. The

same holds for CTDT, which yielded only a moderate performance,

despite it providing a novel perspective on the feature extraction of

protein sequences. These results suggest that BLOSUM and CTDT

can be used as complementary encoding schemes in conjunction

with the essential PSSM features.
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Our supervised analysis also revealed differences with respect to the

unsupervised analysis. In particular, we found that CTDC and QSO

achieved an equivalent performance as the second-best feature encod-

ing methods (with a performance that was slightly better than that of

DPC). This suggests that the performance of individual encoding

schemes may depend on the machine learning method being applied.

Generally, while there is a preference for high SN and SP values,

a trade-off between SN and SP is necessary for a predictor to achieve

a comprehensive and stable performance. Otherwise, it could gener-

ate predictions that are biased by a preference for a certain class of

samples. In this work, the gaps between SN and SP were minor

across all the encoding methods, which formed a solid basis for our

model to achieve a stable performance over all metrics, including

ACC, F-value, MCC and AUC.

3.3.2 Performance evaluation using various sequence similarity rates

Considering that the features used for training the models were

derived from protein sequences, the training datasets curated with

different sequence similarity cut-offs could result in different model

performances. To examine the effect of the sequence similarity cut-

off on the overall performance of the models, six sequence identity

thresholds (i.e. 70, 75, 80, 85, 90 and 95%) were applied when

Fig. 2. Representation and clustering of data samples of T6SEs and non-T6SEs based on nine different types of feature encodings. For each encoding, the repre-

sentation of data samples is presented in two dimensions after dimensionality reduction using principal component analysis (PCA). Samples were then clustered

into two groups using the K-means algorithm; each cluster (represented by one color) consists of two types of samples (i.e. T6SEs and non-T6SEs) with two dif-

ferent shapes, in which circle and multiplication signs represent T6SEs and non-T6SEs, respectively. The classified distribution of T6SEs (right-hand bar) vs. non-

T6SEs (left-hand bar) in each cluster is shown as the inset bar chart

Table 2. The performance of SVM classifiers using different sequence encoding methods based on 5-fold cross-validation tests

Encoding SN SP ACC F-value MCC

Group 1 AAC 0.87160.022 0.87560.028 0.87360.020 0.87260.020 0.74860.041

DPC 0.83760.020 0.85260.027 0.84360.020 0.84160.020 0.68960.039

QSO 0.84360.020 0.86360.027 0.85160.018 0.84960.018 0.70660.036

Group 2 BLOSUM 0.81060.034 0.79660.031 0.80260.024 0.80360.025 0.60860.048

DPC-PSSM 0.95060.020 0.92960.019 0.93860.013 0.94060.013 0.87860.025

S-FPSSM 0.91560.014 0.91860.020 0.91460.012 0.91560.012 0.83160.024

Pse-PSSM 0.92560.015 0.94460.019 0.93260.012 0.93360.012 0.86860.023

Group 3 CTDC 0.85760.025 0.84760.033 0.85060.021 0.85160.020 0.70560.042

CTDT 0.77460.031 0.76460.030 0.77160.024 0.76760.026 0.54460.049

Note: The values were expressed as mean 6 standard deviation. For each metric, the best performance value across different encoding methods is highlighted in

bold for clarification.
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constructing training datasets. Using these generated datasets and

the original dataset (without homologous sequence reduction), the

performance of each model was evaluated using the same fivefold

cross-validation. As can be seen from Figure 4A, in all cases, the

models trained with the original dataset outperformed those trained

with other datasets (i.e. after removal of homologous sequences) in

terms of the MCC value. This suggests that high sequence homology

in the original dataset can indeed lead to overestimated per-

formances of the corresponding models, thereby highlighting

the importance and necessity of performing sequence homology

reduction prior to model training. However, models trained with

datasets resulting from different sequence similarity cut-offs show a

similar performance, indicating the robustness of the proposed

models.

3.3.3 The effect of searched databases for PSSM-based features

To characterize the potential effect of the size of searched databases

on the performance of PSSM-based models, we further generated

PSSM profiles by searching against three uniref databases with dif-

ferent sizes (i.e. uniref50, uniref90 and uniref100) with parameters

of j¼3 and h¼0.001. Based on these PSSM profiles, PSSM-based

models were trained and performance evaluated using the same five-

fold cross-validation procedure. The results indicate that there was

no significant difference in the performance between these PSSM-

based models (Fig. 4B), suggesting that the size of searched data-

bases did not have a significant impact on the performance of the

PSSM-based models on the curated T6SE dataset.

3.3.4 The effect of various selected features on the model

performance

GainRatio (Frank et al., 2004) was applied to conduct a set of fea-

ture selection experiments using the same fivefold cross-validation.

We found that for different types of features, models trained using

the entire features generally resulted in a better predictive perform-

ance compared to models trained using selected features (such as the

top 50, 100, 150, 200, 250, 300 and 350 features) (Supplementary

Fig. S3). The only exception was the BLOSUM-based model, which

achieved a similar performance when compared to the correspond-

ing model trained using selected features. A possible explanation is

that the original size of each generated feature set was so small (i.e.

less than 400 dimensions) that all features in the feature set without

further selection could be interpreted well by machine learning

methods, contributing to the models’ overall performance.

3.3.5 Comparison with homology-based baseline predictor

To compare with the proposed models, we applied a homology-

based approach to develop a baseline predictor. For each query se-

quence in the test set, the blastp program—implemented in the

Blastþ software (Camacho et al., 2009)—was used to search against

the training dataset. Based on the blastp search results, the query se-

quence was assigned the same label as that of the top ranked protein

sequence with the lowest E-value in the training dataset. We thus as-

sessed the performance of this homology-based baseline predictor

using the same fivefold cross-validation. The results showed that the

baseline predictor achieved a lower performance with an F-value of

0.787, an ACC of 0.741 and an MCC of 0.517, than our proposed

models. An explanation is that the homology-based baseline pre-

dictor could not recognize valuable patterns beyond the sequence

identity, thus resulting in an unsatisfactory performance compared

with our machine learning-based models.

Fig. 3. (A) ROC curves of different feature encoding methods for T6SS effector

prediction based on 5-fold cross-validation tests; (B) ROC curves of single fea-

ture-based models, one-layer models and the final model used by Bastion6

on the independent test. The results were distinguished by color curves. AUC

values for each model are also presented

Fig. 4. (A) Performance of various feature encoding methods using differ-

ent sequence similarity cut-offs based on 5-fold cross-validation tests;

(B) Performance of various PSSM-based feature encoding methods against

different uniref databases based on 5-fold cross-validation test
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3.3.6 Performance validation on the independent test

Using the independent test, the proposed two-layer ensemble model

was further assessed, and benchmarked against the single feature-

based, one-layer ensemble models. All experiments were conducted

10 times. Each time, a balanced independent dataset was formed by

the positive samples and 20 randomly chosen negative samples. As

shown in Figure 3B and Supplementary Table S3, most of the ensem-

ble models display a better and more stable performance in terms of

ACC, F-value, MCC and AUC, when compared to their single

feature-based models, while Bastion6 achieved the best performance

among them with respect to ACC (0.943), F-value (0.946), MCC

(0.892) and AUC (0.976).

To measure the ability of positive sample identification, we

further looked into the numbers of true positives predicted by

various models in the independent test. Bastion6 outperformed

the single feature-based models and one-layer ensemble models

(Supplementary Table S4), without misclassifying any T6SE. In con-

trast, single feature-based models misclassified a larger number of

T6SEs. As expected, ensemble models were able to correct the mis-

classifications of single feature-based models, and consequently

achieved more stable performances.

Two previous motif search-based methods were assessed as a

benchmark for the independent test, since motif strategies referred

to as MIX and SAVC (Secretome analysis of Vibrio cholera) were re-

cently used to discover T6SEs (Altindis et al., 2015; Salomon et al.,

2014). Regarding the capability of recognizing T6SEs, Bastion6 suc-

cessfully retrieved 20 positive samples, while MIX and SAVC

retrieved 0 and 2 positive samples, respectively, from 20 T6SEs of

the independent dataset (Supplementary Table S5). This result sug-

gested that motif-based searching methods do not function well

across bacterial species, and demonstrated the usefulness and neces-

sity of our universal and highly accurate T6SE prediction method.

3.4 Case study
To examine the scalability and robustness of the proposed method,

we carried out a case study using two very recent experimentally

validated T6SEs: neither of these effectors was present in the train-

ing dataset, and both differ significantly from all other proteins in

the training dataset (Supplementary Figs S4 and S5). Detailed pre-

diction results are listed in Supplementary Table S6.

Our first case study protein was TseM (Si et al., 2017), a T6SS-

4–dependent Mn2þ-binding effector experimentally characterized

from Burkholderia thailandensis. The proposed model correctly

identified TseM as a T6SE, with a probability score of 0.544. As a

comparison, models trained using sequence-based features generated

lower probability scores (<0.5) due to the low sequence similarity

between TseM and the protein sequences in the training dataset

(Supplementary Figs S4 and S5). Models trained using PSSM (except

S-FPSSM) and physicochemical properties could correctly recognize

TseM as a T6SE with higher prediction scores. More specifically,

the CTDT model correctly predicted this protein with the highest

score of 0.763, despite its poorer performance in benchmarking

experiments.

The second case study was the T6SE TseF recently identified in

Pseudomonas aeruginosa (Lin et al., 2017). TseF is secreted by the

H3-T6SS, and then incorporated into outer membrane vesicles to fa-

cilitate the uptake of iron (Lin et al., 2017). The proposed model

successfully predicted TseF as a T6SE with a score of 0.681.

Surprisingly, DPC-PSSM and Pse-PSSM models, which performed

best in benchmarking experiments, failed to predict this T6SE.

This highlights the necessity of exploiting the different but

complementary feature encoding schemes that can capture useful

‘signals’ from different perspectives.

These results confirm the usefulness and reliability of our pro-

posed method, and the value of integrating various models into en-

semble learning models. By taking all these single models into

account, the developed two-layer model achieved balanced predict-

ive power, thus providing a reliable tool for identifying novel poten-

tial T6SEs.

3.5 Genome-scale prediction across various species
Currently, there are only a limited number of experimentally vali-

dated T6SEs. This has restricted our understanding of the functional

roles in their interactions with their eukaryotic hosts or prokaryotic

competitors. To facilitate the functional characterization, we per-

formed a genome-wide prediction of T6SEs in 12 different bacterial

species, including those that have been previously shown to possess

T6SEs. As a result, a total of 94 putative T6SEs (with probability

scores larger than 0.9) were extracted from 54 212 protein se-

quences. A statistical summary of the genome-wide prediction re-

sults is listed in Supplementary Table S7. A full list of the predicted

T6SEs can be found at the Bastion6 server.

4 Discussion

Identification of T6SEs is a key to understanding the role of T6SS in

bacteria’s anti-bacterial competition, inter-bacterial interaction and

virulence to their eukaryotic hosts (Ho et al., 2014). Bacterial gen-

ome sequencing is advancing at an unprecedented pace and, conse-

quently, rapid and accurate identification of T6SEs from genome

sequence data is both achievable and highly desirable. Previous stud-

ies have reported motifs in N- or C-terminal sequences in some bac-

terial (Lien and Lai, 2017) suggested to define T6SEs. However,

these motifs prove to be specific to a subset of T6SEs in only certain

bacterial species. The latter was shown through sequence analysis

and further validated in the benchmark tests in this work. To pro-

vide highly accurate prediction of T6SEs in and across diverse bac-

terial species, we extracted nine widely used features based on

amino acid sequence information, evolutionary information and

physicochemical properties. These features have been systematically

and comprehensively assessed through unsupervised and supervised

learning. The features demonstrated their effectiveness in different

scenarios. PSSM-based features achieved the overall best perform-

ance in most cases. They could accurately predict novel T6SEs espe-

cially in cases where they significantly differ from known effectors.

However, we also noticed that in some cases, PSSM-based features

did not perform well while other features performed better on inde-

pendent tests and case studies. There might be several reasons for

this. First, compared to the vast number of uncharacterized effectors

the dataset of known T6SEs was very limited when it comes to ex-

tracting sufficient knowledge and useful patterns. Accordingly, it

was hard to quantitatively assess how a feature performs, relative to

other features. Second, different features may be suitable for predict-

ing different T6SEs. A feature-based model may be good at recogniz-

ing a subset of T6SEs while it fails to identify another subset of

T6SEs. Therefore, taking advantage of all single feature-based mod-

els and integrating them into an ensemble model helps to improve

the prediction of T6SEs.

The relatively small number of T6SE samples in the benchmark

dataset will likely result in some bias in the prediction performance.

However, the discovery of new T6SEs: bioinformatically, genetic-

ally and through other experimental approaches, will expand the
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benchmark dataset and, accordingly, improve the model by lessen-

ing any potential bias. Additionally, other features that have proved

useful in other bioinformatics studies (such as structure-based fea-

tures and GO-based features) may help identify new patterns and

improve the model once more T6SE data becomes available.

In this study, we have developed Bastion6, a two-layer ensemble

machine learning method integrating a number of individual SVM-

based models. Extensive benchmarking experiments validated the ef-

fectiveness and robustness of our proposed model. We further

applied Bastion6 to perform genome-wide predictions and obtained

a list of high-confidence, putative T6SEs in 54 212 proteins across

12 bacterial species. With these promising results, we believe our

predicted T6SEs can serve as a preliminary screen for follow-up ex-

periments. In addition, we implemented a publicly accessible web

server, to meet users’ specific demands. We believe that our pro-

posed method can be a vastly useful tool for T6SE prediction, and

will expedite the discovery of novel T6SEs.
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