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Abstract

Summary: Transmembrane signalling plays important physiological roles, with G protein-coupled

cell surface receptors being particularly important therapeutic targets. Fluorescent proteins are

widely used to study signalling, but analyses of image time series can be challenging, in particular

when cells change shape. QuimP software semi-automatically tracks spatio-temporal patterns of

fluorescence at the cell membrane at high spatial resolution. This makes it a unique tool for study-

ing transmembrane signalling, particularly during cell migration in immune or cancer cells for

example.

Availability and implementation: QuimP (http://warwick.ac.uk/quimp) is a set of Java plugins for

Fiji/ImageJ (http://fiji.sc) installable through the Fiji Updater (http://warwick.ac.uk/quimp/wiki-

pages/installation). It is compatible with Mac, Windows and Unix operating systems, requiring ver-

sion>1.45 of ImageJ and Java 8. QuimP is released as open source (https://github.com/

CellDynamics/QuimP) under an academic licence.

Contact: t.bretschneider@warwick.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In transmembrane signalling the cell membrane plays a fundamental

role in localizing intracellular signalling components to specific sites

of action, for example to reorganize the actomyosin cortex during

cell polarization and locomotion. The localization of different com-

ponents can be directly or indirectly visualized using fluorescence

microscopy, for high-throughput screening commonly in 2D.

A quantitative understanding demands segmentation and tracking

of cells and fluorescence signals at the membrane, for example those

associated with actin polymerization at the cell front of locomoting

cells. Different tools for cell segmentation and tracking are reviewed

in (Barry et al., 2015; Meijering et al., 2009; Ryan et al., 2013).

Segmentation can employ thresholding, region growing, active con-

tours or level sets, to obtain closed cell contours and sample fluores-

cence adjacent to the cell edge in a straightforward manner. The

most critical step however is cell edge tracking, which links points

on contours at time t to corresponding points at tþ1. Optical flow

methods exist, but usually fail to meet the requirement that total

fluorescence must not change. QuimP uses a unique method

[ECMM, electrostatic contour migration method (Tyson et al.,

2010)] which has been shown to outperform traditional level set

methods, and works at subpixel resolution. ECMM minimizes the

sum of path lengths connecting all pairs of points, equivalent to min-

imizing the energy required for cell deformation. QuimP’s active

contour based segmentation and outline tracking algorithms have

been described in Dormann et al. (2002) and Tyson et al. (2010,

2014). It has been developed on and off since 2002, but recent fund-

ing resulted in a completely reengineered and redesigned, sustainable

software that is accessible to a much wider circle of non-expert

users.

2 New features

QuimP has recently been released as open source (current version

2018-02-01, user manual available on homepage; new features

including walkthrough examples are detailed in Supplementary

Material SI-A). Figure 1 shows the graphical user interface. Main new

features are: (i) use of the JSON format to store complete analysis
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workflows in QCONF (QuimP Configuration) files, and facilitate ex-

change of data with other programming languages (SI-B); also par-

ticularly useful when segmenting long sequences that require manual

corrections. (ii) Four new modules have been added, for reconstruct-

ing differential interference contrast (DIC) images, customized ran-

dom walk cell segmentation (with advanced tracking), generation of

image masks from segmented cell outlines, and exporting data in

comma-separated value format, for example for importing data to

other phenotypic cell analysis pipelines. (iii) A new architecture sup-

ports custom vector filters that directly operate on cell contour data,

without requiring deep knowledge of QuimP; Examples are a running

mean filter, or a protrusion removal filter (SI-A). (iv) Segmentation

masks generated by other ImageJ methods or external software can be

used as input for further QuimP analysis (SI-A). (v) Improved segmen-

tation by combining QuimP’s original active contour (AC) segmenta-

tion with a modified random walk (RW) method (Fig. 1b): Active

contour methods are good at segmenting cells, but notoriously strug-

gle when dealing with highly concave cell outlines. RW (Grady, 2006)

is superior in this respect, but has problems with strong gradients in

fluorescence, as typically observed for many proteins involved in cell

polarization and directed cell movement. QuimP includes a locally

adaptive version which overcomes this problem and compares favour-

ably to other top-rated tools (SI-C).

RW is a supervised learning method that requires users to label

(seed) a small number of foreground (cell) and background image

pixels. QuimP now employs preliminary AC segmentation masks to

seed class labels for each frame of a time series automatically (SI-A

and SI-C). Foreground and background pixels are assigned after

contracting and expanding vectorized masks. Our algorithm pre-

serves the shape of the contour and prevents that thin cellular proc-

esses are eroded (SI-D), significantly improving the segmentation of

cellular protrusions and cavities.

Segmentation quality was evaluated using typical time-series of

migrating cells tagged with fluorescent markers for different cyto-

skeletal proteins. 750 image frames were manually segmented (gold

standard), and compared to results from: (i) QuimP run in an un-

supervised manner, i.e. without changing parameters between

frames, and (ii) the Trainable Weka ImageJ plugin (Arganda-

Carreras et al., 2017). Our new method significantly reduces the

Hausdorff distance (maximum distance between the segmented con-

tour and the gold standard) and importantly, the number of false

positive pixels per contour length (SI-C and SI-D).

3 Conclusions and perspectives

The strength of QuimP’s contour tracking (ECMM) and its versa-

tility and user-friendliness have resulted in>70 publications to

date where it has been used (http://warwick.ac.uk/quimp/quimp-

refs). Recent developments, namely making QuimP available as

open source, with frequent updates and extended documentation,

improvements in segmentation quality, and important changes to

the architecture to support customized cell contour filters, make

QuimP accessible to a much wider user base. Phenotypic analysis

successfully employed multivariate cell descriptors for modelling

transitions between discrete cellular states using hidden Markov

models (Gordonov et al., 2016; Held et al., 2010). QuimP is com-

plementary in such that it provides a detailed picture of cortical

spatio-temporal dynamics, for example to fit continuous partial

differential equation models of cell reorientation (Lockley et al.,

2015), or to predict the localization of cellular blebs (Collier et al.,

2017). QuimP’s high-quality segmentation and boundary tracking

routines therefore can provide more complex and importantly dy-

namic features of subcellular (cortical) regions, which might be

used to enhance the feature space in current other modelling

frameworks for phenotypic analysis (Cooper et al., 2015; Johnson

et al., 2015). Hermans et al. (2013) for example used morphody-

namic profiling by QuimP in combination with cross-correlations,

and Granger causality analyses performed in Matlab. Thus, they

were able to discriminate between non-metastatic and metastatic

breast cancer cells in terms of their motility efficiency and spatio-

temporal synchronization. QuimP is routinely used to analyze time

series of several hundreds of cells per experimental condition, for

example to study changes in the motility of melanocytes during

melanoma progression (Mescher et al., 2017). Future development

will integrate QuimP with Omero, an image database system

(https://www.openmicroscopy.org/omero), to better support large

scale screening assays.

Fig. 1. QuimP GUI for analyzing cell motility. (a) QuimP toolbar, with tools arranged in the order of a typical workflow. Upper row: Open image time series, and main

data analysis plugins (BOA: cell segmentation, ECMM: contour tracking, ANA: sampling of cortical fluorescence, QA: detailed quantitative analysis and visualization

in the form of spatial-temporal maps, PA: protrusion analysis (experimental, working Matlab routines are provided)). Bottom row: Pre- and post-processing plugins

(DIC: DIC image reconstruction, RW: customized random walk segmentation, Mask: Cell outline to mask converter). (b) BOA segmentation window with novel feature

of external contour filters. (c) Interface for the new random walk segmentation module. (d) New BOA plugin that integrates random walk and active contour segmen-

tation. (e) Conversion tool to export csv files. (f) Exemplary results from the QA module: cell outlines, fluorescence map, convexity map
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