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Abstract

Motivation: It is well known that batch effects exist in RNA-seq data and other profiling data.

Although some methods do a good job adjusting for batch effects by modifying the data matrices,

it is still difficult to remove the batch effects entirely. The remaining batch effect can cause artifacts

in the detection of patterns in the data.

Results: In this study, we consider the batch effect issue in the pattern detection among the sam-

ples, such as clustering, dimension reduction and construction of networks between subjects.

Instead of adjusting the original data matrices, we design an adaptive method to directly adjust the

dissimilarity matrix between samples. In simulation studies, the method achieved better results re-

covering true underlying clusters, compared to the leading batch effect adjustment method

ComBat. In real data analysis, the method effectively corrected distance matrices and improved the

performance of clustering algorithms.

Availability and implementation: The R package is available at: https://github.com/tengfei-emory/

QuantNorm.

Contact: wshi@ouc.edu.cn or tianwei.yu@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Batch effect is a common issue in omics data analysis. The existence

of batch effects increases the difficulty in comparing the data from

different labs, platforms and processing times. In the setting of

supervised learning, such as selecting biomarkers from a case-

control study, batch effects can cause the loss of statistical power, or

even bias in the selection of relevant genes. In the setting of unsuper-

vised learning, such as cell type detection in cell mixtures, batch ef-

fects can cause substantial artifacts, making the resulting clusters

unreliable.

When batch effects dominate the observed variation among sub-

jects, data analysis that ignores batch effects can be misleading. In a

cluster analysis on ENCODE human and mouse gene expression

data (Lin et al., 2014), the researchers concluded that the data clus-

tered more by the two species instead of the tissues. However,

several re-analyses (Gilad and Mizrahi-Man, 2015; Sudmant et al.,

2015) conducting batch effect adjustments have shown opposite re-

sults. In single-cell RNA sequencing (scRNA-seq) datasets, batch ef-

fects and real biological signal may simultaneously influence the

observed variation among cells (Stephanie et al., 2015), which can

also weaken the accuracy of clustering. Therefore, it is important to

develop effective approaches to remove batch effects in order to im-

prove the performance of cluster analysis.

Efforts have been made to correct batch effects. Benito et al.

(2004) utilized the discrimination analysis to correct data by the

distance-weighted discrimination algorithm. Johnson et al. (2007)

proposed the empirical Bayes algorithm of ComBat, which removes

the additive and multiplicative batch effects for each gene from each

batch. Gagnon-Bartsch and Speed (2012) applied the removal of

unwanted variation method to make adjustments according to the
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variations of the control genes, which are not differentially ex-

pressed (DE) among the batches. Review studies (Chen et al., 2011;

Müller et al., 2016) have shown that ComBat is by far the bench-

mark approach to remove the batch effect.

Most existing approaches, including ComBat, attempt to modify

the data matrix (N subjects�p genes) so that the measurements

from different batches become comparable. However, ComBat ap-

pears to be more effective for the microarray data, which is less

skewed than RNA-seq data. Moreover, real data may have high ir-

regularity such that the additive and the multiplicative parameters

are insufficient to capture all batch effects.

Thus, for the specific purpose of sample pattern detection, i.e.

clustering, dimension reduction and network reconstruction be-

tween samples, ad hoc approaches based on quantile normalization

are introduced in this manuscript. Only focusing on the N�N dis-

similarity matrix calculated from the N�p raw data, the proposed

approaches utilize a novel interpolating quantile normalization tech-

nique to normalize the dissimilarity matrix based on the distribution

of dissimilarity within a reference batch. According to simulation re-

sults, clustering based on the normalized dissimilarity matrix ob-

tained by our methods outperformed ComBat in recapturing the

underlying cluster structure in the data, especially when the data

were more challenging as the percentage of genes that differentiate

the underlying clusters was small. In real data analysis, we analyzed

two datasets with dominating batch effects (Gilad and Mizrahi-

Man, 2015; Zhang et al., 2016) and two scRNA-seq datasets where

the batch effects are relatively weak (Muraro et al., 2016; Usoskin

et al., 2015). Our methods improved the clustering accuracy and

outperformed ComBat in both situations.

2 Materials and methods

2.1 Problem setup
In a general framework, the total dataset (N�p) consists of m

batches, where the ith batch is a ni � p matrix with ni subjects and p

marker counts and N ¼
Pm

i¼1 ni. Thus, the dissimilarity matrix of

the total dataset is an N�N matrix, which consists of m within-

batch blocks and m2 �m between-batch blocks. Assuming that the

proportion of subjects of different types is similar in different

batches, it is possible to normalize the other within-batch and

between-batch blocks with respect to a reference within-batch block

by quantile normalization.

2.2 Preprocessing
Since the RNA-seq data can be regarded as count data, the data are

usually right-skewed. Thus, several transformations were considered

before conducting batch effect corrections in order to evaluate the

performances of batch effect correction strategies under different

transformation settings. log(1þ�) transformation is performed to

maintain all the zero entries in the original data, while log(�) trans-

formation is also conducted to ignore the zero entries. Moreover,

standardization for each marker is also considered.

2.3 Interpolating quantile normalization for vectors of

different lengths
In practice, the dimensions of different within-batch or between-

batch blocks in the dissimilarity matrix are varied, so the quantile

normalization needs to be conducted for vectors of different lengths.

Thus, a modified quantile normalization with interpolation tech-

nique is introduced to normalize the vector with respect to another

vector with different lengths.

Assuming there are two positive real vectors, v1 with length l1
and v2 with length l2, the quantile normalization for v2 with respect

to v1 is conducted by the following.

1. Define new vectors ~vi; i ¼ 1;2 so that ~vi contains all non-zero

entries of vi in ascending order. The length of ~v i is ~li .

2. Define scaling vectors zi; i ¼ 1; 2 with length ~li so that the k-th

entry in zi equals k
~liþ1

, where k ¼ 0; 1; 2; . . . ; ~li .

3. Conduct linear interpolation for ~v1 with respect to the scaling

vector z1, then use the predicted values at z2 to replace ~v2.

4. The v2 with all non-zero entries replaced by ~v2 is the normalized

vector with respect to v1.

2.4 Dissimilarity matrix correction
After preprocessing, the N�N dissimilarity matrix is calculated by

one minus correlation matrix. Since the correlation is bounded by

one, the dissimilarity matrix has non-negative entries. As mentioned,

the dissimilarity matrix of the total dataset can be regarded as a

combination of m�m blocks, where the block (i, j) with size

(ni � nj) represents the dissimilarity between the i-th and the j-th

batches. The largest within-batch block is chosen as the reference

block in order to optimize the information usage, so that the inter-

polating quantile normalization is utilized to normalize all other

blocks with respect to the reference block.

As Figure 1 displays, two normalization approaches have been

developed based on the interpolating quantile normalization.

• Vectorization: The vectorized other blocks are normalized with

respect to the vectorized reference block. Then the normalized

vectors are restored as matrices of original dimensions.
• Iterative approach by normalizing rows and columns: In this

strategy, the vectorized reference block is again used as the refer-

ence vector of the interpolating quantile normalization. In each

iteration, denote the matrix before normalizing as D ¼ D0. Then

obtain matrix Drow (Dcolumn) by normalizing each row (column)

in all non-reference blocks with respect to the reference vector.

Then the dissimilarity matrix D is updated as D ¼ 1
2

Drow þDcolumnð Þ. The iteration will continue until the Euclidean

distance between the vectorizations of D and D0 is smaller than

a tolerance number �.

2.5 Clustering and evaluation methods
Standard clustering approaches, such as hierarchical clustering and

k-means clustering, are applied to group the subjects after the dis-

similarity matrix correction. If the true classification is known, then

we can use the adjusted rand index (ARI) to check the agreement be-

tween the predicted and the true classification (Hubert and Arabie,

1985). A value close to 1 indicates strong agreement, while a value

close to zero indicates poor agreement.

In addition, the area under the receiver operating characteristic

(ROC) curve (AUC) is computed for the normalized dissimilarity

matrix to evaluate its robustness. It is based on the relations between

all pairs of samples. If two samples belong to the same underlying

cluster, the pair belongs to the ‘þ’ class. Otherwise, the pair belongs

to the ‘�’ class. We then generate the ROC curve using the normal-

ized distance between pairs as the predictor, and the relations be-

tween the pairs as outcome and compute the AUC of the ROC

curve. This process generates a objective criterion of how well the

normalization corrected the unwanted batch effects, without the use

of any clustering algorithm. A value closer to 1 suggests better batch

effect removal.
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3 Results

3.1 Simulation study
Simulation study was conducted to compare the impact of the meth-

ods on the accuracy of recapturing true underlying clusters. We

compared the two interpolating quantile normalization approaches

with ComBat algorithm, which is implemented by Bioconductor

package sva (Leek et al., 2012). The interpolating quantile normal-

ization algorithms were implemented by R-package QuantNorm,

which is available at https://github.com/tengfei-emory/QuantNorm.

Simulated RNA-seq data that contain six true clusters and

three batches were generated by the Bioconductor package PROPER

(Wu et al., 2015). The PROPER package generates simulated RNA-

seq data based on parameters estimated from true datasets. We gen-

erate DE genes to separate the simulated clusters. The three batches

have the same sample size but different proportions for each cluster,

which were generated from multinomial distribution. In order to

produce batch effect, moreover, log over-dispersion and log expres-

sion parameters for each gene count in the batches 2 and 3 were

assigned fluctuations with respect to the original parameters in the

batch 1.

For each combination of parameters, i.e. proportion of DE genes

(p.DE), log over-dispersion fluctuations (lOD), log expression fluc-

tuations (lexp) and observed sample size, 40 trials were conducted

to compare the ARI obtained by ComBat and the interpolating

quantile normalization approaches.

In each of the 40 trials under one set of parameters, a data ma-

trix with three batches was simulated as described. Each batch con-

tributed to one-third of the observed sample size. Then the batch

effect correction approaches were performed before the hierarchical

clustering. Finally, the ARIs were calculated and the boxplots of the

indices were produced to display the performance of various

methods.

As Figure 2 shows, the performances of most methods improved

as the observed sample size increased. Moreover, all methods suf-

fered reduced performances as p.DE decreased and lOD was more

fluctuated, where the overlapping between different clusters

increased. Compared to quantile normalization methods, ComBat

struggled more under difficult situations. In the most difficult case

where p.DE¼0.03 and lOD fluctuation¼4 (Fig. 2, lower-right

panel), ComBat mostly failed to recapture the true cluster member-

ship, while the interpolating quantile normalization methods could

still reach ARIs above 0.5 with reasonably small standard errors.

Moreover, when the fluctuation of lexp became larger (Fig. 2, bot-

tom row), ComBat’s performance appeared to be worse but the

quantile normalization approaches displayed similar performances

as under smaller lexp fluctuations.

Due to the characteristics of the simulated dataset, the standard-

ization preprocessing boosted the performance of the quantile nor-

malization in most cases, while the log transformation worked

better when p.DE was large. However, ComBat was incompatible

with the standardization preprocessing so only log transformation

was applied for ComBat.

The two quantile normalization methods also displayed different

characteristics for different data. When the observed sample size

was small (size¼30) and p.DE was large (p.DE¼0.2), i.e. larger

number of genes differentiate the clusters, the quantile normaliza-

tion algorithm with vectorization appeared to perform better than

the other two approaches. On the other hand, when the sample size

became larger and the p.DE became small, the iterative quantile nor-

malization algorithm showed better performances. Overall, com-

pared to ComBat, the new methods based on dissimilarity matrix

quantile normalization achieves better performance in correct re-

capturing the true clusters.

In addition, simulations under similar settings were conducted in

order to compare our methods and ComBat in terms of the AUC

index (Supplementary Fig. S1). The results were similar to the ARI

results shown in Figure 2. We further simulated situations where

batch effect was non-existent. When the sample size was very small,

our methods showed some side effect of over-adjustment. However,

the over-adjustment went away when sample size becomes moderate

or larger (Supplementary Fig. S2). While there was slightly stronger

over-adjustment when the batch effect does not exist and the sample

size was very small, our methods were more reliable and robust in

most situations where the batch effects were present, which is a

more realistic scenario, making it overall a better choice.

In RNA-seq data, sequencing depth can impact the performance of

algorithms substantially. We compared the performance by simulating

Fig. 1. Flow charts for the two approaches of dissimilarity matrix correction by the interpolating quantile normalization
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different sequencing depths. Our methods showed consistent advan-

tage at various sequencing depth settings (Supplementary Fig. S3).

We also examined the computing time in the simulation setting.

Our method is reasonably fast. As shown in Supplementary Figure S4,

the computing time is a few seconds for the vectorization approach

and tens of seconds or a few minutes for the iterative approach. More

details can be found in the Supplementary Materials.

3.2 ENCODE data for human and mouse tissues
Real data analysis was conducted to evaluate the effectiveness of the

proposed methods. 3D principal component analysis (PCA) plots,

heatmaps and connection graphs created by R package rgl (Adler

et al., 2017), pheatmap (Kolde, 2015), network (Butts, 2015) and

ggnetwork (Tyner, 2017) were used to display cluster structures.

Package receiver operating characteristic surface

(ROCS) (Yu, 2012) was used to compute AUC.

We first re-analyzed the dataset used by Lin et al. (2014) using

our methods. We conducted the quantile normalization on the nor-

malized ENCODE raw counts matrix reproduced according to

Gilad and Mizrahi-Man (2015), consisting of 10 309�26 normal-

ized counts among 13 types of tissues in both human and mouse. As

can be seen from the PCA plot before batch effect removal (Fig. 3a),

subjects from human (red) were separated from those from mouse

(blue). Thus, Lin et al. (2014)’s paper, which ignored the batch

effect, concluded that the subjects were clustered by species instead

of tissues.

In order to correct the batch effect, we applied the iterative quan-

tile normalization approach toward the dissimilarity matrix of the

standardized count dataset. It took eight iterations to reach conver-

gence (� ¼ 10�4). As the PCA plot (Fig. 3b) shows, the 26 samples

are mainly clustered by tissues. For 12 out of 13 tissues, the closest

neighbor after dissimilarity correction was the same tissue in the

other organism (Fig. 4). Interestingly, sigmoid still shows big separ-

ation based on their organism origin.

Compared to the heatmap obtained by ComBat from the same

dataset (Fig. 3 in Gilad and Mizrahi-Man, 2015), our method cor-

rectly clustered three more pairs of tissues. Hierarchical clustering

ARI and the AUC index further confirmed the advantage of our

method (ARI¼0.884, AUC¼0.993) over ComBat (ARI¼0.489,

AUC¼0.990).

3.3 Human–mouse brain RNA-seq data
Another FPKM matrix dataset of human and mouse brain cells was

obtained from Zhang et al. (2016). The data consist of the counts of

15 041 genes in 41 human brain cell samples and 21 mouse brain

cell samples. All cell classifications were known, including multiple

types of astrocytes, neurons, oligodendrocytes, endothelial and

microglia.

Fig. 2. Simulation results for interpolating quantile normalization methods and ComBat approach based on ARI with respect to different sample sizes, log over-

dispersion fluctuations and log expression fluctuations. Std stands for the standardization preprocessing and log(�) or log(1þ�) stands for the log-transformation

preprocessing
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As can be seen from the 3 D PCA plot (Fig. 5a), before correc-

tion, the human cells and the mouse cells were separated as two

batches. It is of interest whether the same type of cells in human and

mouse brain are more similar compared to two different types of

cells of human or mouse. Thus, we used the quantile normalization

approach to correct the dissimilarity matrix of all 62 subjects in the

data, then we used PCA plots to display the similarity of the brain

cells in human and mouse.

The 3 D PCA plot based on the dissimilarity matrices obtained

by the iterative quantile normalization approach is shown in

Figure 5b. It took 24 iterations to reach the convergence of the

Euclidean distance of the dissimilarity matrices between iterations

(� ¼ 10�4). After batch effect correction, it can be observed that the

oligodendrocytes (triangles), microglia (crosses), whole brain or

cortex (diamonds) in human are close to their counterparts in

mouse. As expected, the astrocytes (squares with x mark inside) in

human brain and mouse brain shows strong diversity based on their

origin. The human mature astrocytes and glioblastoma multiforme

(GBM) astrocytes form a tight cluster. The six mouse astrocyte sam-

ples are distant from the main human astrocyte cluster. The human

fetal astrocytes, moreover, form their own cluster, which is closer to

the mouse astrocytes. The human sclerotic hippocampi astrocytes

are more similar to the oligodendrocytes.

We further constructed a network connection graph between the

cell types (Fig. 6). Based on the corrected dissimilarity matrix, the

dissimilarity between any pair of cell types was defined as the aver-

age dissimilarity between samples belonging to the two types. Then

if the dissimilarity between any two cell types was less than 0.2

(25% percentile of the dissimilarity between all pairs), we estab-

lished a link between them. The graph shows a more complete pic-

ture of cell type relations. As shown in Figure 6, the astrocytes from

both human and mouse form a tight community in the graph cen-

tered around human mature astrocytes, except the human fetal

astrocytes. On the other hand, oligodentrocytes from both human

and mouse appear to be close to various types of astrocytes. The

human and mouse cells tend to connect with their counterparts,

which agree with the PCA plots.

Correction of the dissimilarity matrix, compared with most

existing correction approaches on the raw data, appears to be more

reflective of the true connection between cells of different species.

One explanation could be that the regulatory networks between

genes are more conserved than the expression level of specific genes

in evolution. When it comes to different species, the degree of in-

crease or decrease level of a particular downstream gene may differ,

but they do play the same biological role. That might be why cells

tend to cluster by tissues when we correct the dissimilarity matrix.

3.4 Mouse neuron scRNA-seq data
The mouse neuron RNA-seq dataset GSE59739 (Usoskin et al.,

2015) consists of 25 334 features for 622 single mouse neurons.

Four groups of cells, namely peptidergic nociceptors (PEP), non-

Fig. 3. 3D PCA plots based on (a) the dissimilarity matrix of the normalized ENCODE raw counts data (Gilad and Mizrahi-Man, 2015) and (b) the dissimilarity

matrix corrected by the iterative interpolating quantile normalization

Fig. 4. Heatmap for the corrected correlation (1 � dissimilarity) matrix for the

normalized ENCODE raw counts data
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peptidergic nociceptors (NP), neurofilament containing (NF) and

tyrosine hydroxylase containing (TH), are evenly distributed among

10 libraries. The libraries could introduce batch effects (Head et al.,

2014).

As shown in Figure 7a, using genes that are nonzero in more

than 50% of samples, the real biological signal of cell groups was

roughly maintained. However, it was insufficient to directly obtain

reasonable clustering performance. On the other hand, the distribu-

tion of cells among libraries (Fig. 7b) suggests slight variations by

libraries. To adjust these small variations, we applied our methods.

Figure 7c displays the 3 D PCA plot of the dissimilarity matrix cor-

rected by the iterative approach. As can be seen, our method dis-

played a clearer pattern of the cell groups in more condensed scales.

We further calculated the AUC of dissimilarity matrices and

average ARI from 100 times of K-means clustering (k¼4) for differ-

ent methods. Compared to the original normalized RPM data

(ARI¼0.312, AUC¼0.847), iterative approach (ARI¼0.726,

AUC¼0.867) showed significant improvement. In contrast,

ComBat (ARI¼0.289, AUC¼0.796) performed at a similar level as

the original data. We note the AUC doesn’t depend on the clustering

procedure.

3.5 Human pancreas scRNA-seq data
We applied our method to another scRNA-seq data, GSE85241, of

human pancreas (Muraro et al., 2016). The dataset contains 2126

cells, with 19 140 features, from four donors. Similar to the mouse

neuron data mentioned above, the samples for this dataset are

evenly distributed in eight libraries.

The situation was similar to the mouse neuron data, as the biol-

ogy variation could be observed from the original data (Fig. 8a).

Here again genes that are nonzero in more than 50% of samples

were retained. After applying our algorithm, the biological pattern

became better separated in more normalized scales (Fig. 8b). Using

the same k-means approach as in the previous subsection, the itera-

tive approach (ARI¼0.553, AUC¼0.840) again made reasonable

improvement compared to the raw data (ARI¼0.368,

AUC¼0.714) and ComBat (ARI¼0.344, AUC¼0.692).

4 Discussion

Adjusting for batch effect is important when conducting clustering

analysis for the RNA-seq data. In this paper, we proposed novel

approaches based on the interpolating quantile normalization. As

the data become challenging, i.e. true clusters are closer to each

other, and the batch effect is heterogeneous on different clusters, our

methods outperform ComBat. However, we should point out that

ComBat is a more general method, which adjusts the data matrix for

many kinds of down-stream analysis, while our method focuses on

adjusting the dissimilarity matrix between samples, mainly serving

the purpose of pattern detection in the samples. It does not correct

the raw count matrix to adjust for batch effects.

Our method provides a bridge, the corrected dissimilarity ma-

trix, between raw data and clustering and other pattern detection

techniques. Instead of directly conducting clustering, our method

modifies the dissimilarity matrix so that various clustering

approaches can achieve better performance. Although we mainly

used hierarchical clustering and k-means clustering to illustrate the

performances, our method can also be combined with other

Fig. 6. Network connection graph for the brain cells of human and mouse

Fig. 5. 3D PCA plots based on (a) the dissimilarity matrix of the FPKM data (Zhang et al., 2016) and (b) the dissimilarity matrix corrected by the iterative interpolat-

ing quantile normalization
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clustering approaches. For instance, using the dissimilarity matrix

corrected by our method, the powerful SC3 method (Kiselev et al.,

2017) achieves average ARIs of 0.933 (SD¼0.003) and 0.926

(SD¼0.020) for the mouse neuron data (Usoskin et al., 2015) and

the human pancreas data (Muraro et al., 2016) respectively, among

100 repeated runs. Notice that the corrected dissimilarity stayed the

same, as our method is deterministic. The stochastic aspect of the re-

sults came from SC3. As shown in Supplementary Figure S5, these

results were better and more robust compared to the results ob-

tained by SC3 using the uncorrected distance matrices [ARI¼0.872

(SD¼0.020); ARI¼0.833 (SD¼0.100)].

There are some limitations in our methods. Because the interpo-

lating quantile normalization will map the full range of the reference

vector to the target vector, a vector with very small variance can be

normalized into a polarized vector. Although the polarization can

magnify the decreased pattern signal in the between-batch blocks, it

may also produce extreme patterns which do not exist. This charac-

teristic of quantile normalization has side effects for both our meth-

ods. On the one hand, the vectorization approach may suffer from

insufficient discrimination due to the lack of extreme values. On the

other hand, the row/column iterative approach is more easily af-

fected by the wrong extreme values since each column and each row

are polarized. Therefore, the vectorization approach performed bet-

ter on data with high similarity between batches, such as the

ENCODE data, while the iterative approach was more suitable for

more irregular and imbalanced data, such as the human–mouse

brain data.

In addition, the preprocessing method can affect the result of the

clustering analysis. The dissimilarity matrix can be different after

standardization or log-transformation, especially in the sense of the

relative orders of the entries. So the final product of matrix correc-

tion will also be different. Both simulation and real data analysis

have shown that the choice of the two preprocessing strategies may

depend on data, as we utilized standardization for the ENCODE

data and log-transformation for the human–mouse brain RNA-seq

data.

Although the iterative approach seems to have limitations ex-

plained earlier, we generally recommend this approach. This is be-

cause there are saddle-point-like entries existing in the dissimilarity

matrices, which may cause confusing interpretations in terms of the

distance between samples. Compared to the vectorization approach,

which retains the order of entries within each block, the iterative ap-

proach reallocates the extreme values to the ’hidden’ local extremes

instead of the false saddle points. This mechanism can improve the

robustness of the algorithm and restore the hidden patterns in the

dissimilarity matrix.
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