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Abstract

Motivation: Droplet digital PCR (ddPCR) is an emerging technology for quantifying DNA. By parti-

tioning the target DNA into �20 000 droplets, each serving as its own PCR reaction compartment, a

very high sensitivity of DNA quantification can be achieved. However, manual analysis of the data

is time consuming and algorithms for automated analysis of non-orthogonal, multiplexed ddPCR

data are unavailable, presenting a major bottleneck for the advancement of ddPCR transitioning

from low-throughput to high-throughput.

Results: ddPCRclust is an R package for automated analysis of data from Bio-Rad’s droplet digital

PCR systems (QX100 and QX200). It can automatically analyze and visualize multiplexed ddPCR ex-

periments with up to four targets per reaction. Results are on par with manual analysis, but only

take minutes to compute instead of hours. The accompanying Shiny app ddPCRvis provides easy

access to the functionalities of ddPCRclust through a web-browser based GUI.

Availability and implementation: R package: https://github.com/bgbrink/ddPCRclust; Interface:

https://github.com/bgbrink/ddPCRvis/; Web: https://bibiserv.cebitec.uni-bielefeld.de/ddPCRvis/.

Contact: bbrink@cebitec.uni-bielefeld.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Droplet digital PCR (ddPCR) is an emerging technology for detec-

tion and quantification of nucleic acids. In contrast to other digital

PCR approaches, it utilizes a water-oil emulsion droplet system to

partition the template DNA molecules. Each one of typically around

20 000 nanoliter-sized droplets serves as a compartment for a PCR

reaction. The PCR reaction is carried out until its plateau phase,

eliminating amplification efficiency bias. Each genetic target is fluo-

rescently labelled with a combination of two fluorophores (typically

HEX and FAM), giving it a unique footprint in a two-dimensional

space represented by the intensities per colour channel. The position

of each droplet within this space reveals how many and, more im-

portantly, which genetic targets it contains. Thus, droplets that con-

tain the same combination of targets, cluster together. The number

of positive droplets for each target determines its abundance, which

can for instance be used to detect copy number aberrations in clin-

ical samples.

However, in clinical formalin-fixed paraffin-embedded (FFPE)

samples, damage in the form of sequence alterations can further re-

duce the amplification efficiency, in addition to the low quantity

and quality of the DNA generally obtained. This results in droplets

with their respective signal lying along a vector connecting two clus-

ters in the ddPCR output, which is commonly called rain (Jones

et al., 2014). A recently published protocol by Hughesman et al.

(2016) describes a protocol for multiplexing (i.e. using reactions

with more than two targets) ddPCR with clinical FFPE samples by

using a combination of flourophores to obtain a non-orthogonal lay-

out in order to avoid overlapping rain (see Fig. 1b).
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Several automated methods have been developed (Attali et al.,

2016; Chiu et al., 2017; Dobnik et al., 2016; Jacobs et al., 2017;

Trypsteen et al., 2015) to analyze ddPCR data. However, analysis of

non-orthogonal, multiplexed ddPCR reactions is not supported

by any tool. To overcome these limitations, we developed the

ddPCRclust algorithm, an R package and associated interface

(ddPCRvis) for automated analysis of multiplexed ddPCR samples.

2 Materials and methods

As aforementioned, data from ddPCR consists of a number of different

clusters l1,. . ., lk and their respective centroids c1,. . ., ck, where k is the

number of clusters. All droplets (x1,. . ., xm) represent one or more gen-

etic targets t1,. . ., tn, where m is the number of droplets and n is the

number of targets. Each cluster li is defined as a group of droplets that

contain an identical combination of targets. We define four steps to

successfully analyze this data, each step is detailed in subsection 2.2.

1. Find all cluster centroids c.

2. Assign one or multiple targets t to each cluster l based on c.

3. Allocate the rain and assign a cluster label l to each droplet x.

4. Determine the number of positive droplets for each target t and

calculate the CPDs.

The algorithm was implemented in R (R Core Team, 2017) and

can be installed as a package. The main function of the package is

ddPCRclust. This function runs the algorithm with one or multiple

files. Automatic distribution among all CPU cores is optional (not

supported on Windows).

2.1 Input data
The input data are one or multiple CSV files containing the raw data

from Bio-Rad’s droplet digital PCR systems (QX100 and QX200).

Each file can be represented as a two-dimensional data frame. Each

row within the data frame represents a single droplet, each column

the respective intensities per colour channel.

2.2 Clustering
Step 1—Cluster centroids: We find the centroids of the clusters

based on three different approaches; flowDensity (Malek et al.,

2015), SamSPECTRAL (Zare et al., 2010) and flowPeaks (Ge and

Sealfon, 2012). We adjusted parameters of each algorithm to

provide the best results on ddPCR data. Each approach has its own

function within ddPCRclust, provided users need more granular

control. To label clusters we start with the bottom left cluster, which

is assigned to the population of empty droplets, i.e. the droplets

showing no signal for any of the targets.

Step 2—Cluster labelling: The clusters with the droplets that

contain only a single target form a sector with the population of

empty droplets (see Fig. 1c). We use the angle between the popula-

tion of empty droplets and the respective first order clusters to label

them correctly. We then estimate the position of higher order clus-

ters based on the location of the first order clusters. To do so, we

create a distance matrix, containing the distances between the esti-

mated cluster positions and all cluster centres found by the algo-

rithms. The optimal assignment for each cluster can then be

calculated by solving the Linear Sum Assignment Problem using the

Hungarian Method (Papadimitriou and Steiglitz, 1982).

Step 3—Rain allocation: Certain ddPCR experiments can involve

rain, which can contain up to half of the droplets intrinsically belonging

to the higher order cluster. Thus, accurate allocation of rain is a crucial

part of the algorithm. To do so, we have to find the minimal distance be-

tween each droplet and each cluster, as well as between each droplet

and the respective vectors connecting the clusters (see Fig. 1d). However,

an all-vs-all comparison has a significant impact on the runtime of the al-

gorithm ðOð2n�1ðnþ 2ÞmÞÞ. This number can be reduced by prepro-

cessing the data. Filtering out points that are obviously not rain, can

greatly demagnify n, speeding up the algorithm significantly in the pro-

cess. The obvious choices are points that are sufficiently close to the clus-

ter centres. To estimate the distance of a point to a cluster centre, we use

an empirically derived Mahalanobis distance threshold (Mahalanobis,

1936). Furthermore, only taking clusters and vectors in the vicinity of

the droplet into account will lower the number of operations even fur-

ther. The whole function is comprised of the following steps:

1. For each cluster centre c, calculate the Mahalanobis distance dM

to each point based on the covariance matrix of the dataset.

2. Remove all points where dM < mean(dM) for the respective clus-

ter. Those points are closer than the average around the respective

cluster centres and hence do not have to be considered as rain.

3. For each cluster centre c, remove all points that are not in be-

tween c and the respective higher order clusters.

4. For all remaining points, perform the all-vs-all comparison as

described earlier.

(a) (b) (c) (d)

Fig. 1. During a ddPCR run, each genetic target is fluorescently labelled with a combination of two fluorophores. The position of each droplet within this space reveals

how many and, more importantly, which genetic targets it contains. Thus, droplets that contain the same targets, or the same combination of targets, cluster together.

In clinical FFPE samples, DNA might be partially degraded, causing formation of rain and disappearance of the higher order clusters. (a) Multiplexing can cause over-

lap of clusters and rain. (b) Non-orthogonal layout avoids overlap of clusters and rain. (c) The angles between the droplets on the bottom left, which retain no target,

and the primary clusters are highlighted. In case of genomic deletions or purposely missing clusters, it is possible to determine which cluster is missing. In this case,

a genetic deletion of target 2 has occurred. (d) Graphical representation of the possible formation of rain along vectors
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The intermediary result is three arrays of unique identifiers, which

represent the cluster membership for each row of the data frame.

Each array is the result from one of the three independent clustering

approaches. Next, these results need to be combined.

Step 4—CPDs calculation: Until this point, all three approaches

were computed independently. To compute the final result, we cre-

ate a cluster ensemble using the clue package for R (Hornik, 2005).

The results of the previous clusterings are first converted into parti-

tions before the medoid of the cluster ensemble is computed. As a

measure of confidence, the agreement of the cluster ensemble is cal-

culated using the adjusted Rand index (Hubert and Arabie, 1985).

Once all droplets are correctly assigned, the copies per droplet

(CPDs) for each target are calculated by the function calculateCPDs.

In order to compare individual wells (or files) with each other, a

constant reference control is required. This target should be a gen-

etic region that is usually not affected by any variations and is pre-

sent in every file. If the name of this marker is provided, all CPDs

will be normalized against it.

2.3 Exporting results
The results can be exported using exportPlots, exportToExcel and

exportToCSV.

2.4 ddPCRvis
ddPCRvis is a GUI that gives access to the aforementioned function-

alities of the ddPCRclust package directly through a web browser,

powered by R Shiny (Chang et al., 2017). It also enables the user to

check the results and manually correct them if necessary.

3 Results

Along with the algorithm, we provide a set of eight representative

example files. We compared the clustering results of ddPCRclust to

manual analysis by experts using the adjusted Rand index. The re-

sults for those eight reactions are presented in Table 1.

4 Discussion

While the advantages of digital PCR in terms of sensitivity and ac-

curacy have already been established, the technology has long been

held back by its low throughput compared to other techniques. The

advancement of using thousands of nanoliter droplets instead of

physical wells paired with new protocols for multiplexed ddPCR re-

actions will provide a boost to the field of digital PCR. These new

types of data require new computational methods to be devised in

order to aid the technology on the analysis end. Automated analysis

of non-orthogonal reactions was not yet possible and manual ana-

lysis takes many hours to complete, while suffering the usual disad-

vantages of subjectivity and non-reproducibility.

We developed ddPCRclust, an R package which can automatically

calculate CPDs for multiplexed ddPCR reactions with up to four tar-

gets in a non-orthogonal layout. Results of ddPCRclust are on par

with manual annotation by experts, while the computation only takes

a few minutes per 96-well experiment. As with every clustering

method, it is impossible to achieve perfect accuracy and low DNA

concentration, which causes very sparse clusters, still provides a chal-

lenge (see Supplementary Fig. S1). Thus, we implemented three inde-

pendent clustering approaches to provide more robustness, which is

especially important in a medical context. Furthermore, the underly-

ing distribution of the clusters could be subject to further studies.

A visual interface is crucial for users to have a mental model

of their data and easy accessibility without having to download and

install the R package, in turn saving time and effort. ddPCRvis based

on the Shiny package provides that and also enables the user to

check the results and manually correct them if necessary.
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Total number of droplets Adjusted Rand index Run time in seconds
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