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Abstract

Summary: DNA methylation contains information about the regulatory state of the cell. MIRA

aggregates genome-scale DNA methylation data into a DNA methylation profile for a given region

set with shared biological annotation. Using this profile, MIRA infers and scores the collective

regulatory activity for the region set. MIRA facilitates regulatory analysis in situations where

classical regulatory assays would be difficult and allows public sources of region sets to be leveraged

for novel insight into the regulatory state of DNA methylation datasets.

Availability and implementation: http://bioconductor.org/packages/MIRA.

Contact: nsheffield@virginia.edu

DNA methylation interacts with other regulatory features to control

gene expression (Stadler et al., 2011). The connection between

methylation and transcription factor (TF) binding goes both ways:

TF binding affects and is affected by DNA methylation (Zhu et al.,

2016), making it difficult to infer the causative factor; nevertheless,

independent of directionality, the inverse correlation between DNA

methylation and gene expression indicates that regulatory informa-

tion can be derived from DNA methylation data.

Multiple approaches have been used to relate DNA methylation

to regulatory activity; for example, correlating differential methyla-

tion with expression of nearby genes (Yao et al., 2015), or testing

enrichment of TFs in differentially methylated regions (Wijetunga

et al., 2017; Yao et al., 2015). These approaches are limited by arbi-

trary thresholds for differential methylation and do not make full

use of genome-wide data. Also, factors other than DNA methylation

levels, such as the shape of the DNA methylation profile around a

site, may be important to the site’s activity (Kapourani and

Sanguinetti, 2016).

We recently introduced and validated a novel method called MIRA

(Methylation-based Inference of Regulatory Activity), which takes ad-

vantage of genome-scale DNA methylation data to assess regulatory

activity (Sheffield et al., 2017). We now present the MIRA R package

which enhances this method and makes it broadly available.

MIRA requires two inputs: (i) single-nucleotide-resolution DNA

methylation data; and (ii) a set of genomic regions (Fig. 1A). The

DNA methylation data could come from sources such as whole gen-

ome or reduced representation bisulfite sequencing (WGBS or

RRBS), or microarrays. MIRA has been successfully tested with

coverage as low as 450k array data. Genomic regions can be derived

from sequencing assays such as ChIP-seq, DNase-seq, or ATAC-seq.

Many region sets are publicly available through large-scale genomics

projects and may be conveniently accessed through R packages like

LOLA (Sheffield and Bock, 2016).

Using these two inputs, MIRA aggregates the DNA methylation

of individual CpGs to create a summary profile through several

steps: First, each region (Fig. 1B) is split into n bins. Second, the

DNA methylation level (0–100%) within a bin is averaged (Fig. 1C).

Third, the regions are aggregated into a single summary profile by

averaging the DNA methylation levels of each bin across all regions

(Fig. 1D). MIRA thus creates a ‘meta-region profile’ that provides

general information about the activity of that region type across the

genome. Through aggregation, MIRA handles sparse DNA methyla-

tion data well. This makes MIRA well suited for low-coverage bisul-

fite sequencing (e.g. Farlik et al., 2015).

Once an aggregate profile is constructed (Fig. 1E), it is scored to

quantify the regulatory activity (Fig. 1F). MIRA assumes that
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genomic regions with lower DNA methylation levels have higher

regulatory activity and gives a score based on the deepness of the

‘dip’ in the middle of the ‘meta-region profile’. MIRA automatically

determines the location of the edges of the dip and calculates the

score as the natural logarithm of the ratio between the DNA methy-

lation level of the edges of the dip and the DNA methylation level of

the center of the dip (Fig. 1F). The score reduces the DNA methyla-

tion profile to a number, which predicts the region set’s aggregate

regulatory activity. MIRA scores can be compared between samples

to identify regulatory differences.

MIRA supports a variety of applications depending on the con-

text and what type of region set is used. For example, MIRA can be

used to compare the chromatin states of different types of cells

(Sheffield et al., 2017). MIRA makes analysis of regulatory activity

possible in cases where it would otherwise be infeasible. When sam-

ple amount or quality would not allow ATAC-seq or ChIP-seq but

DNA methylation data can be obtained, regulatory analysis can be

done with MIRA using existing ATAC-seq or ChIP-seq data (e.g.

from a database). MIRA is also valuable for cases where it would

be impractical in terms of time or cost to perform traditional regu-

latory assays, such as for large-scale cohort studies. The MIRA R

package can be accessed via Bioconductor, and comes with

multiple vignettes demonstrating how to apply it to biological

data. MIRA provides a novel tool to enhance analysis of DNA

methylation and leverage existing data from regulatory assays to

gain new regulatory insights.
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Fig. 1. MIRA workflow. (A) Two inputs to MIRA: DNA methylation data for the sample of interest and a set of genomic regions that share a biological annotation.

(B) Three regions from the region set are shown for this example, but a region set would normally be composed of thousands of regions. The DNA methylation

level at individual CpGs is plotted for each 4.5 kb region, which is centered around a site of interest. (C) Each region is split into 11 bins of approximately equal

size and an average methylation level is calculated based on the CpGs in each bin. (D) All regions are aggregated into a single DNA methylation profile by averag-

ing methylation from the corresponding bins of each region. (E) The methylation profile is scored by taking the log of the ratio between the average methylation

of the two shoulders and the methylation of the center. An algorithm determines the position of the shoulders. (F) As might be seen in an experiment that uses

MIRA, the single score calculated from this sample is compared to scores from other samples of the same type—condition 1—as well as to samples of a different

type—condition 2. All scores were calculated using the same region set. The difference in scores between groups suggests differential activity of this region set.

(G) Real MIRA profiles for a TF region set and for an H3K27 acetylation region set with DNA methylation data from six mesenchymal stem cell samples
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