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Abstract

Purpose of review—Erythropoiesis, in which hematopoietic stem cells (HSCs) generate 

lineage-committed progenitors that mature into erythrocytes, is regulated by numerous chromatin 

modifying and remodeling proteins. We will focus on how epigenetic and genetic mechanisms 

mesh to establish the erythroid transcriptome and how studying erythropoiesis can yield genomic 

principles.

Recent findings—Trans-acting factor binding to small DNA motifs (cis-elements) underlies 

regulatory complex assembly at specific chromatin sites, and therefore unique transcriptomes. As 

cis-elements are often very small, thousands or millions of copies of a given element reside in a 

genome. Chromatin restricts factor access in a context-dependent manner, and cis-element-binding 

factors recruit chromatin regulators that mediate functional outputs. Technologies to map 

chromatin attributes of loci in vivo, to edit genomes and to sequence whole genomes have been 

transformative in discovering critical cis-elements linked to human disease.

Summary—Cis-elements mediate chromatin-targeting specificity, and chromatin regulators 

dictate cis-element accessibility/function, illustrating an amalgamation of genetic and epigenetic 

mechanisms. Cis-elements often function ectopically when studied outside of their endogenous 

loci, and complex strategies to identify nonredundant cis-elements require further development. 

Facile genome-editing technologies provide a new approach to address this problem. Extending 

genetic analyses beyond exons and promoters will yield a rich pipeline of cis-element alterations 

with importance for red cell biology and disease.
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INTRODUCTION

The progressive transition of a nucleated erythroblast into an enucleated erythrocyte requires 

profound morphological and functional changes to ensure the generation of billions of 

erythrocytes daily [1,2]. As this process involves massive chromatin structure 

reconfiguration, there is considerable interest in identifying the regulators, how they are 

integrated to yield a vital network, and factors/signals that control the regulators. The 

proteins mediating chromatin transitions are often referred to as ‘epigenetic regulators’. 

Although the semantics of equating ‘epigenetics’ with chromatin mechanisms is hotly 

debated, these factors may generate memory that dictates the daughter cell transcriptome 

and phenotypes. Moreover, the DNA methylation epigenetic mark 5-methylcytosine is 

inextricably linked to chromatin mechanisms [3]. We shall focus on the role of chromatin 

regulators in generating the erythroid transcriptome. As cis-elements recognized by 

activators and repressors underlie chromatin-targeting specificity, their genetic integrity is 

crucial to ensure normal chromatin landscapes. On the basis of the amalgamation of genetic 

and epigenetic mechanisms, ascribing genetic or epigenetic components to a biological 

process can be murky.

Large numbers of erythroid cells representing distinct maturation states can be isolated, and 

powerful models exist for studying erythropoiesis and erythroid cell function [1,2]. As such, 

erythroid cells are ideal for investigating chromatin control of genome function, 

development and homeostasis. Erythropoiesis is controlled by a restricted cohort of lineage-

specific master transcriptional regulators functioning in concert with broadly expressed 

factors. The founding member of the GATA-binding protein (GATA) transcription factor 

family GATA-1 [4,5] and Kruppel-like factor 1 (KLF1) [6] exemplify core determinants of 

the erythroid transcriptome that regulate both shared and unique target genes. GATA-2 [7,8], 

runt-related transcription factor 1 (RUNX1) [9,10] and T-cell acute lymphocytic leukemia 

protein 1 (TAL1) [11] have pivotal roles to promote the genesis and/or function of 

hematopoietic stem/progenitor cells (HSPCs), although TAL1 is also expressed and 

functions in erythroid cells [12].

Massive efforts utilizing genome-wide technologies have mapped transcription factor, 

coregulator and chromatin landscapes in living cells [13,14,15▪▪,16,17], including erythroid 

cells [18–22,23▪,24,25,26▪]. An ongoing challenge is to leverage these datasets into 

innovative discoveries to explain epigenetic mechanisms underlying erythroid precursor cell 

development into erythrocyte, and how these mechanisms are impacted by stress and 

pathophysiological states.

TRANSCRIPTIONAL CONTROL OF ERYTHROID CELL DEVELOPMENT AND 

FUNCTION

Although the dual zinc finger transcription factors GATA-1 and GATA-2 share a similar 

DNA binding domain [27], they differ in significant ways. They are differentially expressed 

during hematopoiesis, with GATA-2 expressed predominantly in HSPCs and GATA-1 

expressed in erythroid, megakaryocytic, mast and eosinophil cells [5,7,8,28]. They have 

distinct functions to mediate generation, proliferation and/or survival of hematopoietic cell 
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types [7,8,29,30,31▪,32▪]. GATA-2 induces hematopoietic stem cell (HSC) generation from 

hemogenic endothelium in the aorta gonad mesonephros region of the embryo and regulates 

HSPC function [31▪–34▪]. By contrast, hemogenic endothelium and HSCs express little to 

no GATA-1. GATA-1 functions in erythroid precursors to promote erythroid cell 

development and maturation [29]. GATA-1 and GATA-2 have distinct biochemical 

attributes, for example, GATA-2 is less stable than GATA-1 [35], and GATA-1 selectively 

requires the coregulator friend of GATA-1 (FOG-1) for many of its actions [36,37]. Finally, 

GATA-1 and GATA-2 differentially regulate target gene transcription [38,39].

Despite their differences, GATA-1 and GATA-2 actions are intricately linked. GATA-1 is 

upregulated at an early stage of erythropoiesis and directly represses Gata2 expression 

[38,40]. In erythroid precursors, GATA-2 occupies five sites at the active Gata2 locus, 

indicative of positive autoregulation [40–42]. As GATA-1 levels/activity rise, GATA-1 

displaces GATA-2 from genomic sites – a process termed GATA switching [38–40]. 

GATA-1 upregulation in erythropoiesis occurs during the early transition (‘S0 to S1’) 

involving commitment to terminal differentiation and dramatic chromatin reconfiguration 

[43]. Given the GATA-2 function in hemogenic endothelium and HSPCs, and GATA-1 

promotion of erythropoiesis, GATA switches control erythroid precursor cell differentiation 

into erythrocytes. Not all GATA-1/GATA-2 chromatin occupancy sites are GATA switch 

sites, as certain sites are occupied preferentially or exclusively by GATA-1 or GATA-2 

[18,26▪,44].

As GATA-1 upregulation induces GATA switches, it is instructive to consider the factors/

signals that control GATA-1 expression and activity. Coregulators mediate GATA-1 activity 

in a context-dependent manner [20,37,45▪,46–48]. GATA-1-mediated activation and 

repression is facilitated by FOG-1 at many target loci [37,49]. This multi-zinc finger protein 

binds the GATA-1 N-terminal zinc finger and appears to lack DNA binding activity [37,50]. 

The GATA-1 C-terminal zinc finger binds to the GATA motif (A/TGATAA) [51,52], which 

in a chromatin context has the consensus (C/G)(A/T)-GATAA(G/A/C)(G/A/C) [18]. FOG-1 

copurifies with the NuRD chromatin remodeling complex, and NuRD mediates certain 

GATA-1 functions [53,54]. FOG-1 facilitates GATA-1 chromatin occupancy at select sites 

[55,56], precludes GATA-1 occupancy at others [23▪] and facilitates GATA switches [55]. 

GATA-1 occupies several thousand genomic sites, with the highest frequency at introns and 

sites distal to promoters [18–21]. GATA-1 and GATA-2 form a multimeric transcriptional 

regulatory complex with TAL1, LIM domain only protein 2 (LMO2) and LIM domain-

binding protein 1 (LDB1) [57]. GATA-1-occupied and GATA-2-occupied loci are commonly 

associated with one or more of these factors [20,58–62,63▪▪], and enrichments in histone 

H3K4me1 [21]. LDB1 and LMO2 can contribute to GATA-1-mediated activation and 

repression [47]. The Brahma-related gene 1 (BRG1) component of the switch/sucrose non-

fermentable (SWI/SNF) chromatin remodeling complex induces chromatin accessibility at 

GATA-1-occupied enhancers [64,65]. Interferon regulatory factors colocalize with GATA-1 

at certain sites and confer stage-specific transcription [66]. E-twenty-six (ETS) transcription 

factors can cooccupy chromatin with GATA-1/GATA-2, influencing their activities 

[44,67,68]. Given the numerous ETS factors, it will be instructive to consider how multiple 

ETS factors in the same cell influence GATA factor function.
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Although it is in vogue to study factor colocalization at endogenous sites, extrapolating 

chromatin immunoprecipitation (ChIP) data to function can be precarious, as formaldehyde 

cross-linking might reflect nonredundant or redundant function, or an interaction with no 

functional significance. Knockdown studies in a genetic complementation assay in GATA-1-

null G1E cells represent a powerful approach to identify functional determinants of 

GATA-1-mediated transcriptional regulation. G1E cells, which resemble normal 

proerythroblasts, were derived from mouse embryonic stem cells via disruption of the Gata1 
locus [69]. Expression of an estrogen receptor ligand binding domain fusion to GATA-1 

allows one to rapidly activate GATA-1, which induces a normal erythroid program [40,70] 

that recapitulates a physiologically relevant window of erythroid maturation [70].

Studies in G1E cells indicate that the mechanistic requirements for GATA-1-mediated 

activation and repression differ in distinct contexts. GATA-1-regulated loci can be sensitive 

or insensitive to FOG-1, the NuRD component Mi2β and the histone H3K20 

monomethyltransferase SetD8 [45▪]. The differential locus sensitivity to partial factor 

knockdowns (50–80%) may reflect overt qualitative differences or locus-specific 

concentration requirements for the factors. The context-dependent FOG-1 requirement for 

GATA-1 activity was first demonstrated using GATA-1 mutants (V205G or V205M) 

impaired in FOG-1 binding [37]. As these mutants do not eliminate FOG-1 binding, 

alternative strategies have been devised, including genetic complementation in FOG-1-null 

hematopoietic precursor cells [71]. However, these cells lack certain factors required for 

erythroid gene expression. Multiple lines of evidence using these strategies provide evidence 

for differential FOG-1 requirements at distinct loci.

Of high relevance to GATA-1 function is its capacity to regulate local chromatin structure 

[72–74] and to induce long-range chromatin looping [75]. GATA-1 induces a chromatin loop 

between the β-globin locus control region (LCR) and the downstream βmajor promoter [75]. 

FOG-1 is required for GATA-1-dependent looping, at least at the limited number of loci 

examined. This might relate to its activity to facilitate GATA-1 occupancy or an unidentified 

mechanism. LDB1 [76] and BRG1 [77] also promote this chromatin loop. GATA-1 expels 

the β-globin locus from the nuclear periphery concomitant with looping [78,79], and 

expulsion characterizes primary erythroid cell maturation [80]. As the nuclear periphery can 

create an inhospitable environment for transcription [81], expulsion may relocate the locus 

into a favorable environment to generate high levels of β-globin. Tiling the β-globin locus 

and neighboring sequences with bacterial artificial chromosome probes indicated that 

expulsion is restricted to the β-globin locus and does not involve a considerably broader 

region [79]. KLF1 promotes the LCR–βmajor promoter loop [82], contributes to expulsion 

[79] and has a broader role in conferring subnuclear positioning of genes [83]. Recent 

evidence indicates that GATA-1 functions as a mitotic ‘bookmark’ to ensure the stable 

maintenance of lineage-specific gene expression throughout development [84▪▪].

Given the instrumental role of GATA-1 to establish/maintain the erythroid cell transcriptome 

and to promote erythropoiesis, defining mechanisms that control GATA-1 expression/

activity are very important. Gata1 expression in erythroid cells is regulated by an upstream 

GATA motif-containing enhancer [85]. Targeted deletion of this cis-element, which contains 

GATA and CACCC motifs, yields an erythroid maturation defect only when the NeoR gene 
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remains at the targeted site; NeoR excision is associated with normal erythropoiesis [86]. In 
vivo footprinting and overexpression analysis in zebra-fish suggest that GATA-1 

autoregulates its own expression [87,88]. PBX and MEIS1 act upstream of GATA-1 in 

erythropoiesis [89], and Biklf [90] and ZBP-89 [91] promote Gata1 expression in zebrafish. 

In an embryonic stem cell differentiation system, bone morphogenetic protein signaling 

induces Gata1 [92]. The sumo ligase PIAS1 represses Gata1 in HSCs [93]. Despite this 

entourage of factors, considerable work is required to achieve a coherent model for how 

their activities are integrated through Gata1 cis-elements.

The myeloid transcription factor PU.1 is expressed reciprocally with GATA-1 and represses 

GATA-1 activity [94]. PU.1 downregulation enhances GATA-1 activity concomitant with, or 

as a prelude to, Gata2 repression, and GATA-1 represses PU.1 expression [95]. 

Phosphorylation, sumoylation and acetylation regulate GATA-1 activity. Although GATA-1 

is multisite phosphorylated [96], with Ser302 phosphorylated by Akt [97], how 

phosphorylation influences GATA-1 activity is unclear. GATA-1 sumoylation at Lys137 

facilitates its regulation of FOG-1-dependent target genes and expulsion of the loci from the 

nuclear periphery [78]. As FOG-1 [55] and GATA-1 multisite acetylation [98] promote 

GATA-1 chromatin occupancy, mechanisms regulating FOG-1 levels/activity and the 

acetylation pathway dictate GATA-1 activity, and therefore GATA switches. FOG-1 is 

multisite sumoylated [99] and presumably regulated by diverse post-translational 

modifications.

Even though GATA-1 and GATA-2 control distinct processes during hematopoiesis, they 

confer primitive erythroblast survival redundantly [100]. GATA-1 and GATA-2 can 

colocalize with a cohort of factors [TAL1, lympoblastomic leukemia 1 (LYL1), LMO2, 

RUNX1, ETS-related gene (ERG) and friend leukemia integration 1 (FLI1)] that have 

important functions to control hematopoiesis [62,101–104]. Coregulators including p300 

[105], MED1 [106] and HDAC3/4 [105,107] have been reported to mediate GATA-2 

function. Although GATA-2 is acetylated [105,108] and phosphorylated [109], and MAP 

kinase and Akt phosphorylate GATA-2 [109,110], the modification sites and consequences 

are unclear.

In addition to established GATA-1 and GATA-2 coregulators, other chromatin modifying 

enzymes are implicated in erythropoiesis and/or erythroblast function. The histone 

methyltransferases Mll, Dot1L, Ezh2 and SetD8 regulate hematopoiesis and/or 

hematopoietic cell function [45▪,111–113]. The lysine-specific demethylase LSD1 [114] 

regulates erythroid progenitor differentiation by repressing genes associated with HSPCs 

[115,116]. As histone marks and DNA methylation dramatically change upon erythroid 

maturation [117,118], elucidating molecular determinants of these patterns will yield 

important mechanistic insights. Attempting to unravel how factors control specific loci 

without knowing the requisite cis-elements is analogous to embarking on the construction of 

a sophisticated architectural structure devoid of a blueprint.
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IDENTIFYING AND ANALYZING NONREDUNDANT CIS-ELEMENTS IN 

COMPLEX GENOMES

ChIP-seq commonly reveals several thousand factor occupancy sites with only a small 

fraction of the cis-elements occupied. Although thousands of GATA motifs exist in a 

genome, each of which would bind GATA-1/GATA-2 with high affinity as naked DNA, less 

than 1% are occupied in chromatin [18,19]. The mechanisms that endow motifs with the 

capacity to bind GATA factors in chromatin and why only certain occupied cis-elements 

confer nonredundant activity in vivo remain enigmatic.

Genomic maps of transcription factor occupancy and chromatin landscape are used to infer 

function. H3K4me1 and H3K27ac enrichments are interpreted to demarcate active enhancers 

[119▪▪]. Large chromosomal segments enriched in H3K27me3 and H3K4me3 (bivalent 

domains) are thought to poise loci for rapid activation during development [119▪▪]. p300 

occupancy [120] is considered to pinpoint enhancers, whereas DNaseI hypersensitivity [121] 

and formaldehyde-assisted isolation of regulatory elements [122] score for accessibility. 

Although these approaches can lead to the discovery of putative cis-elements, predictions are 

tenuous without accompanying functional analysis at the endogenous locus. Another 

limitation is that mapping studies do not always utilize systems that recapitulate the relevant 

biology.

Traditional assays to evaluate cis-element function commonly rely on reporter gene 

measurements in transfected cells or transgene activity at ectopic chromatin sites. Cis-

elements can elicit substantial activities within plasmids and at ectopic chromatin sites, 

which are irrelevant to endogenous locus function. The β-globin LCR consists of four 

DNaseI hypersensitivity sites approximately 15–50 kilo-bases upstream of the embryonic ε-

globin and adult βmajor promoters, respectively [123,124], and is a pivotal determinant of β-

like globin gene transcription at all developmental stages. The LCR confers position-

independent and copy number-dependent expression of transgenes in transgenic mice, and 

targeted deletion of the hypersensitivity sites collectively in mice strongly reduces β-like 

globin expression at all developmental stages [125]. Many reports have documented 

impressive enhancer activities of individual hypersensitivity sites and subfragments thereof 

in transfection assays and transgenic mice. However, removing entire hypersensitivity sites 

of the LCR, which contain multiple cis-elements, only modestly (~10–30%) influence β-like 

globin expression [126]. Comparison of deletions of one or more of the hypersensitivity sites 

revealed that the individual hypersensitivity sites function additively to yield the powerful 

enhancer activity. This work, combined with numerous other studies, indicates that in vitro 
models of enhancer activity often do not recapitulate physiological function. The limitations 

of assessing cis-element function using historically accepted strategies are considerable.

The low frequency of GATA-1/GATA-2 occupancy of GATA motifs in chromatin, different 

permutations of GATA motifs (sequence variants, proximity to neighboring cis-elements, 

distinct chromatin attributes etc.), biologically critical functions of GATA-1 and GATA-2, 

unanswered questions about GATA switching and unresolved issues in epigenetics constitute 

a strong rationale for addressing how GATA motifs function at endogenous loci. An ideal 

system to explore this problem is the Gata2 locus, given its five GATA switch sites, essential 
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function to control HSPC generation/function, and links to hematologic malignancies and 

vascular disorders.

Three GATA switch sites were deleted individually in mouse embryonic stem cells, and 

mutant mouse strains were generated. Deletion of the –1.8 site containing a conserved 

palindromic GATA motif revealed little to no role in activating Gata2 expression, but it is 

essential for maintaining Gata2 repression during erythroid maturation [127]. However, 

hematopoiesis is largely normal. Deletion of the –2.8 site, which contains multiple 

conserved GATA motifs, modestly reduces maximal Gata2 expression, but does not 

influence Gata2 repression upon erythroid maturation, nor does it significantly affect 

hematopoiesis [128]. Knockout of the intronic +9.5 site, which contains a conserved E-box–

GATA composite element, is embryonic lethal at E14.5. +9.5−/− embryos have very few fetal 

liver HSPCs in E12.5 embryos, and Gata2 expression is strongly reduced, consistent with 

the loss of Gata2-expressing cells [31▪,33▪] (Fig. 1). Although these sites share comparable 

GATA-1/GATA-2 occupancy, certain chromatin attributes and enhancer activity in vitro, 

their deletions yielded gross qualitative differences in activity.

Recent genome-editing innovations allow one to analyze cis-elements at endogenous loci in 

essentially any system [129▪▪,130▪▪]. The utility of this approach was highlighted in an 

application of transcription activator-like effector nucleases (TALENs) to delete a potential 

enhancer in intron 2 of Bcl11a, which encodes a fetal γ-globin repressor [131]. The deletion 

demonstrated the importance of the element for conferring Bcl11a expression in erythroid 

cells. Loss of the element downregulated BCL11A, which induced the γ-globin genes 

[132▪▪]. As γ-globin gene upregulation counteracts toxic effects of mutant β-globin in sickle 

cell disease, this study highlighted a potential therapeutic approach. The use of TALENs and 

zinc finger–nuclease fusions, along with the clustered regularly interspaced short 

palindromic repeats (CRISPR)–Cas9 system, to generate site-directed deletions is 

revolutionizing analyses of cis-element function at endogenous loci and their contribution to 

epigenetic mechanisms.

CIS-ELEMENT MECHANISMS UNDERLYING HEMATOPOIETIC 

PATHOPHYSIOLOGIES

Inherited and acquired hematologic disorders are often caused by mutations at loci essential 

for normal hematopoiesis. Although many mutations and polymorphisms in protein-coding 

regions have been described, less is known about variation in noncoding DNA motifs that 

influence disease susceptibility. Regulatory single nucleotide polymorphisms (SNPs) have 

been identified within a GATA motif upstream of the α-globin gene that causes α-

thalassemia by interfering with activation of α-like globin genes [133] (Fig. 2). An intron 1 

mutation disrupts a GATA motif in ALAS2, yielding X-linked sideroblastic anemia [134▪] 

(Fig. 2). SNPs within the BCL11A intronic enhancer impact hemoglobin levels and 

chromatin occupancy [132▪▪] (Fig. 2). Evidence for the role of cis-elements in suppressing 

malignant hematopoiesis emerged from analysis of patients with monocytopenia and 

mycobacteria infection (MonoMAC), an immunodeficiency associated with a predisposition 

for myelodysplastic syndrome and acute myeloid leukemia [135–138]. MonoMAC is caused 
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by heterozygous mutations in the DNA binding zinc finger of GATA-2 and appears to 

involve haplo-insufficiency [139]. One MonoMAC patient lacking coding region mutations 

harbors a heterozygous deletion of the E-box and five base pairs of the spacer of the +9.5 

composite element (Fig. 1), and the phenotype of this patient is indistinguishable from those 

with GATA-2 zinc finger mutations [33▪]. Additional patients harbor point mutations in an 

ETS motif residing near the +9.5 composite element [139]. In a transfection context, the 

ETS motif was important for composite element enhancer activity [139]. It seems likely that 

further studies will reveal disruptions in many cis-elements that function nonredundantly to 

control hematopoiesis and/or hematopoietic cell function, and these alterations will underlie 

malignant and nonmalignant hematologic disorders.

Genome-wide association studies (GWASs) are increasingly identifying putative noncoding 

sequence variants linked to a predisposition for specific pathophysiologies. SNPs linked to 

predisposition for development of Hodgkin’s lymphoma occur in genomic regions lacking 

known functions [140]. Seventy-five independent loci containing SNPs correlate with red 

cell phenotypes [141]. Although the majority of SNPs reside in noncoding regions, most 

GWASs have been disproportionately biased toward tabulating coding variants. Expanding 

these studies to identify additional noncoding variants that predispose for pathophysiological 

conditions will reveal novel disease-relevant loci that can be functionally validated using 

genome-editing technologies.

CONCLUSION

‘Epigenetics’ is often used to refer to chromatin modifying/remodeling mechanisms. Others 

argue that epigenetics should be restricted to scenarios involving unequivocal heritable 

transmission of traits without altered genetic content, which might or might not involve 

chromatin mechanisms. As cis-elements underlie chromatin-targeting specificity, and 

chromatin controls cis-element accessibility/function, disentangling genetic versus 

epigenetic contributions can be daunting. Sifting through abundant prospective cis-elements 

to identify those with nonredundant function is challenging. How many cis-elements 

resemble the +9.5 in controlling hematopoiesis nonredundantly? Can the thousands of 

GATA-1/GATA-2-occupied elements be segregated into functional versus nonfunctional 

elements via bioinformatics alone (Fig. 3)? How do critical cis-elements function in a 

context-dependent manner, for example, in distinct developmental stages? How important 

are combinatorial mechanisms in which merged cis-elements constitute entities with 

activities that cannot be predicted based on how the individual cis-elements function and 

factor occupancy patterns? To what extent do cis-element mutations, natural variation and 

alterations in chromatin mechanisms that control cis-element function underlie 

pathophysiologies and interindividual variation? Addressing these types of questions will 

yield important insights into red cell biology, normal and malignant hematopoiesis, and 

more broadly biological and genomic principles.
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KEY POINTS

• Cis-elements underlie the complex amalgamation of genetic and epigenetic 

mechanisms.

• GATA-1 and GATA-2 occupy a small fraction of their abundant cis-elements 

in a genome, and occupancy does not predict the functional output.

• Although predicting GATA motifs that function nonredundantly in vivo is not 

yet possible, multiple parameters collectively may have predictive value.

• Validation of cis-element function at endogenous loci is crucial, and novel 

genome-editing tools are revolutionizing such analyses.

• Mutational disruption of cis-elements underlies malignant and nonmalignant 

hematologic disorders, and single nucleotide polymorphisms within cis-

elements can yield significant interindividual differences in hematologic 

parameters.
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FIGURE 1. 
Gata2 +9.5 cis-element. The Gata2 intronic +9.5 GATA switch site, which contains an E-

box–GATA motif composite element, functions nonredundantly to confer hematopoietic 

stem cell (HSC) generation in the aorta gonad mesonephros (AGM) region, the fetal liver 

hematopoietic stem/progenitor cell (HSPC) compartment and vascular integrity. 

Heterozygous mutation of the +9.5 element leads to monocytopenia and mycobacteria 

infection (MonoMAC) syndrome, with a phenotype indistinguishable from MonoMAC 

patients with GATA2 zinc finger mutations. Adapted with permission from [33▪].
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FIGURE 2. 
Cis-element variation in normal and disease states. Mutational generation of a GATA motif 

interferes with α-globin transcription leading to α-thalassemia [133]. Natural variation in a 

GATA-1-binding region of the BCL11A locus as a determinant of γ-globin expression 

[132▪▪]. Mutational disruption of a GATA-1 motif reduces expression of ALAS2, which 

encodes a critical heme biosynthetic enzyme [134▪].
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FIGURE 3. 
Erythroid cistrome discovery strategy. Prospective cis-elements are prioritized based on 

multiple parameters and subjected to functional analysis by cis-element editing. GATA-1-

occupied cis-elements functional at their endogenous loci are predicted to be important 

determinants of erythroid cell genesis and/or function.
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