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Modelling compound cytotoxicity using conformal
prediction and PubChem HTS data†

Fredrik Svensson,a Ulf Norinderb,c and Andreas Bender*a

The assessment of compound cytotoxicity is an important part of the drug discovery process. Accurate

predictions of cytotoxicity have the potential to expedite decision making and save considerable time and

effort. In this work we apply class conditional conformal prediction to model the cytotoxicity of com-

pounds based on 16 high throughput cytotoxicity assays from PubChem. The data span 16 cell lines and

comprise more than 440 000 unique compounds. The data sets are heavily imbalanced with only 0.8%

of the tested compounds being cytotoxic. We trained one classification model for each cell line and vali-

dated the performance with respect to validity and accuracy. The generated models deliver high quality

predictions for both toxic and non-toxic compounds despite the imbalance between the two classes. On

external data collected from the same assay provider as one of the investigated cell lines the model had a

sensitivity of 74% and a specificity of 65% at the 80% confidence level among the compounds assigned to

a single class. Compared to previous approaches for large scale cytotoxicity modelling, this represents a

balanced performance in the prediction of the toxic and non-toxic classes. The conformal prediction

framework also allows the modeller to control the error frequency of the predictions, allowing predictions

of cytotoxicity outcomes with confidence.

Introduction

Cytotoxicity assessment is often one of the earliest toxicity
tests conducted in the drug discovery process. These tests are
important as cytotoxicity is a highly undesired feature in drug
candidates, and the results from cytotoxicity screening are
used both to remove toxic compounds and to help interpret
the results of the subsequent assays.1 It has also been shown
that cytotoxicity can be linked to organism level toxicities,2,3

raising hopes that it will be possible to replace in vivo acute
toxicity studies with predictive in vitro cytotoxicity testing.4

However, experimental screening for cytotoxicity not only
requires that compounds are available in sufficient quantities
but also needs both time and resources for the running of the
screening assays. Prioritising what compounds to test by
means of in silico methods has the potential to save consider-
able amounts of time and money.5

Cell death can occur through a multitude of mechanisms,
either through acute structural breakdown or through stress

that triggers cellular apparatus leading to regulated cell
death.6 However, many assays cannot distinguish between
different mechanisms behind cell death or growth arrest. For
an in depth understanding of the cytotoxic properties of a
compound it is therefore important to investigate the under-
lying mechanisms.

For predictive methods to be useful for cytotoxicity assess-
ment it is important to know under which circumstances the
predictions are likely to be accurate. Conformal prediction is a
modelling framework that outputs predictions with a guaran-
teed error rate.7 The controlled error rate makes conformal
prediction attractive for important decision steps as the
domain expert can adjust the confidence level to suit the par-
ticular problem at hand and be guaranteed about the corres-
ponding level of correct predictions. The application of this
has recently been demonstrated for problems in QSAR and pre-
dictive modeling.8–12 Eklund et al. describe the application of
conformal prediction on AstraZeneca preclinical drug develop-
ment data and show that conformal prediction greatly
improves the predictions compared to traditional QSAR
methods.10,11 Norinder et al. demonstrate how conformal pre-
diction can serve as a more transparent alternative to tra-
ditional applicability domain determination.8,9

An additional advantage of conformal prediction is that the
framework can be extended to each outcome class. Such a
class conditional conformal predictor is guaranteed to be valid
for each class.13 This means that for imbalanced data, the
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error rate for the minority class can be controlled, offering a
solution to many of the problems14 associated with modelling
imbalanced data.12,15 This feature has the potential to make
conditional conformal predictions a useful approach when
building models on data from screening assays since this type
of data often is highly imbalanced, i.e. a large number of com-
pounds have been screened to find a few active (or toxic)
compounds.

PubChem is a publicly available repository of chemical
compounds and associated assay data.16,17 Various assays for
cell viability and cell proliferation inhibition (in this study col-
lectively referred to as cytotoxicity) have been made available
through this service. The deposited assays include high
throughput screening, qHTSs, and smaller dose–response
assays.

Several machine learning approaches have been applied for
the prediction of compound cytotoxicity based on in vitro
data.18–24 These approaches include neural networks,18

random forests (RF),19 decision trees,20 linear regression,20

and Bayesian learning.21 Different techniques to handle the
data imbalance have also been applied, including under-
sampling,19 oversampling,22 and Bayesian learning.21 The
main source used for obtaining cytotoxicity data for modelling
has been PubChem, but Langdon et al. also used internal data
from assays carried out at Pfizer.21 The investigation by
Molnár et al.18 using neural networks on some 12 000 com-
pounds, with a toxic to non-toxic ratio of 1 : 1.5, divided into a
training set (8298 compounds) and 2 equally sized test sets
(2000 compounds) which resulted in predicted accuracies of
77.6%, 73.4% and 73.4% for the 3 sets, respectively. The Guha
and Schürer19 study using RF included 13 smaller datasets of
1300–1400 compounds with toxic to non-toxic ratios between
1 : 7 and 1 : 22. The reported predicted accuracies from the
derived models were between 56–80% with a large variation on
how well the minority class, i.e. the toxic class, was correctly
classified. The investigation by Chang et al.,22 where over-

sampling of the toxic compounds was employed, resulted in
some models for the training set where the internally validated
accuracy, sensitivity and specificity were satisfactory and in the
80% range. However, the corresponding results for the test set
were, for the most part, disappointing with values for accuracy,
sensitivity or specificity in the 25–65% range. Thus, despite
the previous efforts, modelling of highly imbalanced cyto-
toxicity assay data is still challenging, especially in regard to
generating models with a balanced performance between toxic
and non-toxic compounds. There is therefore a need for
further research on how to best address this problem.

In this study we introduce conformal prediction as a tool
for predictive toxicology. Conformal predictors are used to
generate predictive models for highly imbalanced cytotoxicity
data from sixteen PubChem assays. The models are shown to
deliver accurate predictions of compound cytotoxicity as well
as being valid with respect to each individual class according
to the set confidence level. Thus, allowing for predictions with
the level of confidence required for making important
decisions in early stage compound toxicity assessments.

Methods
Data collection and characterization

The PubChem BioAssay database was manually queried for
cytotoxicity screening with more than 20 000 tested com-
pounds (Table 1). The selected datasets were downloaded and
the structures were neutralised and the salts were removed
using CORINA.25 Structure standardization was performed
using the IMI eTOX project standardizer26 in combination
with the MolVS standardizer27 for tautomer standardization
where defined SMARTS patterns were used for these oper-
ations. Activity was assigned to compounds based on the
PubChem outcome annotation and records with missing or
conflicting annotations were removed.

Table 1 The studied cytotoxicity bioassay records from PubChem. The number of unique Bemis–Murcko scaffolds for the toxic compounds in
parenthesis

AID Tested compoundsa Toxic compoundsa Cell line Depositor

463 56 465 706 (538) Jurkat Scripps Research Institute Molecular Screening Center
1486 217 851 2408 (1672) Ba/F3 Scripps Research Institute Molecular Screening Center
1825 290 605 2259 (1468) IEC-6 Scripps Research Institute Molecular Screening Center
598 85 162 5139 (3694) H69AR Southern Research Molecular Libraries Screening Center
648 86 121 924 (735) HUVEC Southern Research Molecular Libraries Screening Center
719 84 841 937 (748) LL47 Southern Research Molecular Libraries Screening Center
847 41 152 194 (184) SK-BR-3 Southern Research Molecular Libraries Screening Center
903 52 783 338 (209) H1299 NIH Chemical Genomics Center
504648 367 995 600 (499) A549 NIH Chemical Genomics Center
588856 404 016 3018 (2183) HEPG2 NIH Chemical Genomics Center
624418 386 360 524 (441) HEK293 NIH Chemical Genomics Center
430 62 627 1121 (920) HPDE-C7 Burnham Center for Chemical Genomics
620 86 701 364 (287) HT1080 Burnham Center for Chemical Genomics
602141 359 040 1302 (956) KKLEB Burnham Center for Chemical Genomics
2275 29 938 193 (145) BJeLR Broad Institute
2717 299 957 3181 (2248) HMLE_sh_Ecad Broad Institute

aNumber of compounds after processing.
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The collected data sets were highly imbalanced with a frac-
tion of toxic compounds spanning from 0.13 to 6.03% with an
average of 0.8%. Many of the tested compounds are shared
between the assays, and in total the data includes 441 396
unique PubChem compound identifiers (CIDs). A total of
16 228 unique CIDs were toxic in at least one assay with just
3967 CIDs being toxic in more than one (see ESI Table S4†). To
assess the chemical diversity within the collected data sets the
number of Bemis–Murcko scaffolds28 was counted using the
RDKit29 MurckoScaffold function.

The PubChem data set AID 364, that served as an external
test set for AID 463 as it was deposited by the same assay provi-
der and run using the same protocol, was also downloaded
and prepared in the same way. After processing the AID 364
data set contained 3247 non-toxic and 48 toxic compounds.

All the screening experiments were carried out at major
NIH screening centres but used different cell lines, primarily
human cancer cell lines and also two cell lines from rodents
(AID 1825 and 1486). The detection method in most assays
was a luminescence30 readout but AID 430, 620, and 504648
utilised fluorescence. Also, the concentration and incubation
time varied between the assays and they used different cut-offs
for outcome assignment. For details regarding a specific assay
the reader is referred to the PubChem entry for that AID.

Descriptor calculation

97 different physiochemical descriptors were calculated using
RDKit (complete list in the ESI†). Molprint2D fingerprints31,32

were calculated using Canvas applying Mol2 atom types and a
maximum path length of two.33,34 In order to limit the
memory usage in the random forest (RF) algorithm only bits
present in at least 0.1% of the molecules were used.

Model generation

A conformal predictor will make valid predictions according to
a user defined confidence level. For a classification problem
this is achieved by assigning a set of class labels to new
instances (compounds) through comparison to a calibration
set with known labels. If the prediction outcome for a new
instance (compound) is similar enough (higher than the set
cut-off ) to the prediction outcomes on the calibration set
instances (compounds) with a certain label, the new instance
(compound) is assigned that class label. This process is then
repeated for each label (class) in the data. Consequently, for a
binary classification problem there are four possible out-
comes. A new instance can be labelled with either of the two
classes or it could be assigned both labels (both classification)
or neither one (empty classification). For an illustrative
example of how conformal prediction is carried out we refer
the reader to ref. 8.

The performance of a conformal predictor is often
measured by its validity. A conformal predictor is said to be
valid if the frequency of errors does not exceed the set confi-
dence level. Towards this end, a prediction is considered
correct if it includes the correct class label, meaning that both
predictions are always correct and empty predictions never are

(i.e. always erroneous). The trade off in conformal prediction is
that between the validity of the model and the efficiency, in
other words, between correctness and the number of single
class predictions.

We used RF35 as the underlying model in our predictors. RF
has been shown to deliver robust results even without case
specific calibration.36 However, it is not the primary objective
of this study to present the optimal model and settings but
rather to introduce the framework of conformal prediction and
its usefulness for predictive toxicology.

Models were developed using Python, Scikit-learn37 version
0.17, and the nonconformist package38 version 1.2.5. Binary
classification models were built based on RF using the Scikit-
learn RandomForestClassifier with 500 trees and all other
options set at default. Conformal predictions were performed
using the ProbEstClassifierNC and IcpClassifier functions in
the nonconformist package with options for class conditional
conformal predictions enabled.

Model validation

We applied the aggregated conformal prediction method
described by Carlsson et al.39 Each data set was randomly
divided in the training (80%) and test set (20%). The training
set was then further divided into a proper training set and
calibration set using 70% and 30% of the training data,
respectively. The size of the calibration set, important for the
performance of conformal prediction in terms of validity, was
chosen within the recommended range previously investigated
and identified for conformal prediction in combination with
RF by Linusson et al.40 This whole process was repeated
100 times, each time storing the predictions on the test set.
The median predicted probability for each compound was
then calculated and used for class assignment in accordance
with the set confidence levels.

We also performed further evaluation by randomly selecting
20% of each data set as a fixed external test set, trained
100 models on the remaining training data for each data set
(with new random splits for proper training and calibration set
at each iteration) and then used these to predict the external
test sets. Also, for the model built on the data from AID 463 we
applied AID 364 as an external test set.

Results and discussion
Dataset description

Even though many compounds were tested in several assays,
most toxic compounds were not toxic in more than one of the
assays. This highlights the fact that cytotoxic effects quite
often are cell-type specific.41 Structurally the toxic compounds
are quite diverse as illustrated by the number of unique
Bemis–Murcko scaffolds among them (Table 1). The lowest
fraction of unique Bemis–Murcko scaffolds was observed for
AID 903 where the ratio of scaffolds to compounds was 0.62.

To further characterize the data we investigated the corre-
lation between the physiochemical descriptors calculated
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using RDKit and the assay outcome (see the ESI† for top corre-
lated features and correlation coefficients). Although no single
feature was strongly correlated (highest Pearson correlation
was 0.155) to the outcome MolLogP, MolMR, the number of
aromatic rings, and the number of aromatic carbocycles were
the most frequently appearing features over all the data sets,
being among the top ten correlated features 12, 10, 9 and 9
times respectively. These are features known to often correlate
with toxicity.42

Modelling results

For each of the sixteen cell lines one model was constructed.
The validities of the models using RDKit descriptors are
shown in Table 2. The validity corresponds to the set confi-
dence level both for the toxic and non-toxic class, showing that
the conditional conformal predictors are valid for our data sets
despite the strong imbalances existing between the two
classes.

Fig. 1 shows how the number of single class predictions is
affected by the confidence level. At higher confidence levels a
large portion of compounds are classified in the both class.
For example at the 90% confidence level the median number
of single class predictions across all data sets is 49.7% with all
the other predictions being both. When the confidence level is
decreased the number of both predictions also decreases but
instead the number of empty class predictions increases. The
highest number of single class predictions for our data is
therefore observed at the 75% confidence level where the
median number of single class predictions is 95%.

Ultimately, what confidence level has to be used is depen-
dent on the aim of the modelling. For a general model of assay
outcome a lower confidence level can give good predictions for
most compounds whereas a more confident model might be
useful to select cytotoxic molecules with a low number of false
positives. Since our aim was to construct predictive models of
the assay outcomes further analysis was focused on the lower

confidence levels in order to generate single class predictions
for the majority of compounds.

The coverage (fraction single class predictions) and the
accuracy of these single class predictions at 70 and 80% confi-
dence levels are shown in Table 3. Both the majority and the
minority classes are well predicted in our models despite the
large imbalance in the ratio of toxic to non-toxic compounds.
For the toxic class the average coverage at the 80% confidence
level is 87% and the average accuracy for the single predictions
80%. At the same confidence level the non-toxic class is also
well predicted with an average coverage of 83% and an average
accuracy of 78%.

Overall the models showed good performance on the inves-
tigated data sets, with a high efficiency and accuracy. However,

Table 2 Validity for models built using RDKit descriptors at different confidence levels. It can be seen that the predictions are valid for both the
toxic and the non-toxic class

Conf. level
70 75 80 85 90

AID Toxic Non-toxic Toxic Non-toxic Toxic Non-toxic Toxic Non-toxic Toxic Non-toxic

463 73.2 71.4 79.3 76.5 83.6 81.6 88.8 86.6 93.2 91.5
1486 71.9 72.6 76.9 77.7 82.0 82.5 87.6 87.2 92.9 91.7
1825 73.0 72.1 78.4 77.2 83.6 82.2 89.1 87.0 93.7 91.6
598 72.1 70.5 76.9 75.4 82.3 80.6 87.0 85.7 91.5 90.4
648 74.2 71.3 78.4 76.3 82.9 81.3 87.4 86.0 92.6 90.8
719 71.8 71.4 78.4 76.5 82.5 81.5 87.7 86.2 92.0 91.0
847 74.7 73.4 83.0 78.2 90.2 82.9 95.9 87.5 99.5 92.0
903 71.9 72.6 75.7 77.4 79.9 82.3 86.4 86.8 93.5 91.2
504648 71.7 77.1 77.5 81.1 83.5 85.8 89.5 89.1 97.2 92.7
588856 72.2 72.3 77.2 77.2 82.1 82.0 88.1 86.7 93.0 91.2
624418 71.8 77.2 78.1 81.9 84.0 86.5 92.9 89.8 98.9 93.2
430 72.4 70.9 77.7 76.1 82.9 81.1 88.3 85.9 92.0 90.8
620 73.9 73.4 79.1 78.1 84.9 82.9 89.0 87.5 94.2 91.9
602141 72.1 73.4 78.3 78.2 83.1 82.5 88.9 87.1 93.9 91.5
2275 68.4 70.9 78.2 76.4 81.9 81.5 87.6 86.4 92.2 91.2
2717 72.3 71.3 77.0 76.3 82.7 81.2 87.3 86.0 91.9 90.7

Fig. 1 Box plot showing the fraction of single class predictions for all
the datasets at five different confidence levels. Whisker extends up to a
1.5 inter quartile range. The number of single class predictions is the
highest at the 75% confidence level.
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the models built for AID 847 have clearly worse performance
than the models for any of the other data sets with both fewer
single class predictions and lower accuracy within these single
class predictions. This is surprising since the data set contains
largely the same pool of compounds as several other success-
fully modelled data sets used in this study. The results could
be due to high levels of noise in the screening data making
confident predictions impossible or failure of the chosen rep-
resentation of the compounds to capture the effects important
to separate the two classes.

Models using Molprint2D fingerprints

In order to investigate the impact of the chosen descriptors on
the model performance we also conducted the modelling
using Molprint2D fingerprints as compound descriptors
(ESI†). The average accuracy at the 70% confidence level was
79% for the non-toxic class and 79% for the toxic class. At the
same confidence level the models built using RDKit had an
average accuracy of 79% and 78% for the non-toxic and toxic
classes respectively. Also at the 80% confidence level the
average accuracy is similar to the values of 75% and 83% for
the non-toxic and toxic classes using Molprint2D and 78% and
81% for the non-toxic and toxic classes using RDKit. The
results are similar with respect to performance which indicates
that the models are not sensitive to the choice of the
descriptor.

Since the Molprint2D models had a similar performance to
the ones built using RDKit descriptors but with a much higher
computational cost due to the high number of features we
chose to perform additional analyses using only the RDKit
descriptors.

Performance on external data

When the models were trained on 80% of the data with the
remaining 20% kept as a fixed test set the results in Table 4

were obtained. The average accuracy for the toxic compounds
in the test set and the training set, using the same internal
validation as described before, were in both cases 80%. The
same close correspondence can be seen for the non-toxic class
where the average accuracy from internal validation and on the
test set in both cases was 78%. These results indicate that the
internal validation procedure from the aggregated conformal
predictors gives accurate estimates of the performance of the
models also for new data.

For AID 463 we also used the additional assay AID 364 as
an external test set. The screening of AID 364 was performed
by the same PubChem depositor using the same assay protocol
as AID 463 and should thus constitute a suitable method to
evaluate model performance. The predictions made on the
external set AID 364 and the internal validation of the model
built on AID 463 are shown in Table 5. The validity slightly
drops for the completely external test set, from 84% to 77% for
the toxic class and from 82% to 73% for the non-toxic class.
Also the accuracy drops for the external data, for the toxic class
from 80% to 74% and for the non-toxic class from 76% to
65%. The coverage on the other hand remained practically
unchanged for the non-toxic class but increased for the toxic
class from 80% to 88%.

On AID 364 we are able to compare model performance to
previous models which were also based on data from the
Jurkat cell line. Guha and Schürer19 report a model built on
PubChem dose response data with a sensitivity of 56% and a
specificity of 80%. Langdon et al.21 use PubChem percent inhi-
bition data to develop a model with a sensitivity of 82% and
specificity of 35%, and Chang et al.22 report a sensitivity of
41% and a specificity of 77% for predictions on data from AID
364 and AID 464. Although a direct comparison is not possible
due to the different methods, descriptors, and data used, the
results from previous studies show the difficulties in generat-
ing balanced models with similar predictive power for both
the toxic and the non-toxic classes, respectively.

Table 3 Coverage and accuracy per class at 70 and 80% confidence levels. The accuracy is similar for the toxic and the non-toxic classes

AID

70% 80%

Accuracy
non-toxic

Coverage
non-toxic

Accuracy
toxic

Coverage
toxic

Accuracy
non-toxic

Coverage
non-toxic

Accuracy
toxic

Coverage
toxic

463 71.6 98.3 73.8 97.9 75.6 75.5 79.5 80.3
1486 72.1 97.6 71.5 98.3 74.6 69.0 77.7 80.6
1825 79.7 90.5 78.9 92.5 79.1 85.2 81.6 88.9
598 75.6 93.2 77.0 93.7 77.4 85.8 79.4 85.9
648 83.4 85.5 83.8 88.6 80.1 93.9 82.0 95.2
719 77.0 92.8 77.6 92.5 78.0 84.3 79.9 87.0
847 61.2 68.5 64.7 71.6 56.6 39.4 79.1 46.9
903 84.1 86.3 76.7 93.8 79.7 87.2 78.7 94.4
504648 88.7 86.9 82.9 86.5 84.9 93.9 82.7 94.7
588856 79.2 91.3 77.9 92.7 78.8 85.1 79.9 89.4
624418 84.2 91.7 79.7 90.1 84.1 84.9 81.6 87.0
430 77.2 91.9 78.4 92.4 78.0 86.2 80.5 87.7
620 73.6 97.0 73.9 97.0 76.9 74.0 80.6 77.7
602141 85.6 85.8 84.7 85.2 81.6 95.0 82.4 95.5
2275 88.5 80.1 86.8 78.8 82.0 97.5 81.8 96.9
2717 85.8 83.2 86.8 83.3 81.1 98.8 82.5 98.7
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The performance of cytotoxicity modelling has to be
measured in relation to the noise often present in this kind of
data potentially limiting the accuracy of the results.43 A further
source of uncertainty in this study is that the compounds are
classified to be either toxic or non-toxic by a hard cut-off,
usually at around three times the assay standard deviation.
However, the potential toxicity of a compound scoring just
below the cut-off is not necessarily less than one scoring just
above.

Aside from the good predictive performance on these data-
sets, conformal prediction offers a number of advantages over
traditional predictive models. Foremost, and mentioned above,
is that the predictions have a guaranteed error rate, allowing
for predictions to be made with confidence. Furthermore, the
predictions can also serve to guide further experiments.
Screening of additional compounds in the both category can
increase the separation of the two classes and screening of
compounds from the empty category can serve to expand the
model. In our study random forest was used as the underlying
machine learning algorithm but the conformal prediction
framework allows any machine learning technique to be
applied as long as it is paired with a suitable conformity
function. This allows already validated modelling workflows
to be rapidly converted into a conformal prediction framework
as well, underlining the versatility of the method presented
here.

Conclusions

In this study we report the prediction of compound cytotoxicity
against 16 different cell lines. The data were obtained from
high throughput screening records deposited in PubChem.
Despite a large imbalance between the number of toxic and
non-toxic compounds the models built using conformal
prediction with random forest were predictive for both classes.
The internal validation of the models was also shown to be
indicative of the model performance on external data, aiding
in the evaluation of the constructed models.

Overall, our results show that conditional conformal prediction
can be a useful tool for modelling the outcomes of large scale
imbalanced cytotoxicity assays. The conditional conformal predic-
tion framework combines two much desired features for this kind
of modelling: the reliability of the results can be chosen to suit the
needs of the decision making process, and highly imbalanced
data are handled without additional considerations such as over-
or undersampling that may cause modelling complications.
Conformal prediction can also be used as a valuable guide to what
compounds are to be screened next in order to improve the model.
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Table 5 Results for AID 463 internal validation and prediction on external test set (AID 364) at the 80% confidence level. The performance drops
slightly for the external data compared to the training data

AID Validity non-toxic Validity toxic Accuracy non-toxic Coverage non-toxic Accuracy toxic Coverage toxic

463 (internal) 81.6 83.6 75.6 75.5 79.5 80.3
364 (external) 73.2 77.1 64.5 75.6 73.8 87.5

Table 4 Accuracy of the single class predictions and coverage on randomly assigned test sets as well as from internal validation of the training data
at the 80% confidence level. The performance on the training data closely reflects the performance obtained for the test set

AID

Test data Training data

Accuracy
non-toxic

Coverage
non-toxic

Accuracy
toxic

Coverage
toxic

Accuracy
non-toxic

Coverage
non-toxic

Accuracy
toxic

Coverage
toxic

463 75.1 75.3 86.7 77.2 74.6 72.6 79.2 74.4
1486 74.3 69.3 77.5 80.9 73.4 66.1 77.8 78.5
1825 79.0 85.0 77.6 88.1 78.4 82.3 81.3 86.6
598 77.3 85.9 79.2 87.0 76.9 84.2 78.4 84.8
648 80.3 94.3 81.2 95.7 79.6 92.3 81.8 93.4
719 76.9 84.3 76.5 87.4 77.9 84.1 80.1 84.6
847 59.5 44.7 61.5 41.9 60.9 43.8 74.4 52.8
903 78.6 85.9 77.8 92.6 79.1 85.5 80.8 92.6
504648 84.8 92.9 87.6 90.5 84.3 91.1 82.2 90.5
588856 78.9 86.1 77.6 90.6 78.7 84.5 79.5 88.5
624418 84.4 85.0 86.3 88.0 83.4 80.9 82.0 85.3
430 77.2 87.0 81.9 85.0 77.5 84.2 79.8 85.7
620 76.7 75.2 75.5 79.0 75.6 70.2 78.7 76.2
602141 81.9 95.4 83.3 92.7 81.2 92.8 82.3 93.3
2275 80.9 99.1 85.0 100 81.6 97.2 80.4 96.7
2717 80.9 99.7 79.1 99.2 80.8 98.4 82.2 98.9
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