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Abstract

CRISPR/Cas9 has emerged as a revolutionary tool for fast and efficient targeted gene knockouts 

and genome editing in almost any organism. The laboratory model tunicate Ciona is no exception. 

Here we describe our latest protocol for the design, implementation, and evaluation of successful 

CRISPR/Cas9-mediated gene knockouts in somatic cells of electroporated Ciona embryos. Using 

commercially available reagents, publically accessible plasmids, and free web-based software 

applications, any Ciona researcher can easily knock out any gene of interest in their favorite 

embryonic cell lineage.

Developmental biologists have always been interested in targeted loss-of-function mutations 

to probe the role of specific genes in embryogenesis and regeneration. One approach towards 

this goal has been to engineer the sequence-specificity of DNA-binding domains found in 

natural transcription factors. When these customized DNA-binding proteins are fused to 

DNA nuclease domains, they are capable of inducing site-specific double-stranded breaks 

(DSBs), resulting in mutations through improper repair of these breaks by non-homologous 

end joining (NHEJ). Among these engineered reagents are the Zinc Finger Nucleases 

(ZFNs)(BEERLI AND BARBAS 2002; BIBIKOVA et al. 2003; MAEDER et al. 2008) and Transcription 

Activator-Like Effector Nucleases (TALENs)(CHRISTIAN et al. 2010; MILLER et al. 2011). Both 

ZFNs and TALENs have been used for targeted mutagenesis in Ciona embryos (KAWAI et al. 
2012; TREEN et al. 2014; YOSHIDA et al. 2014).

While these programmable nucleases made it possible to cause site-directed DSBs at any 

part of the genome, even in a tissue- or cell lineage-specific manner, expensive and tedious 

cloning procedures posed as a barrier to their widespread adoption and hampered their 

scaling for higher-throughput applications such as genome-wide reverse genetic screens. 

More recently, a targeted platform known as Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPR)/Cas9 was developed, based on the immune response 

mechanism of Streptococcus bacteria (BARRANGOU et al. 2007; JINEK et al. 2012; CONG et al. 
2013; JINEK et al. 2013; MALI et al. 2013). In these bacteria, processed short CRISPR RNA 

sequences guide the Cas9 protein to specific target sites on foreign DNA. Cas9 is 

characterized by two signature nuclease domains, and interacts with a DNA sequence 

(‘NGG’ for S. pyogenes Cas9) known as the Protospacer Adjacent Motif (PAM). Sequence-

specific base-pairing between the Cas9-associated short RNAs and protospacer DNA 
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sequence of 20 bp adjacent to the PAM then triggers the protein’s nuclease activity, resulting 

in cleavage of both strands of the target sequence (GARNEAU et al. 2010; DELTCHEVA et al. 
2011; GASIUNAS et al. 2012; ANDERS et al. 2014; JINEK et al. 2014).

In its native context, two distinct short RNAs guide Cas9: CRISPR RNA (crRNA) and trans-

activating crRNA (tracrRNA). However, a chimeric “single-guide RNA” (sgRNA) is 

sufficient to mimic the roles of these two components (JINEK et al. 2012). This small but 

profound improvement has helped launch CRISPR/Cas9 as a cheap, simple, and efficient 

system for targeted mutagenesis in a remarkably wide variety of organisms (PERRY AND HENRY 

2015; IAFFALDANO et al. 2016; LONG et al. 2016; NOMURA et al. 2016; NYMARK et al. 2016; TIAN 

et al. 2016), as well as in tunicates (SASAKI et al. 2014; STOLFI et al. 2014; ABDUL-WAJID et al. 
2015; COTA AND DAVIDSON 2015; GANDHI et al. 2016; SEGADE et al. 2016; TOLKIN AND CHRISTIAEN 

2016).

Modifications to the CRISPR/Cas9 system have allowed for further applications, such as 

targeted knock-ins (WANG et al. 2013), transcriptional activation or repression (MAEDER et al. 
2013; PEREZ-PINERA et al. 2013; QI et al. 2013), chromatin modifications (HILTON et al. 2015), 

and the visualization of genome organization and dynamics (CHEN et al. 2013), although 

these approaches have yet to be adapted to tunicates. Similarly, other CRISPR variants such 

as CRISPR/Cpf1 have been developed for targeted mutagenesis in mammalians (KLEINSTIVER 

et al. 2015; ZETSCHE et al. 2015), but their effects have not yet been tested in Ciona.

In Ciona, the most widely used application of CRISPR to date is for targeted mutagenesis in 

somatic cells of transiently-transfected (electroporated) embryos. In this method, in vitro-
fertilized embryos are electroporated at the one-cell stage with plasmids that drive the 

zygotic expression of Cas9 protein and sgRNAs. While sgRNAs are transcribed ubiquitously 

from a U6 small RNA promoter (NISHIYAMA AND FUJIWARA 2008), by RNA polymerase III 

(RNAPolIII), Cas9 can be expressed in a cell-specific manner by using a lineage-specific 

promoter. We use a humanized Cas9 flanked by nuclear localization signals 

(NLS::Cas9::NLS)(CHEN et al. 2013; STOLFI et al. 2014), though other Cas9 variants have not 

been thoroughly evaluated in Ciona. Targeted mutations will occur only when both Cas9 and 

the sgRNA are present, and can happen on different sister chromatids in different cells at 

different times. This means that each embryo is actually a mosaic composed of cells bearing 

a combination of wildtype and/or distinct mutant alleles. In spite of this mosaicism, somatic 

knockouts are a powerful means to dissect the tissue-specific functions of a gene in 

development.

Here we present our latest protocols for generating successful CRISPR/Cas9-mediated 

mutagenesis (hereinafter referred to as “CRISPR knockouts”) in somatic cells of Ciona 
embryos, based on our published and unpublished reports (STOLFI et al. 2014; GANDHI et al. 
2016). The aim of this chapter is to empower laboratories working on Ciona (and other 

tunicates) to harness the power of this simple but very effective tool. The protocols presented 

here only use widely available commercial reagents, and all plasmids can be ordered from 

Addgene (https://www.addgene.org/Lionel_Christiaen/).
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sgRNA design

Perhaps nothing is more important for successful CRISPR knockouts in Ciona than selecting 

the right sgRNAs, which vary widely in their ability to actually induce Cas9-mediated 

DSBs. We refer to this as sgRNA mutagenesis “activity” or, more precisely, efficacy. Some 

sgRNAs will be highly active, while others may not yield detectable mutations. Predicting 

which sgRNAs will cause either frequent or rare mutations is a arduous and potentially 

frustrating task. Many high-throughput studies have sought to create predictive algorithms to 

distinguish, a priori, “good” vs. “bad” sgRNAs. A recent meta-study of these methods 

(HAEUSSLER et al. 2016) concluded that most available algorithms do not accurately predict 

the activity of sgRNAs outside a narrow range of organisms, cell types, or experimental 

conditions. The authors recommended two such algorithms, depending on the method of 

sgRNA transcription (in vivo by RNA polymerase III, or in vitro by viral T7 RNA 

polymerase). This is because the efficacy of an sgRNA is probably contingent upon its 

expression level and stability, which will vary depending on the methods used to transcribe 

it. According to their comparisons, Fusi/Doench is the more accurate predictive algorithm 

for in vivo-transcribed sgRNAs in metazoans including Ciona (FUSI et al. 2015; DOENCH et al. 
2016), while CRISPRScan (MORENO-MATEOS et al. 2015) is recommended for predicting the 

activity of T7-transcribed sgRNAs.

The CRISPOR portal incorporates these findings and features into a useful web-based 

CRISPR sgRNA design tool (http://crispor.tefor.net/)(HAEUSSLER et al. 2016). The input is 

any sequence from the Ciona genome (three different assembly versions are supported), and 

the output is every valid sgRNA target, their scores by the various algorithms used to predict 

efficacy and specificity, and primer sequences for constructing an expression vector.

Important considerations for sgRNA design and selection include not only predicted cutting 

efficiency, but also off-target effects and possible escape by polymorphisms in the target 

sequence. Ideally, an sgRNA should match extensively only one site in the genome (the 

target site) and no other site, which could be potentially cleaved as a result. On the other 

hand, single nucleotide polymorphisms (SNPs) and other naturally occurring mutations can 

prevent sgRNA pairing to the intended target, precluding efficient cleavage by Cas9. While 

the compact genome of Ciona depresses off-target effects, SNPs are extremely frequent in 

genetically diverse wild Ciona populations (SATOU et al. 2012). CRISPOR v4.0 takes both 

off-targets and SNPs into account. Individual SNPs and sites of potential off-target effect are 

shown for each candidate sgRNA, which allows the user to choose whether the sgRNA is 

worth using or not.

Considerable attention must also be paid to selecting the location of the sgRNA target within 

a locus of interest. Our analysis of CRISPR/Cas9 knockouts in Ciona indicates that, as in 

other organisms, NHEJ repair of targets cleaved by Cas9 overwhelmingly favors short indels 

(GANDHI et al. 2016). If targeting coding sequence, there is a 2-in-3 chance that the indel will 

result in a frameshift, and likely premature stop codon. Conversely, there is a 1-in-3 chance 

that an in-frame indel will be generated, which may or may not affect the function of the 

resulting protein. Bear in mind that, once an indel is generated, the sgRNA will no longer 

match to the target site. This means that CRISPR/Cas9-generated mutations are all-or-
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nothing and irreversible. If deleting a few amino acid residues from the target region does 

not affect the function of your protein of interest, then 1/3 of the alleles in your embryo will 

be virtually wild-type, even assuming a 100% mutagenesis rate.

While a short out-of-frame indel can result in a loss-of-function allele, in certain cases the 

truncated protein may act as a neomorphic variant, like a “dominant-negative”. The further 

the target is from the translation start site, the higher the chance that a CRISPR/Cas9-

generated indel will result in a truncated protein. However, if the indel is too close to the 

translation start, translation initiation may simply shift to a downstream start codon, with 

little impact on resulting protein function. Thus, selecting a good sgRNA also depends on 

finding this “sweet spot”, which will vary from protein to protein.

An effective strategy to circumvent all these potential pitfalls is to use two or more highly 

active sgRNAs in combination. This increases the odds of generating at least one out-of-

frame indel, and the large deletions spanning multiple targets have been consistently 

observed in Ciona embryos (GANDHI et al. 2016), the largest deletion reported being ~13 kb 

(ABDUL-WAJID et al. 2015).

sgRNA expression cassette construction by One-step Overlap PCR (OSO-

PCR)

CRISPOR will return a list of sgRNA targets and their relevant efficacy and specificity 

scores and information. A link is provided for each target to a page that lists the 

oligonucleotide sequences one needs to order to construct the sgRNA expression vector 

according to a variety of strategies. For Ciona, the relevant primers are for One-Step Overlap 

PCR (OSO-PCR)(URBAN et al. 1997), which allows for the rapid synthesis of a U6>sgRNA 

cassette in a single PCR reaction (GANDHI et al. 2016). The target-specific sequence (the 

“protospacer”) of any sgRNA cassette is only 19 bp. Thus, in OSO-PCR, limiting amounts 

of unique overlap primers generate a protospacer “bridge” between universal U6 promoter 

and sgRNA scaffold sequences, which are amplified from separate template molecules. In 

Ciona, a modified sgRNAF+E scaffold is used to increase stability and decrease premature 

termination of transcription (ORIOLI et al. 2011; CHEN et al. 2013; STOLFI et al. 2014).

sgRNA expression cassettes can then be electroporated directly into Ciona embryos as 

unpurified PCR products for in vivo transcription, or further processed/purified for cloning 

into plasmid for long-term storage/propagation. We can reliably detect mutagenesis activity 

of sgRNAs transcribed in embryos electroporated with as little as 20 μl of unpurified OSO-

PCR reaction per 700 μl electroporation volume (see Peakshift assay, below). This makes it 

possible to test a large number of candidate sgRNAs quickly.

Step-by-step protocol (adapted from Gandhi et al. 2016):

1- If selecting target using CRISPOR, select those with high Fusi/Doench scores (>60) and 

no known SNPs or off-targets. Click on “PCR primers” link underneath the target sequence 

and you will find the pre-designed primers for OSO-PCR ready to be ordered from your 

preferred oligonucleotide vendor. With oligos in hand, skip ahead to step 5.
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If you have to identify targets and design primers manually, look for candidate targets of 

N(19) + PAM (“NGG”) sequence.

2- Add a “G” to 5’ end of target sequence, to obtain a G+(N)19 sequence. Initial “G” is 

important for transcription start by PolIII.

3- Append “GTTTAAGAGCTATGCTGGAAACAG” to the 3’ end of the G+N(19) sequence. This 

is now the forward primer used to amplify the sgRNA scaffold part of the cassette

4- Copy reverse complement of G+N(19), append 

to the 3’ end of this now. This is the reverse primer to amplify the U6 promoter part of the 

cassette

5- Set up the following PCR reaction.Template plasmids are available from Addgene 

(https://www.addgene.org/Lionel_Christiaen/):

6- Check 2 μl of the PCR reaction on a gel. There should be a strong band at ~1.2 kbp. If the 

band is only 1 kbp, the fusion did not occur. In our hands, the success rate is 94%.

Cloning OSO-PCR cassette using In-Fusion

Although OSO-PCR cassettes can be directly tested in Ciona by co-electroporation with 

Cas9 expression plasmid, they can also be processed for cloning into an empty plasmid 

vector. This allows for their replication and long-term propagation in E. coli cells, and 

preparation of pure, highly concentrated sgRNA expression vector plasmid DNA for 

electroporations. We recommend using the In-Fusion restriction enzyme-free cloning system 

from Clontech/Takara (https://www.clontech.com/), though restriction enzyme cloning and 

other systems can be used as well.
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Step-by-step procol:

1- Set up a “Boost” PCR reaction to add 15-nt overhangs to the ends of the cassette required 

for cloning into the empty vector:

2- Add 2 μl DpnI enzyme to the reaction and incubate for 2 hours at 37°C. This will digest 

any remaining template plasmid.

3- Gel-purify boost PCR band, elute in 50 μl water.

4- Set up In-Fusion reaction and incubate at 50°C for 20 minutes:

5- Transform 1 μl in 25 μl of Stellar competent E. coli cells, which come with In-Fusion kit, 

and plate on LB ampicillin agar plate.

6- Pick and grow at least 4 colonies, and screen for positive clones by colony PCR directly 

on cultured E. coli cells using the U6 forward primer (5’- TGGCGGGTGTATTAAACCAC -3’) 

and the In-Fusion reverse primer. The correct band should be ~1 kb in length.

Conventional sgRNA expression vector assembly

sgRNAs expression vectors can also be directly assembled in plasmid form by traditional 

ligation of annealed oligonucleotides into linearized vector. Our initial sgRNA vectors were 

constructed this way and this T4-ligase based method is indeed a faster and more reliable 

approach for obtaining sgRNA expression plasmids. The obvious downside is that colony 

selection and plasmid preparation must be performed before testing sgRNA efficacy, which 

is notoriously difficult to predict a priori. As a result, we do not recommend the following 

method to assemble untested sgRNAs. However, this is a suitable approach to recreate 

expression vectors for sgRNAs that have already been tested and validated.

Step-by-step protocol (adapted from Stolfi et al. 2014):

1- Given the same N(19) + PAM (“NGG”) target sequence that was provided as an example 

for OSO-PCR design:

2- Add a “G” to 5’ end of target sequence, to obtain a G+(N)19 sequence.
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3- Append  to the 5’ end of the G+N(19) sequence. This is now the sense 

oligonucleotide to be ordered:

4- Copy reverse complement of G+N(19), append  to the 5’ end of this now. This is 

the antisense oligonucleotide:

5- Anneal the oligonucleotides at 10 μM by boiling for 5 minutes in 10 mM Tris pH 7.5, 50 

mM NaCl and then cooling naturally to room temperature.

6- Dilute the annealed oligos 1:1000 and ligate this into U6>sgRNA(F+E) linearized with 

BsaI:

7- Transform this ligation into E. coli cells, and screen colonies by PCR using U6 forward 

primer and the antisense oligonucleotide detailed above as a reverse primer.

Assaying CRISPR knockouts

Either in plasmid or unpurified, PCR product format, sgRNA expression constructs should 

be assayed for their ability to cause on-target CRISPR knockouts. We have encountered a 

wide range of mutagenesis efficacies, from 0% to >60%, estimated by next-generation 

sequencing (GANDHI et al. 2016). Thus, it is advised that one test 4 to 8 candidate sgRNAs 

per target in order to identify the most effective ones to use in further experiments.

It is not absolutely necessary to use an sgRNA expression plasmid to assay its efficacy. We 

have verified highly active sgRNAs expressed from unpurified OSO-PCR products 

electroporated into Ciona embryos. This has allowed us to quickly test the efficacies of large 

numbers of sgRNAs, either by target sequence analysis or by phenotypic assay (GANDHI et al. 
2016). Typically, 15 to 45 µl of unpurified products can be added to a single 700 µl 

electroporation solution, together with the Cas9 vector. However, the linear nature of the 

PCR product, and the reagents present in the reaction may interfere with normal 

development. Therefore, our current strategy is to assay sgRNA efficacy using OSO-PCR 
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products, but then clone those products that prove most effective into a plasmid for use for 

publication-quality experiments.

There are different methods to estimate sgRNA efficacies in a quantitative manner. A very 

basic approach consists of amplifying target regions by PCR and cloning these products into 

a plasmid vector, then sequencing a handful of clones and counting the number of mutant 

clones (SASAKI et al. 2014; STOLFI et al. 2014). However, this approach is very time 

consuming, labor-intensive, and not accurate since a very large number of clones would need 

to be sequenced to approach a reliable sample size.

sgRNA efficacies have also been measured in Ciona by Cel-I nuclease assay (SASAKI et al. 
2014) or Thermo Fisher Scientific GeneArt Genomic Cleavage Detection kit (STOLFI et al. 
2014). These methods depend on nucleases that recognize and cleave DNA bulges resulting 

from hybridization of DNA strands bearing distinct indels. The result is smaller “cleavage 

bands” that can be measured by fluorescence intensity on an agarose gel. However, the 

nuclease will also cleave bulges resulting from single-nucleotide mismatches, which is 

extremely problematic when using this assay on animals from a highly polymorphic 

population, as we do for Ciona.

More recently, we have employed next-generation sequencing to calculate the ratio of 

mutant and wild-type sequences amplified by PCR (GANDHI et al. 2016). This approach 

allowed us to assay the efficacies of over 80 sgRNAs in parallel, by pooling PCR products 

amplified from embryos electroporated with different sgRNA vectors. However, the cost and 

depth of this method of sequencing would not be justified if you were only measuring a 

handful sgRNAs at a time. Therefore, we only recommend the next-generation sequencing 

route for large-scale assays (>100 sgRNAs).

Sanger sequencing-based “peakshift” assay for sgRNA activity

Currently, our recommended approach for estimating the efficacies of a few sgRNAs at a 

time is to use Sanger sequencing of target sequence PCR products. This is a relatively 

simple and cost-effective method that returns highly consistent, fairly quantitative estimates 

of sgRNA efficacy. Unlike next-generation sequencing, Sanger sequencing cannot resolve 

the sequences of individual molecules, but rather returns a composite of all the molecules 

sequenced in the reaction. Normally, the sequence is readable because all the molecules are 

identical. However, when you have many products bearing short indels due to CRISPR, the 

peaks in a typical Sanger sequencing trace will appear mixed, with signal for more than one 

nucleotide base at the same position in the sequence (Figure 1). This “peakshift” can be 

quantified by algorithms such as the ab1 Peak Reporter by Thermo Fisher Scientific (https://

apps.thermofisher.com/ab1peakreporter/) (ROY AND SCHREIBER 2014). We have shown a nearly 

linear correlation between CRISPR knockout peakshifts measured by ab1 Peak Reporter and 

frequency of a loss-of-function phenotype in F0 (GANDHI et al. 2016). This suggests that the 

sgRNAs that produce the highest peakshifts are the most effective at generating loss-of-

function alleles, which is ultimately the goal of CRISPR knockout experiments.
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Up to three sgRNA cassettes targeting different genes have been electroporated in the same 

embryos and assayed in this manner, and their efficacies do not seem to be hampered by this 

multiplexing (A.S., unpublished observation). However, one must pay attention not to test 

targets that are on the same chromosome, since large deletions or chromosomal breaks may 

occur as a result. What follows is a protocol for electroporating a given sgRNA construct 

(plasmid or OSO-PCR) and assaying its mutagenesis efficacy by peakshift.

Step-by-step protocol (adapted from Gandhi et al. 2016):

1- Following the standard electroporation protocol (CHRISTIAEN et al. 2009), prepare an 

electroporation mix:

This solution is then mixed with 200 μl sea water containing fertilized Ciona eggs for 

electroporation.

2- Grow embryos at 18–24°C until hatching. Collect hatched larvae and extract genomic 

DNA using the QIAamp DNA Micro Kit (Qiagen) following a modified protocol.

Modifications to manufacturer’s protocol:

a. Lyse embryos in 180 μl Buffer ATL + 5 μl proteinase K for 30 minutes

b. Use carrier RNA (as supplied by kit)

c. Elute DNA in 20 μl water

3- Measure the extracted DNA using a spectrophotometer. Prepare the following PCR 

reaction to amplify the target sequence. For best results, you should aim to design primers to 

amplify a fragment 300–1500 bp long, with the target site(s) at least 150 bp away from 

either end of the fragment. We prefer Pfx platinum from Thermo Fisher Scientific, but any 

proof-reading polymerase should suffice.
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4- Column- or gel-purify the resulting PCR product, and send off for Sanger sequencing. 

The primers used for sequencing can be the same used for PCR, provided the target is at 

least 150 bp and at most 500 bp away from the primer. This ensures large enough stretches 

of “normal” and “shifted” peaks for a proper quantification by ab1 Peak Reporter. The 

orientation of sequencing does not matter, but it is critically important to avoid sequencing 

reads that may encounter naturally occurring indels before the target site, which can cause a 

natural peakshift and mask the effect of CRISPR. You may have to design and test several 

internal primers specifically for sequencing, if the PCR primers are not suitable.

5- The resulting .ab1 sequencing file are then uploaded to Thermo Fisher Scientific’s ab1 

Peak Reporter (https://apps.thermofisher.com/ab1peakreporter/), which may require 

registering/logging in to the Thermo Fisher website. The program will return a .csv file, 

which can be opened in Microsoft Excel and saved as an .xlsx file.
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6- The data should first be filtered as to only display the values at each peak called. This is 

because the data contain signal reads at every position measured by the instrument, 

including in between peaks (in between individual basepairs in the sequence). To do this, 

create a filter for the “BaseCall” column (column B) and exclude “-”. You will be left with 

only the peaks, represented by “calls” indicating G, A, T, C, or N.

7- After filtering this way, you can now search for your target sequence and PAM in column 

B, displayed as 5’ to 3’ from top to bottom (Figure 2). Once you have found your target 

sequence, color-coding it may help you keep track of your position in the file.

8- In column U, calculate the sum of the secondary peaks by adding the values in columns 

H-K (“MaxSig7Scan Filtered Ratios”) and subtracting 1. Subtracting 1 is to remove the 

contribution of the primary peak, which is always 1 regardless of its actual identity.

9- To get a quantitative estimate of the peakshift resulting from mutant reads, calculate the 

average value in column U, over 30 positions donwstream of (3’ to) the Cas9 cleavage site, 

usually around the 3rd basepair in the target from the PAM. To get a sense of the secondary 

signal background of your read, calculate the average in column U over 30 positions 

upstream of the cleavage site. Subtracting this background average from the peakshift 

average, you can obtain a corrected peakshift value.

Bear in mind that the peakshift can be suppressed by sequence homogeneity near the target 

site. Because CRISPR knockouts are usually short indels, shifting peaks of the same identity 

will not be detected. For instance, a 1-bp deletion in the sequence GGGGAAAA will only 

produce secondary peaks at one position, while a 1-bp deletion in the sequence GAGAGAGA 

will result in secondary peaks at all positions.

Conclusion

As more Ciona research groups adopt CRISPR, more data will emerge on the best practices 

to ensure optimal CRISPR activity, including sgRNA efficacy prediction. We hope the above 

protocols will speed up this adoption and bring about exciting improvements to CRISPR 

knockout strategies in Ciona.
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Fig.1. CRISPR indels
a) Wild-type (“wt”) target sequence aligned with two CRISPR knockout mutant sequences 

(“m1” and “m2”) generated by imprecise repair of CRISPR/Cas9-mediated double-stranded 

breaks. Alignment shows gaps (−) in place of missing nucleotides in target or PAM 

sequence. b) When sequenced by Sanger sequencing, pools of wild-type and mutant 

sequences will produce a “peakshift”, which can be quantified by ab1 Peak Reporter web 

app (see text for details). Below, the same sequences in (a) aligned without gaps, showing 

the cause of the overlapping peaks seen in the peakshift area. Asterisks denote naturally-

occurring single-nucleotide polymorphisms.
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Fig.2. ab1 Peak Reporter spreadsheet
Annotated example of an excel spreadsheet generated by the ab1 Peak Reporter web app. 

Each row represents a called peak, or nucleotide, of the sequence, from 5’ to 3’ (top to 

bottom, respectively). Cells of interest color coded or outlined manually. In yellow, the 

sgRNA target and in red, the PAM. In light blue, the MaxSig7Scan ratios for 30 nucleotides 

upstream of the Cas9 cut site, and in pink, the MaxSig7Scan ratios of 30 nucleotides 

downstream of the Cas9 cut site. Cas9 tend to cut in the target, ~3 basepairs from the PAM. 

Outlined in red box: the sum of secondary MaxSig7Scan ratios for each nucleotide, using 

the formula indicated. The average of these values after the Cas9 cut site represents the 

“peakshift”, the amount of secondary peak calling due to presence of sequences with short 

indels in the target. The average of the value before the Cas9 cut site is the background 

signal. See text for details.
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