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Abstract

Our understanding of the complex processes of living organisms at the molecular level is growing 

exponentially. This knowledge, together with a powerful arsenal of tools for manipulating the 

structures of macromolecules, is allowing chemists to harness and reprogram the cellular 

machinery. Here we review one example in which the genetic code itself has been expanded with 

new building blocks that allow us to probe and manipulate the structures and functions of proteins 

in ways previously unimaginable
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Keywords

Noncanonical amino acid: any amino acid that is structurally different from the 20 endogenously 
encoded amino acids; Translation: process by which the genetic material in the form of RNA is 
converted into a protein context; Ribosome: cellular organelle that is the site of translation; 
Aminoacyl-tRNA Synthetase: protein responsible for recognizing an amino acid and cognate 
tRNA, resulting in the aminoacylation of the tRNA; Bioothogonal: a process that occurs under 
physiological conditions by does not react with endogenous systems; Photocaging: the installation 
of a photo-protecting group often leading to the inactivation of a molecule until the group is 
remove via light irradiation; Bioconjugation: a process involving the linking of a biological 
molecule to another species (biomolecule, small molecule, surface, etc); Post-translational 
modification: alteration of natural amino acid structure after it has been incorporated into a protein

1. Introduction

The genetic code is conserved across virtually every species – a total of 61 triplet codons 

provide the genetic information to encode the 20 canonical amino acids. It is remarkable that 

the limited set of functional groups contained in these building blocks enable proteins to 

carry out most of the complex processes of living organisms. The ability to add 

noncanonical amino acids (ncAAs) with novel structures and properties to the code might 

therefore allow the biosynthesis of proteins with new or enhanced functions, and provides 

the opportunity to probe the structure and functions of these macromolecules with 

unparalleled chemical precision.

This review overviews the recombinant technology developed for the site-specific 

incorporation of ncAAs into proteins, as well as recent advances that expand its scope. We 

then highlight illustrative examples of the use of ncAAs to control, evolve, and understand 

protein function.

2. Expanding the Genetic Code

2.1. Generating bio-orthogonal translational machinery

Several key components are required to genetically encode noncanonical amino acids with 

high efficiency and fidelity in a host organism (Figure 1A).1–4 The first component is a 

reassigned codon that encodes the ncAA. Frequently, the amber nonsense codon (TAG) is 

selected due to its less frequent utilization as one of the three stop codons; however, other 

nonsense or four base frameshift codons have also been used for this purpose.5–10 Another 

requirement is an orthogonal aminoacyl-tRNA synthase (aaRS)/tRNA pair capable of 

recognizing the desired ncAA and incorporating it in response to the appropriate codon.11–16 

The orthogonality of this pair must be such that the aaRS does not recognize endogenous 

tRNAs (84 in Escherichia coli,) or amino acids, and only aminoacylates its cognate tRNA; 

additionally, the tRNA must not act as a substrate for any endogenous aaRSs.3, 17 The final 

key component is the ncAA itself, which can often be directly supplemented to the growth 

media, taken up as a dipeptide precursor through a transporter,18 or biosynthesized by the 

host.19 An elegant example of the synthesis of all these components was the genetic 

encoding of p-aminophenylalanine in engineered bacteria that contained the orthogonal 
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aaRS/tRNA pair, an amber codon inserted into the myoglobin sequence, and a gene cluster 

from S. venezuelae that enables the bacterial biosynthesis of p-aminophenylalanine to afford 

a 21 amino acid synthetic organism.19

2.1.1. Aminoacyl-tRNA synthase evolution—Recognition of a desired ncAA by the 

aaRS is often engineered using structure-based approaches in combination with powerful 

double-sieve selection schemes (Figure 2).3, 21–27 This process typically begins with 

analysis of the crystal structure of the aaRS active site to identify those residues that 

contribute to specificity, followed by random mutagenesis of these sites to generate large 

aaRS libraries. The library is then subjected to positive selection in the presence of the 

desired ncAA (typically linked to suppression of an amber codon at a permissive site in a 

protein conferring antibiotic resistance) to ensure that only aaRSs that recognize and 

aminoacylate the desired ncAA proffer survival.23 The survivors are then subjected to a 

negative selection in the absence of the ncAA (e.g., suppression of amber codons at 

permissive sites in a lethal gene product) to ensure survival in the positive selection step is 

not a result of aminoacylation with any natural host amino acid.23 This process is repeated 

for several rounds to afford an aaRS that is highly selective for the ncAA over any 

endogenous amino acids.28 A number of other selection and screening systems have also 

been developed, but all typically require both positive and negative screening or selection 

steps.29, 30 One recent exciting example involves the use of rapid phage-assisted continuous 

evolution (PACE) methodology to evolve highly efficient and selective aaRSs.31 The x-ray 

crystal structures of a number of these evolved aaRSs reveal remarkable plasticity in the 

amino acid binding site such that a limited number of mutations can substantially alter the 

active site structure and specificity.32, 33 More recently, it has been discovered that as a 

consequence of other ncAAs being absent from the negative selection, some aaRSs exhibit a 

degree of polyspecificity towards structurally related ncAAs.34–41 One such aaRS, evolved 

to encode p-cyanophenylalanine in E. coli, is capable of incorporating over 20 aromatic 

amino acid derivatives.34, 37 Another such pair is the PylRS/tRNACUA pair from certain 

methanogens (notably Methanosarcina barkeri (Mb), and Methanosarcina mazei (Mm)).
35, 42, 43

Using the above methods a large number (>150) of ncAAs with distinct structures and 

functions have been genetically encoded in prokaryotes and eukaryotes.44–46 These include 

metal chelating47–49 and fluorescent amino acids,50–53 a variety of photo-crosslinkers,54–58 

amino acids with altered pKas and redox properties,36, 59–62 amino acids with bioorthogonal 

chemical reactivity,12, 59, 63–71 and post-translationally modified amino acids and their stable 

analogues.18, 26, 72–77 Whereas many of the reported ncAAs are structural variants of 

canonical amino acid side chains, it has also been demonstrated that the amino acid 

backbone can be modified as well. These modifications include the incorporation of α-

hydroxy acids,78–80 N-methyl amino acids,78 and α-α -disubstituted amino acids, albeit the 

latter two amino acids involved an in vitro translation method.78 Recently, β-amino acids 

were genetically encoded, specifically β-phenylalanine analogs were introduced into a 

protein using mutant ribosomes and an orthogonal aaRS/tRNA pair.81
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2.1.2. Ensuring orthogonality—The selection of an appropriate aaRS/tRNA pair to 

encode an ncAA is dictated by the host organism requirements to achieve orthogonality. 

Early experiments relied on an engineered Methanococcus jannaschii (Mj) TyrRS/tRNACUA 

pair that is orthogonal in E. coli and other bacteria largely due to distinct acceptor stem 

recognition sequences.16, 23, 82 Since these initial studies, TyrRS/tRNA, LeuRS/tRNA, 

TrpRS/tRNA,, SerRS/tRNA, AspRS/tRNA, GluRS/tRNA, LysRS/tRNA and ProRS/tRNA 

pairs that are orthogonal in either prokaryotic and/or eukaryotic cells have been generated.
8, 9, 15, 22, 46, 83–88 PylRS/tRNACUA pairs from certain methanogens (notably 

Methanosarcina barkeri (Mb), and Methanosarcina mazei (Mm)) that are orthogonal in both 

bacteria and eukaryotic cells have been developed.24, 42, 43 These latter pairs are especially 

advantageous as they allow aaRSs to be evolved in E. coli prior to transfer of the machinery 

to more diverse eukaryotic hosts. Utilizing these orthogonal pairs, ncAAs have been encoded 

in B. cereus,89 P. pastoris,90 C. elegans,91, 92 D. melanogaster,93 A. thaliana,94 Zebrafish 

embryos,95 and the mouse.96–99 More recently, it has been demonstrated that a native Trp 

aaRS/tRNA pair in E. coli can be functionally replaced with a counterpart from yeast, and 

the liberated Trp pair can be used to encode ncAAs in bacteria.86 Additionally, orthogonal 

aaRS/tRNA technologies have been used to incorporate ncAAs into proteins in mammalian 

cell lines at gm/L scale employing transient expression methods.100-102 Viral vectors have 

allowed the ncAA machinery to be delivered efficiently into primary cells, as well as tissues,
96, 103, 104 where it was used among other applications to monitor voltage-sensitive changes 

in response to membrane depolarization events in neural cells.100

2.1.3. Recent Advances—A variety of strategies have been reported to further improve 

the efficiency and specificity of ncAA incorporation into proteins, including mutations to the 

aaRS, tRNA, ribosomal peptidyl transferase and elongation factor.13, 17, 104–110 Moreover, 

aaRS and tRNA expression levels have been modulated in order to facilitate high-level 

expressions of proteins containing ncAAs.13, 104, 105, 111–113 These alterations have led to 

ncAA-incorporation on multigram/L levels in large scale bacterial fermentation, and gram/L 

scale in stable CHO cell lines as demonstrated in the production of ncAA containing 

pegylated proteins and antibody-drug conjugates (ADCs).111

An exciting recent advance is the ability to incorporate more than one ncAA into a protein 

sequence with the ultimate challenging goal of the mRNA template-directed biosynthesis of 

monodisperse biopolymers made up of synthetic building blocks. Toward this end several E. 
coli strains have been generated that either conditionally or constitutively remove release-

factors (RF1 in E. coli and eRF1 in eukaryotes) that terminate polypeptide synthesis in 

response to specific nonsense codons, in order to improve suppression efficiencies.75, 114–116 

Orthogonal bacterial ribosomes that are directed to an orthogonal message, by the 

incorporation of a mutant 16S rRNA into their small subunit (and therefore not essential to 

the cell) have also been created (Figure 3).117, 118 One such orthogonal ribosome that no 

longer recognizes RF1 was discovered by directed evolution, and enables the efficient 

incorporation of an ncAA in response to amber codons at multiple sites in a single 

polypeptide.119 Another approach involves recoding the genome such that some or all of the 

amber codons have been replaced by the ochre nonsense codon TAA in an effort to remove 

potential read-through of endogenous termination signals.120–122 These strains, which have 
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TAG or TAGN (N=A, G, C, T) uniquely assigned to the ncAA, have been shown to enhance 

ncAA incorporation in response to the quadruplet codon TAGA, which is derived from and 

competes with RF1 recognition of the amber codon (TAG).5

There is also interest in the incorporation of multiple distinct amino acids into a single 

protein, which requires aaRS/tRNA pairs that are mutually orthogonal and orthogonal to the 

host aaRS/tRNA pairs.9 Recently, a new expression cassette was engineered for bacterial 

expression that affords two aaRS/tRNA pairs (M. jannaschii and M. barkeri) that meet this 

requirement (recognizing TAG and TAA codons, respectively).6 This methodology allowed 

for the incorporation of two reactive ncAAs harboring either a ketone or azide, respectively, 

and also the generation of a fluorescence resonance energy transfer (FRET) pair within the 

same reporter protein.17, 123 The synthesis of unnatural biopolymers with 3 or more ncAAs 

requires one new orthogonal aaRS/tRNA pair per ncAA, and has catalyzed efforts to 

discover new orthogonal aaRS/tRNA pairs and repurpose additional codons.6, 124–131 To this 

end it has been shown that existing orthogonal pairs can be used as starting points to 

generate additional mutually orthogonal pairs by directed evolution.87, 132 These new tRNA/

aaRS pairs have allowed multiple, different amino acids to be incorporated in both E. 
coli123, 126, 133 and eukaryotic systems.134, 135 These experiments suggest that the number of 

orthogonal pairs that can be discovered from natural sequence diversity does not place a 

limit on the number of distinct building blocks that may be simultaneously genetically 

encoded in cells. An active area of research now focuses on reassigning degenerate codons 

in the genetic code to encode additional ncAAs.124, 136

3. Applications of Non-Canonical Amino Acids

While the technology development associated with ncAA incorporation has stimulated 

efforts to create other bioorthogonal cellular systems, the application of these methodologies 

illustrate the true utility of this technology.3, 127, 129, 137–139 To date, ncAAs have been 

employed in a large number of studies of protein structure and function, and also to alter or 

enhance protein function. In addition, the recombinant introduction of ncAAs into proteins 

is allowing the development of new therapeutics and diagnostics.

3.1. Probing protein structure and function

The ability to expand the genetic code beyond the 20 common amino acids facilitates the 

site-specific introduction of noncanonical amino acids with altered structures and functions 

to better understand protein function both in vitro and in living cells with minimal 

perturbation to protein structure. These ncAAs include residues with altered pKas for 

mechanistic studies, isotopic labels for infrared and NMR studies, photocrosslinkers for 

mapping biomolecular interactions in living cells, heavy atoms for X-ray crystallography, 

and spin labels and fluorescent side chains for EPR and optical applications, respectively. 

While ncAAs probes have been used in numerous studies, below we highlight instructive 

examples of their use.

3.1.1 Altering pKa and redox potential—Electron-withdrawing or donating 

substituents allow one to alter the acidity, basicity and redox potential of canonical amino 

acids (Figure 4).36, 61, 62, 140–146 For example fluorinated tyrosine analogues served as 
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effective EPR probes to monitor long-lived tyrosyl radicals in the complex mechanism of 

ribonucleotide reductase, and better understand the role of conserved tyrosine residues in the 

prevention of undesirable radical chemistry.36, 147 These studies complemented previous 

semisynthetic studies employing nitrotyrosine140 and aminotyrosine,143 which were used to 

investigate the kinetics of radical intermediate formation within these ribonucleotide 

reductases.

3.1.2 Protein crosslinking to map protein interactions—An arena where ncAAs 

have found widespread use is in the field of protein crosslinking, both in vitro and inside 

living cells. Multiple crosslinking ncAAs have been genetically encoded including aryl 

azides,59 aryl haloketones,148–150 benzophenones,54 aryl carbamates,151 isothiocyanates,152 

and diazirines56, 58, 153 to covalently crosslink interacting proteins and protein-nucleic acid 

complexes. This approach has been extensively used to map transient protein interactions 

that elude detection by other methods such as immunoprecipitation or are unstable outside 

the context of a living cell. Depending on the chemistry employed, crosslinking can occur 

via either direct chemical reaction with residues in close proximity or by photoactivation. 

One example using a benzophenone containing ncAA (which inserts relatively 

nonselectively into C-H bonds) was the identification of key protein-protein interactions 

necessary for lipopolysaccharide (LPS) transport to bacterial outer membranes (Figure 5).154 

This same ncAA was also employed to afford spatiotemporal control over the mapping of 

histone 2A interactions in yeast, elucidating key proteins involved in the histone 

modification cascade that induces mitosis.155 The utility of this cross-linking ncAA has been 

further expanded via modification with an alkynyl handle for subsequent reaction, 

facilitating rapid isolation of cross-linked products.156 More recently, new ncAA 

photocrosslinkers have been developed that can be chemically cleaved following 

crosslinking, further simplifying the identification of a target protein by mass spectrometry.
153 In addition, chemical crosslinkers have also been generated that rely on the nascent 

chemical reactivity of lysine and cysteine residues with nearby electrophilic ncAAs to afford 

covalent crosslinks between proteins.148, 151, 157 Other examples of the use of 

photocrosslinking ncAAs include the identification of G-protein coupled receptor activating 

ligands,158, 159 acid chaperone associated proteins in pathogens,160 the binding site of 

antidepressant drugs in the serotonin transporter,161 and the interacting partners of short 

open reading-frame encoded peptides.162 An important new direction is the encoding of 

crosslinking agents in whole organisms to explore cell-cell interactions.

3.1.3. Genetically encoded fluorescent amino acids—Genetically encoded 

fluorescent ncAAs have been used both in vitro and in living cells to label proteins with 

fluorescent probes. This approach has advantages over strategies that rely upon the reactivity 

of canonical amino acids such as Cys and Lys, as well as genetic fusions, due to the high 

level of control over the labeling site within a protein and minimal perturbation to protein 

structure and function. Several fluorescent ncAAs, including coumarin,50, 163 dansyl,53 

naphthyl,51 terphenyl,164 and prodan derivatives52, 165 have been genetically encoded in both 

prokaryotes and eukaryotes (Figure 6). The fluorescence of some of these ncAAs is 

environmentally sensitive and can be used to probe cellular localization, biomolecular 

interactions, posttranslational modifications, and residue exposure to solvent.52 For example, 
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fluorescent ncAAs were used to detect the binding of glutamine to glutamine binding 

protein,166 and the phosphorylation of STAT3 .167 The prodan derivative, ANAP, has also 

been used as a partner to generate a FRET pair within mammalian cells to investigate protein 

proteolysis and protein conformational changes.168, 169 While the majority of genetically 

encoded fluorophores are excited at shorter wavelengths and provide a convenient way to 

site-specifically label proteins for in in vitro studies, some directly encoded fluorophores 

have also been used for imaging proteins in live cells52, 163. An important direction for 

future research is the genetic encoding of longer wavelength, photostable fluorescent ncAAs.

3.1.4. Infrared probes—The incorporation of deuterium,170 cyano,171 nitro,172 and 

azido59 IR active probes into proteins introduces unique vibrational modes that do not 

overlap those present in the canonical amino acids. These localized probes have facilitated 

investigations of enzymatic catalysis,170 solvent exposure173, 174 and receptor activation 

using IR spectroscopy.175, 176 In one example, azidophenylalanine was introduce ed into 

rhodopsin at distinct sites within the transmembrane helices allowing for helix movements to 

be monitored when the receptor is activated by light.175 In a second example, deuterium 

probes were introduced via a photocaged tyrosine derivative (which upon photodeprotection 

installed 2,3,4,5-D4 tyrosine) at specific sites in the active site of dihydrofolate reductase. IR 

spectroscopy allowed one to monitor conformational changes in the presence of different 

ligands that correspond to different states along the catalytic pathway.170 These studies have 

provided useful information regarding protein structure and function and all relied upon the 

novel functionality of ncAAs.

3.1.5. Spin-label and NMR probes—The introduction of spin labels into protein affords 

site-specific EPR probes, and is traditionally accomplished via reaction of a chemically 

reactive spin label with sulfhydryl groups. This approach has limitations, as there can be 

multiple cysteine residues in a protein and they often play a role in protein folding. Early 

examples involved the incorporation of p-acetylphenylalanine, a ketone containing ncAA 

with bioorthogonal chemical reactivity, which can be conjugated to a nitroxide group via an 

oxime ligation.177 Recently, a spin label has been directly incorporated into proteins, 

facilitating in-cell EPR studies of endogenous proteins.178, 179

Two approaches have been developed to use ncAAs as site-specific NMR probes. The first 

involves genetically encoding a 15N-labeled tyrosine that is caged with a nitrobenzyl moiety, 

which upon uncaging by exposure to UV light results in the site-specific incorporation of 
15N-tyrosine.180 A second approach is based on the site specific incorporation of close 

analogues of canonical amino acids possessing isotopic labels, for example, O-methyl-

phenylalanine containing 13C and/or 15N, or a trifluoro derivative of the same amino acid 

possessing 19F.180–185 Both strategies were used to map the binding site of a fatty acid 

synthase with a model ligand, as well as active site conformational changes that occur upon 

ligand binding.180 Fluorinated amino acid analogues, due to their increased signal 

sensitivity, have also been used to monitor protein conformational changes in living cells, for 

example to monitor phosphorylation induced conformational shifts in arrestin-1 during cell 

signaling.183
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3.1.6 Environmental sensors—Several ncAAs are capable of either specifically 

coordinating, or directly reacting with analytes to act as sensors. One successful approach 

involved introducing ncAAs into green fluorescent protein (GFP) at sites that altered either 

the wavelength or intensity of protein fluorescence in the presence of an external stimulus 

(Figure 7).186 Specifically, GFP containing either L-3,4-dihydroxyphenylalainine 

(DOPA)187 or 8-hydroxyquinoline alanine (HqA)_188 at residue 66 within the fluorophore 

was used to detect biologically relevant transition metals including Cu2+, Zn2+, Co2+, Fe2+, 

and Ni2+. More recently, a p-vinylphenylalanine was incorporated at this same site to act as 

a turn-on probe for the detection of mercuric ions in bacteria.189 In addition to ions, this 

approach has been employed for the detection of H2O2 with a boronate ncAA,190 H2S with a 

azidophenylalanine ncAA,191 and sirtuins using an actylated lysine which can be cleaved by 

these enzymes.192 Finally, the p-boronophenylalanine has also been exploited to detect 

peroxynitrite in mammalian cells in order to monitor the production of this cell-signaling 

molecule at physiologically relevant concentrations.193, 194 In addition ncAAs have been 

incorporated at residue 66 in GFP to alter the fluorescence properties of the protein.
37, 190, 195–198, and into the coelenterazine binding site of aequorin to dramatically red-shift 

the bioluminescence of the interaction to afford in vivo bioluminescence reporters in mice.
197

3.2. Site-specific protein conjugation

A general strategy for site-specifically modifying proteins with synthetic moieties (e.g., 

biophysical probes, drugs, PEGs, oligonucleotides, etc.) involves installing a chemically (or 

enzymatically) reactive amino acid at the desired site and selectively conjugating the side 

chain to a reaction partner linked to the molecule of interest. 199 Cysteine and lysine residues 

are the most commonly targeted canonical amino acids, and typically modified with 

electrophiles. However, there are often multiple such residues in a protein resulting in 

heterogeneous labeling, and Cys residues may also be required for protein folding and 

function. The site-specific incorporation of ncAAs with unique chemical reactivity allows 

the selective modification of proteins with medicinal chemistry-like precision. This approach 

requires ncAAs with bioorthogonal chemical reactivity, i.e., unreactive with the canonical 

amino acids or metabolites in the cell. The most common bioorthogonal ncAAs that have 

been encoded have keto,200 azido59 and acetylenic side chains (Figure 8).42, 63, 201, 202 

Azide and alkynyl ncAAs undergo highly selective copper-catalyzed 1,3-dipolar 

cycloaddition reactions and have been generally used for in vitro applications.203, 204 

However, strained alkynes have recently been genetically encoded to afford copper-free 

“click” reactions that can be used in living cells.205–207 Target proteins are efficiently and 

selectively labeled and background nonspecific proteome labeling is minimal or 

undetectable, despite a significant number of endogenous genes that terminate in amber 

codons208. The use of Cys and an ncAA, or two ncAAs, with bio-orthogonal reactivity 

allows the site-specific labeling of proteins with two different moieties via sequential or one-

pot bioorthogonal reactions for applications such as Forster resonance energy transfer 

(FRET) measurements17, 133, 136 with excellent dynamic range209.

Another commonly employed ncAA for bioorthogonal conjugations is p-

acetylphenylalanine, which can be selectively modified at lower pH with highly efficient 
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oxime formation reactions.200 This reaction has been used to generate site-specific drug, 

polyethylene glycol (on kilogram commercial scale), peptide and oligonucleotide-protein 

conjugates, and also to conjugate a large number of probes to proteins.20, 111, 210–218 The 

high selectivity of this reaction results in well-defined conjugates that do not significantly 

affect the intrinsic properties of a protein, in contrast to more nonspecific approaches. This 

advantage was demonstrated with the generation of a DNA-antibody conjugate for immuno-

PCR: an anti-Her2 antibody/DNA conjugate was more sensitive with lower background 

when used to detect Her2 positive cells in complex blood mixtures relative to nonspecific 

lysine conjugates (Figure 8).215

Considerable effort has recently been devoted to expand the toolbox of genetically encoded 

ncAAs with bioorthogonal chemical reactivity. Alkenyl ncAAs have been used in 

bioorthogonal methathesis reactions to conjugate carbohydrates to proteins:219, 220 

hydroxytryptophan residues have been employed for azo-couplings,221 cyclopropenone and 

azide residues for reactions with phosphines,222, 223 alkynyl amino acids have been 

exploited in Sonogoshira,224, 225 Glaser-Hay,226 and Cadiot-Chodkewitz bioconjugation 

reactions;227 and p-boronophenylalanine and p-iodophenylalanine have been used in Suzuki 

and other transition metal-based couplings.228–231

An important recent advance has been the encoding of new bioorthogonal reactive side 

chains that undergo rapid and selective labeling reactions in the cell. The importance of 

reaction rate has been increasingly appreciated, and reactions with rate constants that 

approach those of enzymatic mediated labeling reactions have been developed.204 One such 

reaction is the inverse electron demand Diels-Alder reaction between strained alkenes or 

alkynes and tetrazines (Figure 9). The rate constants for some tetrazine reactions with 

alkenes and alkynes can exceed 104 M−1s−1, and several alkenes, alkynes and tetrazines have 

now been recombinantly introduced into proteins and used for rapid, site-specific, live cell 

protein labeling.65, 68, 233–236 Live cell labeling and super resolution imaging have been 

further facilitated by the development of bright small molecule fluorophores that enter 

mammalian cells and have minimal background fluorescence.208, 237 While the refinement 

and optimization of labeling and imaging approaches is still on going, early examples of 

applications that are not possible by other methods have already emerged.238–240

Another application of ncAAs with bioorthogonal handles is their use in protein 

immobilization to a surface for a wide range of industrial and diagnostic uses. 

Immobilization typically leads to increased protein stability, tolerance to organic solvents, 

and recyclability of enzymes (Figure 8).241 ncAAs provide a means to both covalently link 

proteins to a surface, as well as control the site of immobilization to prevent protein 

inactivation or heterogeneous immobilization. To date, ncAAs have been used for the 

immobilization of proteins to nanotubes, magnetic beads, and solid-supported resins and 

have been shown to confer increased stability to the immobilized protein.232, 242–245 Further 

exploration and optimization of these immobilization technologies has the potential to make 

significant advances to both materials chemistry and therapeutic diagnostics.
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3.3 Control of protein function

The ability to control protein activity chemically or with light is useful for spatially and 

temporally activating biological processes in living cells. One such strategy involves the 

blocking of essential amino acid side chains with a removable protecting group (Figure 10). 

This moiety blocks normal side chain function until removed by an external stimulus. Many 

analogs of natural amino acids (especially lysine, serine, cysteine, and tyrosine) containing a 

photo-removable protecting group have been genetically encoded in both prokaryotic and 

eukaryotic cells and organisms.246–249 These photocaged ncAAs have been used to control 

kinase, protease, intein, and other enzyme activities, nuclear localization, virus-host 

interactions, and cell signaling cascades.102, 163, 240, 250–255

One example of the use of this technology is the photoactivation of Cas9 using a photocaged 

lysine residue.256 The photocaged CRISPR/Cas9 system was used to both silence and 

activate exogenous reporter genes in mammalian cell culture, as well silence endogenous 

CD71, a receptor linked to leukemia and lymphoma. The regulation of this system in living 

cells has many potential applications in the rapidly developing field of gene editing. In 

another example, recombinant incorporation of a photocaged serine into the transcription 

factor Pho4 in yeast blocked phosphorylation and subsequent nuclear export until removal of 

the caging group with 400nm light, allowing the kinetics of these processes to be followed.
257 A final example of light-regulated in vivo protein function involved photocaging a lysine 

residue within an isocitrate dehydrogenase mutant known to produce the onco-metabolite 2-

hydroxygluterate (2-HG).258 Light activation of this oncogenic protein provided insights 

into the role of 2-HG in oncogenic activation.

The reversible photoregulation of protein activity has been accomplished through the genetic 

encoding of a photo-switchable azobenzene ncAA. This ncAA has been used to 

photoregulate enzyme activity by reversibly blocking the active site247 or by moving a 

tethered inhibitor in and out of the active site by cis-trans photoisomerization of the 

azobenzene moiety.259

While light is a useful external stimulus for protein activation, it has also been demonstrated 

that small molecule activators can be used in conjunction with ncAAs to modulate protein 

function in cells. A recent study incorporated a cyclooctene lysine derivative into a reporter 

luciferase protein in mammalian cells.260 Incubation with a tetrazine induced a Diels-Alder 

reaction that led to the removal of the cyclooctene cage, restoring wild-type lysine and 

consequently fluorescence. Palladium-catalyzed allene decaging261 and phosphine-mediated 

decaging of azides via a Staudinger reduction have also been employed to chemically 

modulate protein function in vivo.262

3.4. Post-translational modification

Protein post-translational modifications are ubiquitous in biology and control cellular 

processes ranging from signal transduction and transcription to cell division and protein 

degradation. It is relatively difficult to generate site-specific PTMs in proteins- the enzyme 

responsible for the modifications may be unknown, may not be site-specific, or the 

modifications may be removed in cells or lysates. Consequently, the ability to genetically 
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encode post-translationally modified amino acids, or stable analogues thereof provides a 

useful tool to better understand and characterize individual PTMs in proteins. A number of 

post-translational modifications have been genetically encoded, including phosphoserine, 

phosphothreonine, phosphotyrosine, sulfotyrosine, nitrotyrosine, and numerous epigenetic 

lysine modifications.18, 26, 60, 71, 74–77, 240, 263–266 Stable mimicks of posttranslational 

modifications, such as phosphonotyrosine and carboxymethyl-phenylalanine have also been 

genetically encoded.72, 75, 267 Incorporation of this latter phosphotyrosine mimetic into the 

arginine methyltransferase PRMT1 facilitated analysis of how phosphorylation alters the 

binding of this protein to its substrates.268 Phosphonotyrosine was recently genetically 

incorporated into proteins by exploiting the polyspecificity of the previously evolved 

carboxymethyl-phenylalanine aaRS, and a dipeptidyl transporter to transport this negatively-

charged amino acid into cells.269 Subsequent incorporation of phosphonotyrosine into 

human Abl1 at specific residues allowed determination of the binding affinities of the 

various phosphorylated forms of the protein to its substrates. Additionally, 3-nitrotyrosine 

has been genetically encoded, and used to gain new insights into post-translational 

modifications that modulate inflammatory responses and mimic disease-state processes.60

Given the polyspecificity of the pyrrolysyl-aaRS towards a variety of lysine modifications, a 

number of labs have genetically encoded post-translationally modified lysines, including ε-

N-2-hydroxyisobutylyl-lysine, ε-N-pivaloyl-lysine, ε-N-methyl-lysine, and ε-N-crotonlyl-

lysine amongst others, as a means to study these post-translational modifications in a variety 

of proteins. For example these ncAAs have also been exploited to characterize the effects of 

ubiquitination and histone methylation on gene regulation.71, 270 Finally, E. coli has been 

engineered for the recombinant production of ribosomally synthesized posttranslationally 

modified peptides (RIPPs) that contain ncAAs, and analogues of the lanthipeptide nisin with 

altered ring structures and sizes have been produced.271–275

3.5 Therapeutic applications

The ability to site-specifically modify proteins using bioorthogonal ncAAs greatly facilitates 

the generation of homogeneous therapeutic proteins whose structures are precisely 

controlled, much like the medicinal chemists ability to precisely control the structures of 

small molecule therapeutics. Recent efforts have focused on introducing amino acids with 

bio-orthogonal reactivity into cytokines, growth factors, antibodies and antibody domains, 

providing a route to their site-specific conjugation with diverse moieties.276, 277 Pegylated 

proteins, antibody-drug conjugates (ADCs), antibody-antisense oligonucleotide conjugates 

and bispecific antibodies have been created for a variety of clinical 

indications111, 278112, 218, 279–283, and a number of these new therapeutics have been 

approved or are showing positive results in clinical trials. Importantly, it has been shown that 

by controlling both the stoichiometry and site of conjugation of a PEG or drug on a target 

protein one can optimize both half-life and potency in a manner that is difficult to achieve 

with less specific chemistries. Moreover, it has been possible to conjugate small molecules 

that bind tumor antigens (e.g., DUPA and folate which selectively target PSMA and folate 

receptor, respectively281, 284) site-specifically to anti-CD3 antibodies to generate extremely 

potent semisynthetic bispecific antibodies, which in the case of the DUPA-anti-CD3 

conjugate show impressive efficacy in preclinical models of metastatic prostate cancer 
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(Figure 11).284 Recently a modular strategy for chimeric antigen receptor (CAR)-T cell 

therapy was created in which a chimeric T cell receptor was created that binds FITC, and 

FITC was selectively conjugated to an aryl ketone containing ncAA selectively incorporated 

into an antibody specific for a tumor antigen. The resulting ‘switch’ molecules bridge the 

CAR-T cell and the tumor cell and their structures can again be precisely controlled to 

optimize formation of the immunological synapse. This approach enabled dose dependent 

tumor clearance285 with minimal cytokine release using a universal CAR-T cell that can be 

adapted to distinct tumor antigens by appropriate switch molecules.

Introducing ncAAs with immunogenic side chains, such as nitro- or sulfo-tyrosine, into 

proteins has been used to break immunological tolerance to the corresponding native 

protein. The immunogenic side chain forms a neoepitope that elicits a T cell response and 

leads to a cross-reactive antibody response to the native proteins (Figure 10).286 Indeed, 

immunization of mice with a murine TNF that contains a single nitrotyrosine led to 

neutralizing antibodies to native TNF that were protective in a LPS mouse challenge model.
287 These studies provide a route to breaking tolerance against specific native proteins and, 

support the view that tyrosine nitration, which naturally results from viral infection and 

inflammation, could contribute to autoimmunity.

The introduction of amber codons into the genomes of viruses, including hepatitis D virus, 

HIV-1 and influenza A, has created viral genomes289–291 that can only be replicated in cells 

that contain orthogonal aaRS/tRNACUA pairs and their cognate ncAA. This strategy has 

enabled the creation of attenuated viruses that may be used for immunization. More recently, 

ncAAs have been used to create bacteria whose replication is strictly dependent on the 

presence of a specific ncAA at a functional site (e.g., catalytic, protein interface or metal ion 

binding site) in an essential protein. Such systems can be used for biological containment of 

engineered organisms. Immunization with these live conditional pathogens is expected to 

give robust immune responses, but the pathogen will die after the ncAA is depleted through 

rounds of replication in the host.290 Importantly, revertants for some sites of suppression 

have yet to be isolated (reversion rates less than 10e-11). Clearly the use of ncAA 

technologies allows far more chemical control over the structures, and as a result, activities 

of therapeutic macromolecules.

3.6. Protein design and evolution with ncAAs

The addition of amino acids with novel properties to the genetic code presents new 

opportunities for the rational design of proteins with new or enhanced functions. Metal 

binding proteins are involved in a wide variety of cellular processes, but it has been 

challenging to design metal binding sites into proteins due, in part, for the need to precisely 

control the geometries of multiple amino acid side chains that chelate the metal.292 The 

introduction of bipyridyl containing amino acids into proteins allows the design of metal ion 

binding sites that take advantage of the preorganization of the bidentate ligand for metal 

chelation. Computational design, using Rosetta, has enabled the generation and structural 

characterization of proteins and metallo-protein assemblies that bind metal ions with 

picomolar affinity.292, 293 More recently, a protein was designed with Rosetta that binds the 

biphenyl side chain of an ncAA in a planar geometry which is stabilized by packing 
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interactions in the hydrophobic core of a thermophilic protein (Figure 12). Thus, the protein 

acts as a thermodynamic sink to make the transition state for biphenyl bond rotation 

kinetically persistent such that X-ray crystallography enabled direct observation of this 

transition state conformation.294

The ability to genetically encode noncanonical amino acids with chemically defined 

structures and properties has also allowed the in vitro evolution of proteins with novel or 

enhanced functions. For example, phage selections using genetically encoded sulfotyrosine 

and a germline antibody library containing a randomized CDR3 loop, led to the selection of 

high affinity sulfated antibodies that bind gp120, an HIV protein that naturally binds a 

sulfated receptor.295 Phage display was also used to evolve a zinc finger transcription factor 

that had an unusual high spin-Fe(II) core containing a bipyridyl amino acid side chain,296 

and which bound its operator sequence with high affinity and selectivity. A bacterial-based 

selection scheme has also been used to identify ncAA containing cyclic peptides that inhibit 

HIV protease in an antibiotic based selection (using a protease sensitive antibiotic 

antiporter).297 The highest affinity peptide to emerge incorporated a benzophenone 

containing ncAA that bound HIV protease through a Schiff base linkage to a surface Lys 

(Figure 13). More recently, beta-lactamase variants have been isolated using a growth-based 

selection from a library of mutants containing single amber codons at over half of the 

residues. One noncanonical amino acid substitution led to an enzyme with increased 

catalytic efficiency; x-ray crystallographic analysis suggested that the ncAA functioned by 

restricting the conformation of the active site to more efficiently stabilize the rate-limiting 

transition state.298, 299 Similarly, a metA variant was isolated from a random ncAA library 

using a temperature dependent selection scheme that was stabilized by a keto-containing 

amino acid by a remarkable 23 °C, and likely involves formation of a ketone adduct to a 

nucleophilic side chain at the homodimer interface. Similar in vitro evolution experiments 

have demonstrated that ncAAs with long chain thiols can form extended disulfide crosslinks 

that lead to significant protein stabilization.300 Another example was the evolution of T7 

phage with an ncAA dependent growth advantage. The computational design and/or 

selection of variants of essential E. coli proteins that require a genetically encoded biphenyl 

or benzophenone amino acid for activity has provided an elegant strategy to make organism 

viability conditionally dependent on the presence of a ncAA.301–303 These experiments 

suggest that an expanded genetic code can indeed provide unique solutions to evolutionary 

challenges faced by living organisms, and that this is a rich area for further study.

4. Conclusions

Precise and highly tailored structural perturbations to proteins are now possible through the 

genetic encoding of noncanonical amino acids. The ability to incorporate ncAAs with 

diverse structures and properties into proteins in cells and living organisms has provided 

unique opportunities to probe, image, control, rationally engineer and evolve protein 

structure and function, as well as to develop new therapeutics and approaches to 

biomaterials. The refinement of approaches for encoding and labeling amino acids 

containing bioorthogonal groups will be particularly important for coupling diverse 

functionalities at precise sites in proteins in vitro and in vivo as cell biological probes and 

precisely tailored therapeutic agents. In vitro evolution experiments will continue to reveal 

Young and Schultz Page 13

ACS Chem Biol. Author manuscript; available in PMC 2018 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



how life with additional genetically encoded amino acids may evolve new or enhanced 

protein functions. The development of additional strategies to create or repurpose codons, 

expand the substrate scope of translation, and create a suite of mutually orthogonal 

aminoacyl-tRNA synthetase/tRNA pairs will further improve our ability to control protein 

structure at the building block level, and potentially generate biopolymers in which all the 

building blocks are unnatural. Finally, these studies underscore the exciting opportunities 

that now exist to synthesize complex molecular structures and functions through the rational 

manipulation of the cell’s machinery using chemical and biological approached 

synergistically.
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Figure 1. 
Expansion of the genetic code. A) Requisite components for the site-specific incorporation 

of ncAAs into proteins. Red coloring indicates primary sites of mutation required to enable 

the efficient incorporation of the desired ncAA. B) Site-specific incorporation of ncAAs 

through engineering of the translational machinery. Standard translation occurs with 

endogenous tRNA/aaRS pairs and canonical amino acids (blue) on the ribosome (yellow). 

An orthogonal tRNA/aaRS pair and ncAA are added (red) and encoded by a nonsense or 

frameshift codon on the mRNA (purple). Adapted from Kim, C.H. et. al 2013.20
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Figure 2. 
Standard protocol for generation of an aaRS to encode ncAAs.
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Figure 3. 
Generation of an orthogonal ribosome. A) A non-orthogonal ribosome allows for cross talk 

between the two mRNAs, not providing efficient incorporation of ncAAs. B) An orthogonal 

ribosome where the endogenous system (grey) and the engineered ribosome and mRNA 

(green) exhibit no cross-reactivity. C) Crystal structure of the rRNA (orange), mRNA 

(purple) and tRNA (yellow), illustrating the key 530 loop within the ribosome that was 

subjected to mutagenesis to afford an orthogonal ribosome.119
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Figure 4. 
Modulation of pKa and redox potential of tyrosine residues. A) The ribonucleotide reductase 

reaction converting ribose to deoxyribose relies upon a catalytic cysteine radical. The 

generation of this radical is dependent on radical formation on several key tyrosine residues. 

Altering the pKas and redox potentials of these residues affords key insights into the 

catalytic mechanism. B) Examples of ncAAs conferring altered tyrosine pKas and reduction 

potentials (Ep) that have been employed in the study of ribonucleotide reductase.

Young and Schultz Page 31

ACS Chem Biol. Author manuscript; available in PMC 2018 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Applications of photocrosslinking ncAAs. A) Structures of two common photocrosslinking 

ncAAs, p-benzoylphenylalanine and (3-(3-methyl-3H-diazirine-3-yl)-propaminocarbonyl-

Nε-lysine. B) Structure of the lipopolysaccharide transport protein E (LptE) with the sites of 

ncAA incorporation circled in red. C) Example of a photocrosslinking gel employing the 

benzophenone ncAA at multiple residues of the LptE protein associated with 

lipopolysaccharide transport. Gel shifts observed in the irradiated (+) samples indicate a 

crosslinking event with LptD. Proposed model of the LptD/LptE association for 

lipopolysaccharide transport established by the crosslinking experiments. Adapted from 

Freinkman, E. et al. 2011.154
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Figure 6. 
Genetically encoding fluorescent amino acids. A) Structures of fluorescent ncAAs based on 

common fluorophores. B) Solvent sensitivity of ANAP fluorescence.52 C) Use of ANAP in a 

glutamine binding protein as a site-specific probe to detect glutamine binding by 

fluorescence.166 D) Demonstration of the use of an ANAP to track protein localization; the 

ncAA was incorporated into histones resulting in fluorescence only in nuclei. 52 E) A FRET 

pair prepared via site-specific incorporation of ANAP (blue circle) in a fusion construct with 

GFP. The presence of ANAP obviates the need for a second fluorescent fusion protein.168
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Figure 7. 
Using ncAAs as environmental sensors for biologically relevant analytes. A) Structures of 

ncAAs commonly employed in environmental sensors, including metal binders, H202, H2S, 

and ONOO− sensitive functionalities. B) General method for the development of an “on” 

sensor. Incorporation of the ncAA within the GFP chromophore alters or quenches 

fluorescence, however upon coordination or reaction with a desired analyte, the group is 

removed or fluorescence is shifted.
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Figure 8. 
Bioorthogonal conjugation with ncAAs. A) Common structures of ncAAs used in 

bioconjugations: p-azidophenylalanine (pAzF), p-propargyloxyphenylalanine (pPrF), and p-
acetylphenylalanine (pAcF). B) General scheme of a bioorthogonal conjugation. The protein 

harboring an ncAA with unique reactivity is subjected to appropriate reaction conditions 

with another molecule (protein, DNA/RNA, surface, small molecule, etc; blue sphere) that 

possesses a chemical functionality that will only react with the ncAA and no other biological 

molecules. C) Incorporation of p-acetylphenylalanine into a Fab for Her2 followed by oxime 

ligation with DNA. This bioconjugate facilitates immuno-PCR with significantly higher 

levels of sensitivity than nonspecifically labeled antibodies.215 D) By site-specifically 

incorporating p-azidophenylalalanine GFP can be site-specifically immobilized on a solid 

support, conferring a higher degree of protein stability in non-aqueous solvents.232
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Figure 9. 
Live cell imaging using ncAAs. A) Common structures of genetically encoded ncAAs for 

non-cytotoxic and rapid live cell imaging. Using either standard 1,3-cycloadditions with 

strained alkynes or Diels-Alder type reactions with a tetrazine and a strained alkyne or 

alkene, reactions can be performed within living cells. B) Genetic incorporation of the 

strained alkyne into vimentin for super-resolution, live cell imaging of proteins.208
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Figure 10. 
Photocontrol over protein function with ncAAs. A) Photocaging strategy for activation of 

protein function with light. Typically a key residue is substituted with a caged ncAA, 

rendering the protein of interest non-functional. Upon brief irradiation with non-cytotoxic 

light, the caging group is removed to afford wild-type protein. X = O,N,S; R = H, O, OMe 

B) Photocaged tyrosine, lysine and serine amino acids with variations of the common o-

nitrobenzyl caging group. C) Photocaging of the CRISPR/Cas9 system results in inactivity 

of the Cas9 protein, until brief irradiation with light restores its function close to WT levels, 

facilitating the expression of a reporter GFP plasmid.256 D) Photoswitchable regulation of 

protein function via reaction of a specifically placed ncAA with a ligand harboring an 

azobenzene based linker. Light irradiation of different wavelengths results in cis/trans 
isomerization, blocking or exposing the active site.259 E) Genetically-encoded decaging of a 

strained cycloalkene via reaction with a tetrazine, restoring a lysine residue and protein 

function. Proof-of-concept experiments were performed via caging luciferase, quenching 

luminescence until the tetrazine reagent is added.260
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Figure 11. 
Therapeutic applications of ncAAs. A) Incorporation of p-acetylphenylalanine into an anti-

CD3 Fab followed by oxime ligation with an aminooxy-modified DUPA produces a 

bispecific agent for the treatment of prostate cancer. Treatment of mice in tumor xenografts 

resulted in complete tumor killing.288 B) Example of using ncAAs to break immunological 

tolerance. The ncAA, p-nitrophenylalanine was incorporated into mTNF-α at distinct sites 

and used to immunize mice, resulting in increased survival relative to both the WT protein 

and a control in a endotoxemia mouse model.287

Young and Schultz Page 38

ACS Chem Biol. Author manuscript; available in PMC 2018 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12. 
Computational design of ncAAs containing proteins. A) Structure of p-phenylphenylalanine 

(BipA) used in the model study B) Space filling model of the interactions of the biphenyl 

(green) locked into its planar transition state with the designed pocket.294
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