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Abstract

Purpose

Lung cancer is the deadliest known cancer in the world, with the highest number of muta-

tions in proto-oncogenes and tumor suppressor genes. Therefore, this study was conducted

to determine the status of hotspot regions in DDR2 and KRAS genes for the first time, as

well as in TP53 gene, in lung cancer patients within the Iranian population.

Experimental design

The mutations in exon 2 of KRAS, exon 18 of DDR2, and exons 5–6 of TP53 genes were

screened in lung cancer samples, including non-small cell lung cancer (NSCLC) and small

cell lung cancer (SCLC) using PCR and sequencing techniques.

Results

Analysis of the KRAS gene showed only a G12C variation in one large cell carcinoma (LCC)

patient, whereas variants were not found in adenocarcinoma (ADC) and squamous cell car-

cinoma (SCC) cases. The Q808H variation in the DDR2 gene was detected in one SCC

sample, while no variant was seen in the ADC and LCC subtypes. Variations in the TP53

gene were seen in all NSCLC subtypes, including six ADC (13.63%), seven SCC (15.9%)

and two LCC (4.54%). Forty-eight variants were found in the TP53 gene. Of these, 15 vari-

ants were found in coding regions V147A, V157F, Q167Q, D186G, H193R, T211T, F212L

and P222P, 33 variants in intronic regions rs1625895 (HGVS: c.672+62A>G), rs766856111

(HGVS: c.672+6G>A) and two new variants (c.560-12A>G and c.672+86T>C).

Conclusions

In conclusion, KRAS, DDR2, and TP53 variants were detected in 2%, 2.17% and 79.54% of

all cases, respectively. The frequency of DDR2 mutation is nearly close to other studies,

while KRAS and TP53 mutation frequencies are lower and higher than other populations,

respectively. Three new putative pathogenic variants, for the first time, have been detected
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in Iranian patients with lung cancer, including Q808H in DDR2, F212L, and D186G in coding

regions of TP53. In addition, we observed five novel benign variants, including Q167Q,

P222P and T211T in coding sequence, and c.560-12A>G and c.672+86T>C, in intronic

region of TP53. Mutations of KRAS and DDR2 were found in LCC and SCC subtypes,

respectively, whereas mutations of TP53 were seen in SCC and ADC subtypes with higher

frequencies and LCC subtype with lower frequency. Therefore, Iranian lung cancer patients

can benefit from mutational analysis before starting the conventional treatment. A better

understanding of the biology of these genes and their mutations will be critical for developing

future targeted therapies.

Introduction

Lung cancer is the leading cause of cancer-related death in both men and women worldwide.

Non-small cell lung cancer (NSCLC), with an incidence of 80% to 85%, is the most common

type of lung cancer [1]. Lung cancer is often diagnosed when a person is in advanced stages of

the disease and the prognosis is poor [2].

Many efforts have been made to treat patients with lung cancer. Surgery, chemotherapy,

radiotherapy, and targeted therapies are conventional lung cancer treatments [3]. Targeted

therapies with tyrosine kinase inhibitors (TKIs) comprise epidermal growth factor receptor

(EGFR) inhibitors, such as erlotinib or gefitinib, and anaplastic lymphoma kinase (ALK)

inhibitors, such as crizotinib [4, 5]. Considering the high mortality and morbidity rates of lung

cancer and the emergence of drug resistance to chemoradiotherapy regimens and TKIs, deter-

mining targetable genetic changes is of paramount importance [6].

Research has shown that the genetic variation in lung cancer is higher than that of other

cancers [7]. The DDR2 gene, which is located on the long arm of chromosome 1 (1q23.3) is a

tyrosine kinase receptor that plays a critical role in cellular connectivity, survival, migration

and cell proliferation [8]. In tumor cells, driver mutations in kinase domain activation loops,

autoinhibitory juxtamembrane regions, and ligand binding domains, can interrupt kinase

function and initiate pro-migratory and pro-invasive cascades [9]. A substitution of serine to

arginine at position 768 (S768R) of exon 18 has been reported as the most common mutation

in the DDR2 gene [8, 10]. In one study, Hammerman et al. found that DDR2 mutations

account for nearly 4% of squamous cell carcinoma (SCC) subtype [8]. Further evaluations in

Korea, China, and France populations revealed that the frequencies of DDR2 mutations were

2%, 4.6%, and 4% in SCC, respectively [10–12]. However, Kenmotsu et al. and Yashima et al.

did not find any mutations in DDR2 gene of Japanese SCC patients [13, 14]. In addition,

despite the broader range of mutated genes in SCC, there is no effective targeted treatment for

this subtype [15–17]. Some studies have shown that the targeting of DDR2 by FDA-approved

kinase inhibitors including dasatinib, imatinib, nilotinib, and ponatinib can suppress the pro-

liferation of this gene in mutated cancer cell lines [18, 19]. Dramatic response to dasatinib has

been reported in SCC patients harboring S768R mutations in exon 18 of DDR2, and thus this

region has been introduced as a valuable molecular target of TKIs in these patients [10, 20].

KRAS proto-oncogene (12p12.1) is a GTPase that is located on the downstream pathway of

the tyrosine kinase receptors and involved in cell growth, differentiation, and apoptosis. Inves-

tigations of KRAS status in NSCLC patients revealed a wide spectrum of mutations in different

countries: 8.4% in China, 21% in Japan, 27% in Greece and Italy, 29% in France, and 43.3% in

Spain [21–26]. The most prevalent mutated region of KRAS in lung cancer is codon 12 (exon
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2) with 75% frequency, whereas mutations in other regions of KRAS are less frequent including

codon 13 (exon 2) and codon 63 (exon 3) [27, 28]. A previous meta-analysis demonstrated

that the presence of KRAS mutations was a negative prognostic factor for the overall survival

of patients with lung cancer, but a more recent study showed that only the presence of KRAS
mutations in exon 2 had a predictive value in adenocarcinoma (ADC) patients [27, 29]. Tar-

geted therapies with TKIs have been effective in ADC, but the presence of KRAS mutations

induces resistance to treatment with EGFR-independent mechanisms [6]. The RAS/MAPK

pathway, with the key component of KRAS, is one of the major signaling networks linking to

EGFR signaling. Hence, mutations in downstream effectors of EGFR signaling could lead to

resistance to EGFR inhibitors [30]. Moreover, the response to TKIs varies among lung cancer

patients with KRAS mutations and may be affected by such factors as coexistence of mutations

in tumor suppressor genes (TP53 or PTEN) [31, 32]. Simultaneous analysis of KRAS and TP53
mutations has an important role in determining the prognosis and appropriate treatment

strategies for lung cancer patients [33]. The gene TP53, 17p13.1, encodes a tumor suppressor

protein that plays a role in regulating the cell cycle. In genomic damage, TP53 plays an anti-

cancer role by preventing and suppressing abnormal cell growth by cell cycle arrest, DNA

repair, control of metabolism, and apoptosis. Mutations within the TP53 gene itself or muta-

tions of downstream mediators of TP53 lead to inactivation of its function [34, 35]. Prevalence

of TP53 gene mutation accounts for nearly 39% of ADC, 51% of SCC, 68% of large cell carci-

noma (LCC), and 80% of small cell lung cancer (SCLC) [34, 36]. In addition, a frequent varia-

tion has been found in TP53 mutations in lung cancer patients with different ethnicities [37].

Previous studies have shown that TP53 gene in exons 5 to 8 has a considerably higher muta-

tion rate and exons 5–6 have been identified as the mutational hotspot regions [38, 39]. A

more recent and comprehensive study by Baugh et al determined a list of the 50 most common

mutations in the TP53 gene are associated with disruption of protein structures and highly del-

eterious VIPUR scores (> 0.5)[40]. They demonstrated that R175H (exon 5) mutation had the

highest frequency, whereas R248Q (exon 7) and R273H (exon 8) mutations were located in the

next positions.

No studies were found on the status of the KRAS and DDR2 genes in the Iranian population

[41]. To date, we have only found two studies on TP53 mutations in SCC, however, other sub-

types (ADC, LCC, SCLC) have not yet been evaluated in Iranian patients [42, 43]. The above-

mentioned lines of evidence and geographical variation in the prevalence of gene mutations

indicate that studying the status of KRAS, DDR2, and TP53 may have important implications

for diagnosis, prognosis, cancer recurrence prevention, and designing clinical trials and tar-

geted therapies for Iranian population with lung cancer. Therefore, we conducted this study to

explore the status of KRAS, DDR2, and TP53 genes in hotspot regions on a panel of lung cancer

samples including three major NSCLC subtypes (ADC, SCC, and LCC) and SCLC in the Ira-

nian population. Moreover, we examined the potential correlations among mutational status

of KRAS, DDR, and TP53 genes with clinicopathological parameters in this study.

Materials and methods

Patient characteristics

Fifty-five formalin-fixed paraffin-embedded (FFPE) samples of lung cancer, including NSCLC

and SCLC, were collected from several referral hospitals in Tehran, Iran. All samples were

investigated by an expert pathologist and had a histologic diagnosis of primary lung carci-

noma, containing at least 50% tumor cells [44, 45]. We selected cases with sufficient material

for molecular analyses. The specimens were obtained before any systematic treatment. The

clinicopathological parameters of the patients, including tumor types, histological grade (in
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SCC and ADC) and inflammation (in SCC) were obtained by reviewing their medical records.

This research was approved by the Iran University of Medical Sciences (IUMS) Research Eth-

ics Committee. Patients’ data were kept fully anonymous.

Mutational analysis

DNA extraction. After removing the surrounding paraffin, the tissues were cut into seven

micrometer thick sections, xylene (Merck Co., Germany) was added and the samples were

incubated at 60˚C for deparaffinization. The samples were then hydrated with a decreased

serial dilution of ethanol and incubated at 60˚C at each step. A lysis solution and proteinase K

were added to the tissue samples, which were then incubated at 60˚C overnight. DNA extrac-

tion was performed using the FavorPrep™ Tissue Genomic DNA Extraction Mini Kit (Cat

number: FATGK001, Favorgen, Taiwan) following the manufacturer’s recommendations.

Extracted DNA was quantified on the NanoDrop 8000 (Thermo Scientific).

PCR. PCR was carried out using a super PCR Master Mix 2X (Cat number: YT1553,

Yekta Tajhiz Azma Co., Iran) according to the manufacturer’s protocol. The PCR program,

which was repeated for each gene over 35 cycles, was as follows; 94˚C for one minute, anneal-

ing phase at 57.5˚C for KRAS, 55.5˚C for DDR2 and 52˚C for TP53 for one minute, and exten-

sion phase at 72˚C for three minutes. The PCR products were electrophoresed on a 1% agarose

gel.

Most of the tumor samples collected were of the SCC type and S768R substitutions are com-

monly reported in SCC patients. As such, we decided to design the primers for exon 18 of

DDR2 to be 5’-GGGTATAGCTGCAGATTATGAA-3´ for forward and 5´-CATTCA
TCCCCAACAGTTCTTA-3´ for reverse. Primers were designed by an online website (http://

simgene.com/Primer3). We also used the previously described primer pairs (5’-TTTCT
TTGCTGCCGTCTTC-3´ as forward and 5´-TTGCACATCTCATGGGGTTA-3´ as
reverse) for exons 5–6 of TP53 and 5’-AAAGGTACTGGTGGAGTATTTGATAGTG-3´ as
forward and 5´-TCATGAAAATGGTCAGAGAAACCT-3´ as reverse primers for exon 2

(codon 12) of KRAS (23, 24). To confirm the quality of these primers, we examined the num-

ber of nucleotides, Tm temperature, GC ratio, the possibility of forming secondary structures

and their proper attachment to the desired gene with the help of online tools, such as the NCBI

Primer BLAST (www.ncbi.nlm.nih.gov/tools/primer-blast/) and the Beacon Designer program

(http://www.premierbiosoft.com/). All the primers are listed in S1 Table. We also included

appropriate negative control at each PCR process, as mentioned in the Sanger sequencing

guidelines [46].

Sequencing. After confirming the band for each gene, the PCR products were purified

and screened for mutations using the Sanger sequencing analysis (DNA Analyzer ABI

PRISM1 3700).

Data analysis

Statistical analyses were performed using SPSS software version 20 (SPSS, Chicago, IL, USA).

The associations of TP53 status with clinicopathological parameters were assessed using Pear-

son’s χ 2 or the Fisher’s exact test, where appropriate. A p- value of< 0.05 was considered sta-

tistically significant.

All sequences were analyzed by mutation surveyor V3.30 (Softgenetics, Pennsylvania, US).

Quality scores for all the sequences were more than 20, with less than 5% noise. We only con-

firmed the variations that did not have noise in the region of interest (ROI) of the sequence.

We excluded the sequences without these criteria. We also evaluated the quality of the

sequences and variations by Sequence Scanner v1.0. For each variant, Phred scores were more
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than 30 (between 48 to 62). The variants were described in HGVS nomenclature (GRCh38) by

an online tool (https://mutalyzer.nl). We also used the following in-silico tools, as described in

the ACMG guidelines [47, 48], for interpretation of sequence variants: MutationTaster (http://

www.mutationtaster.org/), CADD (http://cadd.gs.washington.edu/), varsome (https://

varsome.com/) and CGI (https://www.cancergenomeinterpreter.org). For checking the previ-

ously reported variants, we reviewed the following online databases: The UniProt database

(http://www.uniprot.org; UniProtKB ID Q8IYM9), the NCBI dbSNP database (https://www.

ncbi.nlm.nih.gov/SNP/), the Catalogue of Somatic Mutations in Cancer (COSMIC; http://

cancer.sanger.ac.uk/cosmic) and 1000 Genomes (http://www.1000genomes.org/).

Results and discussion

Study population

Fifty-five tumor samples were used for the KRAS gene mutation analysis. Due to a lack of

genomic DNA, TP53 and DDR2 were examined in 44 and 46 samples, respectively. The patient

characteristics are summarized in S2 Table. The median age of the patients was 65.7 years

(range, 37–83 years). They were 46 male (83.6%) and 9 female patients (16.36%) (male to

female ratio = 5.1). Thirteen patients (23.63%) had ADC, 34 (61.81%) SCC, four (7.27%) LCC,

one (1.81%) mixed LCC/SCC, two (3.63%) NSCLC without mentioned subtype and one

(1.81%) SCLC. SCC was the major histologic type. The histologic grade of patients was as fol-

lows: three (23.07%): poor, four (30.76%): moderate, and two (15.38%): well differentiated in

ADC, and 10 (26.41%): poor, six (17.64%): moderate, and 13 (38.23%): well differentiated in

SCC. A total of 12 (35.29%) patients with SCC had inflammation.

KRAS Mutations analysis

G12C substitution, with G>T transversion (GGT>TGT), was observed in a 67-year-old man

with LCC (2%), but there was no other mutation in patients with ADC and SCC (Figs 1 and

2). An rs1625895 variant was another finding in the TP53 gene of this patient (Tables 1–4).

DDR2 mutations analysis

Q808H substitution with A>C transversion (CAA>CAC) was observed in the SCC tumor

specimen of a 67-year-old male (2.17%; Figs 1 and 2), but no mutation was seen in the ADC

and LCC subtypes (Tables 1–4).

TP53 mutations analysis

We found 48 variants in 35 of the 44 (79.54%) patients, in which 15 variants (31.25%) were in

coding regions and 33 variants (68.75%) were intronic. V147A, V157F, Q167Q, D186G, H193R,

T211T, F212L and P222P were the coding variants which were detected in nine patients

(20.45%), including six (13.63%) in ADC, seven (15.9%) in SCC and two (4.54%) in LCC (Figs

1 and 3). The most frequently mutated sites were codons 186 (n = 3) and 193 (n = 3) with

A>G transition, codon 222 (n = 3) with G>A transition and codon 212 (n = 2) with T>C

transition. G>A transition in codon 167, G>T transversion in codon 157, T>C transition in

codon 147 and T>C transition in codon 211 were other mutated base sites in TP53. Among all

patients, the A>G transition was the most frequent (n = 6, 40%) base change in the coding

region. Previously identified as polymorphism, rs1625895 (HGVS: c.672+62A>G) was a fre-

quent intronic variant in 31 of the 44 patients (70.45%). rs766856111 (HGVS: c.672+6G>A)

was another intronic variant in the SCC tumor sample of a 61-year-old male with intensive
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inflammation. We also found two new variants in two SCC male patients. c.560-12A>G was

found in a 72-year-old patient and c.672+86T>C in a 37-year-old patient (Tables 1–4).

The exploration of TP53 status and clinicopathologic factors revealed a relative positive cor-

relation between the presence of mutation in TP53 with age (P = 0.08)(Table 5). The correla-

tions between TP53 status and other clinicopathological parameters are summarized in

Table 5.

As previously established, lung cancer is the second most common and the most lethal type

of cancer [49]. In Iran, lung cancer is the second cause of cancer-related death, after stomach

malignancies [50]. Surgery, radiotherapy and chemotherapy are some of the commonly used

treatments for lung cancer and are often used in the early stages of lung cancer. For some cases

of lung cancer, targeted therapies or immunotherapy can also be used. Due to the toxicity of

some medications, and the lack of response in some patients to common treatments, research-

ers face serious challenges in the treatment of lung cancer [51, 52]. A review of the genetic vari-

ations of lung cancer can be effective in detecting the disease as quickly as possible and

choosing an effective treatment.

For the first time, this study was designed to investigate the status of KRAS, DDR2, and

TP53 in hotspot regions in a panel of lung cancer, including NSCLC and SCLC, in Iranian

population. In addition, we examined the association between mutational status of these genes

and clinicopathological parameters.

Almost 15% to 25% of patients with NSCLC have KRAS mutations [27]. These mutations

occur more frequently in ADC (approximately 30%) and less frequently in the SCC subtype

Fig 1. The PCR products on the gel agarose electrophoresis.

https://doi.org/10.1371/journal.pone.0200633.g001
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(approximately 5%). More than 97% of KRAS-mutant cases affect exon 2 (G12, G13), which

disrupts common targeted therapies in lung cancer [53, 54]. Therefore, targeted therapies have

been provided based on the KRAS mutations (S3 Table). In this study, 23.63% of patients were

diagnosed with ADC and 61.81% with SCC, but the G12C variant was seen in LCC, which con-

tained only 7.27% of the tumor samples. There is evidence that the frequency of KRAS muta-

tions in ADC varies among different ethnic groups, with a lower frequency observed among

Asians compared to Caucasians [55]. Mutation frequency of KRAS in Chinese, Japanese, and

Korean populations with ADC was 5.7% (range: 0.0%– 18.2%), 11.3% (range: 6.6%– 14.2%),

and 9% (range: 7.3%– 9.5%), respectively, whereas this amount was 28.1% in Europe [55]. It

can be concluded that the frequency of KRAS mutations in Iran, as a Western Asian country,

may vary from 0 to 1.8 per 10 patients with ADC (0/10 to 1.8/10). These findings may indicate

a different distribution of KRAS mutations in patients with lung cancer in the Iranian

population.

We also examined the status of DDR2, which has been reported as a variable factor in lung

cancer, most commonly in SCC, with a frequency of 3.8%. The mutations in this gene do not

Fig 2. Analysis of the lung cancer samples for KRAS, DDR2 and TP53 gene mutations. (a) percentage of KRAS, DDR2
and TP53 mutations in different subtypes of lung cancer; (green: SCLC, blue: SCC, pink: ADC). (b) G12C mutation in

KRAS and (c) Q808H mutation in DDR2.

https://doi.org/10.1371/journal.pone.0200633.g002
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correlate with the gender or age of patients [10]. DDR2 mutations have been observed in con-

junction with the KRAS (G12C) mutation [56].

Table 1. Frequency and type of coding variants in KRAS, DDR2, and TP53 genes in lung tumor samples.

Pt. ID Gender Age Tumor type KRAS DDR2 TP53 Phred Score (ROI)

8 M 67 SCC No. No. D186G 52

H193R 51

P222P 50

13 M 69 SCC No. No. Q167Q 48

15 M 67 SCC No. Q808H NA 51

25 M 58 ADC No. No. V157F 54

26 M 67 ADC No. No. D186G 55

H193R 52

P222P 51

35 M 45 SCC No. No. F212L 62

36 M 64 SCC No. No. F212L 50

41 M 72 SCC No. No. V147A 50

49 F 68 ADC NA No. T211T 62

P222P 62

67 M 62 LCC No. No. D186G 53

H193R 53

70 M 67 LCC G12C No. No. 57

M = male, F = female, ROI = region of interest

NA = Not available

https://doi.org/10.1371/journal.pone.0200633.t001

Table 2. The data of observed variations based on HGVS38 in coding sequence.

Transcript ID RefSeq Gene Gene

role

Variant HGVS38 (Chromosomal

variant)

HGVS38 (transcripts

variant)

MAF db SNP ID/ COSMIC

ID

ENST00000311936.7 NM_004985 KRAS OG G12C NC_000012.12:

g.25245351C>T

NM_004985.4:c.34G>A 1.976e-05 rs121913530

ENST00000367922.7 NM_001014796 DDR2 OG Q808H NC_000001.11:

g.162778720A>C

NM_001014796.1:

c.2424A>C

0.0002393 rs765660823

ENST00000269305.8 NM_000546 TP53 TSG D186G NC_000017.11:

g.7675055T>C

NM_000546.5:c.557A>G NM. COSM46287

H193R NC_000017.11:

g.7674953T>C

NM_000546.5:c.578A>G NM. rs786201838

P222P NC_000017.11:

g.7674865C>T

NM_000546.5:c.666G>A 6.748e-05 rs72661118

Q167Q NC_000017.11:

g.7675111C>T

NM_000546.5:c.501G>A NM. COSM44299

V157F NC_000017.11:

g.7675143C>A

NM_000546.5:c.469G>T 0.00006/7 rs121912654

F212L NC_000017.11:

g.7674897A>G

NM_000546.5:c.634T>C NM. COSM45477

V147A NC_000017.11:

g.7675172A>G

NM_000546.5:c.440T>C NM. COSM45819

T211T NC_000017.11:

g.7674898A>G

NM_000546.5:c.633T>C NM. COSM46211

OG: Oncogene, TSG: Tumor Suppressor Gene, MAF: Minor Allele Frequency, NM: Not Mention.

https://doi.org/10.1371/journal.pone.0200633.t002
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Our results showed Q808H substitution (rs765660823) with A>C transversion (CAA>

CAC) in SCC samples, which was previously reported by Exome Aggregation Consortium.

This variant is in the tyrosine kinase domain (563–849) of DDR2, which may result in hyper-

activation of this oncogene [57]. We investigated the COSMIC to find this variant in different

cancers. However, there were no journal citations for this particular variant. Thus, we searched

the Greater Middle East (GME) Variome Project (http://igm.ucsd.edu/gme/) website but still

did not find any reported data on this variant in the countries of the Greater Middle East.

Analysis using in silico tools, such as MutationTaster and CADD, revealed disease-causing

and pathogenic effects for this variant, which is categorized as tier II, with potential clinical sig-

nificance in CGI. No study was conducted about this variant, and to the best of our knowledge,

our study was the first to report this variant in a cancer study.

As a tumor suppressor gene, TP53 is reported as the most mutated gene in lung cancer and

its mutations are observed in 50% of NSCLC and 65% of SCC cases, which is higher than in

ADC [58]. In the current study, all variations, including benign, pathogenic or intermediate,

in coding and intronic sequences of hotspot regions of TP53 have been reported, using Onco-

genic classification (https://www.cancergenomeinterpreter.org) that is a reliable database [59,

60] (Table 4). In our study, TP53 variants were observed in 79.54% of the samples, including

Table 4. The predictions of variants effect based on in silico tools.

Gene Variant Cadd

phred

Raw

Score

Oncogenic classification� Mutation taster SIFTcat PolyPhenCat DANN

score

ClinVar

KRAS G12C 31 6.5 NSCLC; OV; LUAD; THCA;

COREAD;

Disease causing Deleterious Possibly

damaging

0.9987 Pathogenic

DDR2 Q808H 24.7 4.7 TIER 2 Disease causing Deleterious Probably

damaging

0.9953 NM

TP53 D186G 22.9 3.3 Passenger Disease causing Tolerated Probably

damaging

0.9943 NM

H193R 23.5 3.9 known in any cancer type Disease causing Deleterious Probably

damaging

0.9876 Likely pathogenic

P222P 21.2 2.7 Not protein affecting Disease causing NM NM 0.5001 Likely benign

Q167Q 8.331 0.6 Not protein affecting Disease causing NM NM 0.5293 NM

V157F 24.2 4.4 Hepatocellular carcinoma Disease causing Deleterious Probably

damaging

0.9909 Pathogenic/Likely

pathogenic

F212L 10.92 1.0 TIER 1 Polymorphism Tolerated Benign 0.7743 NM

V147A 25.9 5.3 TIER 1 Disease causing Deleterious Probably

damaging

0.9917 NM

T211T 3.703 0.1 Not protein affecting Disease causing NM NM 0.487 NM

� https://www.cancergenomeinterpreter.org

According to the oncodriveMUT method (tier 1 and 2 represent higher and lower level of stringency of the driver prediction, respectively).

NSCLC: Non-small Cell Lung Cancer, OV: Ovary Cancer, LUAD: Lung Adenocarcinoma, THCA: Thyroid Carcinoma, COREAD: Colorectal Adenocarcinoma, NM:

Not Mention.

https://doi.org/10.1371/journal.pone.0200633.t004

Table 3. The data of observed variations based on HGVS38 in non-coding sequence.

gene HGVS38 (Chromosomal variant) HGVS38 (transcripts variant) db SNP ID/ COSMIC ID Mutation taster

TP53 NC_000017.11:g.7674983T>C NM_000546.5:c.560-12A>G Novel Polymorphism

NC_000017.11:g.7674773A>G NM_000546.5:c.672+86T>C Novel Polymorphism

NC_000017.11:g.7674853C>T NM_000546.5:c.672+6G>A rs766856111 Polymorphism

NC_000017.11:g.7674797T>C NM_000546.5:c.672+62A>G rs1625895 Polymorphism

https://doi.org/10.1371/journal.pone.0200633.t003
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31.25% in conding and 68.75% in intronic regions, and had the highest frequency of variations

among the three genes. Coding variants V147A, V157F, Q167Q, D186G, H193R, T211T, F212L
and P222P were detected in nine patients (20.45%). Among these variants, V147A, V157F and

H193R were already documented in lung cancers [61–63]. D186G and F212L were reported in

some malignant tumors, including ADC of large intestine and maxillary sinus SCC, but we did

not find any reported data about these variants in lung cancer [64, 65](S4 Table).

Chromatogram study of patient 35 showed homozygous mutations in F212L. Considering

that the age of the patient was less than the mean age of patients with lung cancer, it may be

possible that lung cancer in this patient was familial. Unfortunately, the patient died at the

time of the study and samples of blood or other tissues were not available. The patient’s family

was not able to be located for supplemental studies. rs1625895 (HGVS: c.672+62A>G) was a

frequent intronic polymorphism in our study, seen in 31 of the 44 patients (70.45%). A signifi-

cant association between TP53 intron 6 variant (rs1625895) with increased risk of lung cancer

has been reported [66].

The association of TP53 status and clinicopathological parameters revealed a marginal

trend between the presence of TP53 mutation and older age. However, no data exist in the

Fig 3. Analysis of TP53 gene mutations in lung cancer samples. (a) D186G mutation in coding sequence (b) F212L
mutation in coding sequence (c) c.560-12A>G mutation in intronic region (d) c.672+86T>C mutation in intronic

region.

https://doi.org/10.1371/journal.pone.0200633.g003
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literature on the association of TP53 status and clinicopathological characteristics in the Ira-

nian population with lung cancer [42, 43].

Many researchers have claimed that mutations in TP53 are prognostic, or predictive, to

treatment response, while others have failed to demonstrate this association [36, 67]. Since

most chemo-therapeutics induce DNA damage and consequently activate the p53 protein,

mutations in the TP53 gene can negatively affect responses to this treatment [68]. In addition,

cancer stem cells (CSCs) within the tumors are one of the reasons for resistance to treatment,

relapse, and metastasis of the tumors. It is suggested that the level of expression of these genes

be evaluated with important indicators of the CSC population including CD44, CD133, and

ALDH1 in subsequent studies [69, 70]. Moreover, conducting large population-based studies

is highly recommended.

Application of the next generation sequencing (NGS) will help increase sensitivity and

quality of data in finding mutation(s), but selecting a method is determined by several fac-

tors including sample type (fresh, frozen, or FFPE), quality and quantity of DNA, or RNA

[71]. The PCR-based enrichment is the most preferred methodology for FFPE samples,

which can efficiently amplify targeted regions of interest for sequencing analysis from

low amounts of FFPE DNA; thus, the direct DNA sequencing methods, such as Sanger

sequencing, are still accepted as the gold standard for mutations diagnosis [72]. In addi-

tion, to improve the sensitivity of molecular analysis, a pathologist can be asked to evalu-

ate the tissue samples using a microscope to select a suitable area with high tumor cells

proportion. Thus, in the present survey, we selected lung tumor samples containing at

least 50% tumor cells [44, 45].

Table 5. Correlations between TP53 mutational status and clinicopathological parameters.

Characteristics Total number (%) TP53 mutant TP53
wild-type

P-value

Age, year � 65 years 18(41) 12(67) 6(33) 0.08

> 65 years 26(59) 23(89) 3(11)

Gender Male 37(84) 29(78) 8(22) 0.55

Female 7(16) 6(86) 1(14)

Tumor type NSCLC ADC 13(30) 10(77) 3(23) 0.13

SCC 24(55) 18(75) 6(25)

LCC 3(7) 3(100) 0(0)

LCC/SCC 1(2) 1(100) 0(0)

NM 2(4) 2(100) 0(0)

SCLC SCLC 1(2) 1(100) 0(0)

Histological Grade ADC Well 2(22) 1(50) 1(50) 0.56

Moderate 4(45) 3(75) 1(25)

Poor 3(33) 2(67) 1(33)

SCC Well 9(43) 6(67) 3(33) 0.49

Moderate 5(24) 5(100) 0(0)

Poor 7(33) 5(71) 2(29)

Inflammation (SCC) Yes 0(0) 6(67) 3(33) 0.54

No 0(0) 4(80) 1(20)

NSCLC = non-small cell lung cancer, SCLC = small cell lung cancer, ADC = adenocarcinoma, SCC = squamous cell carcinoma, LCC = large cell carcinoma.

NM = not mention.

https://doi.org/10.1371/journal.pone.0200633.t005
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Conclusions

In conclusion, KRAS, DDR2, and TP53 variants were detected in 2%, 2.17% and 79.54% of all

cases, respectively. The frequency of DDR2 mutation is nearly close to other studies, while

KRAS and TP53 mutation frequencies are lower and higher than other populations, respec-

tively. Three new putative pathogenic variants, for the first time, have been detected in Iranian

patients with lung cancer, including Q808H in DDR2, F212L, and D186G in coding regions of

TP53. In addition, we observed five novel benign variants, including Q167Q, P222P and T211T
in coding sequence, and c.560-12A>G and c.672+86T>C, in intronic region of TP53. Muta-

tions of KRAS and DDR2 were found in LCC and SCC subtypes, respectively, whereas muta-

tions of TP53 were seen in SCC and ADC subtypes with higher frequencies and LCC subtype

with lower frequency. Therefore, Iranian lung cancer patients can benefit from mutational

analysis before starting the conventional treatment. A better understanding of the biology of

these genes and their mutations will be critical for developing future targeted therapies.
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