Skip to main content
. 2017 Dec 1;6(12):e17110. doi: 10.1038/lsa.2017.110

Figure 1.

Figure 1

Self-configuring mode unscrambler integrated in a silicon photonic chip. (a) Schematic concept of an N × N (N=4) triangular mesh of tuneable beam splitters implementing any arbitrary transformation on N-dimensional input vectors. Transparent detectors at the output port of each beam splitter monitor the evolution of the optical field Em,k along the entire mesh enabling local control operation on each beam splitter individually. (b) Guided-wave implementation of the mesh through a lattice of two-port cascaded MZIs realizing the tuneable beam splitters controlled through a pair of integrated phase shifters. (c) Silicon photonic four-mode unscrambler consisting of six thermally actuated MZIs individually monitored by transparent CLIPP detectors. Mode scrambling is induced on chip through a multimode waveguide section (mode mixer). Self-configuration and stabilization of the circuit is performed through a CMOS ASIC (d) bridged to the silicon chip, which is connected to an FPGA controller.