Skip to main content
. 2018 Jul 26;13(7):e0201056. doi: 10.1371/journal.pone.0201056

Table 6. Comparison of the performance of various algorithms for dataset 1, 2, and 3.

The proposed method showed the best performance for all three datasets.

Dataset Algorithm Weighted average
Accuracy Precision Recall F-Measure ROC area
1 Naïve Bayes 0.537 0.551 0.537 0.504 0.581
SVM 0.580 0.580 0.580 0.579 0.580
ANN 0.570 0.570 0.570 0.570 0.603
PART 0.742 0.742 0.742 0.742 0.842
Proposed method 0.902 0.905 0.902 0.902 0.954
2 Naïve Bayes 0.547 0.567 0.547 0.512 0.585
SVM 0.562 0.564 0.562 0.559 0.562
ANN 0.567 0.567 0.567 0.567 0.597
PART 0.713 0.723 0.713 0.710 0.812
Proposed method 0.898 0.899 0.898 0.898 0.953
3 Naïve Bayes 0.549 0.567 0.549 0.518 0.597
SVM 0.563 0.571 0.563 0.549 0.563
ANN 0.570 0.570 0.570 0.570 0.601
PART 0.744 0.746 0.744 0.743 0.850
Proposed method 0.916 0.916 0.916 0.916 0.965
4 Naïve Bayes 0.529 0.533 0.529 0.515 0.555
SVM 0.552 0.552 0.552 0.551 0.552
ANN 0.535 0.537 0.535 0.528 0.565
PART 0.628 0.628 0.628 0.628 0.704
Proposed method 0.783 0.783 0.783 0.782 0.861
5 Naïve Bayes 0.540 0.560 0.540 0.499 0.577
SVM 0.556 0.580 0.556 0.522 0.556
ANN 0.559 0.559 0.559 0.559 0.587
PART 0.642 0.644 0.642 0.640 0.718
Proposed method 0.772 0.773 0.772 0.772 0.851
6 Naïve Bayes 0.535 0.552 0.535 0.494 0.571
SVM 0.555 0.583 0.555 0.515 0.555
ANN 0.565 0.566 0.565 0.565 0.591
PART 0.662 0.662 0.662 0.662 0.752
Proposed method 0.786 0.786 0.786 0.786 0.865