Table 6. Comparison of the performance of various algorithms for dataset 1, 2, and 3.
The proposed method showed the best performance for all three datasets.
Dataset | Algorithm | Weighted average | ||||
---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F-Measure | ROC area | ||
1 | Naïve Bayes | 0.537 | 0.551 | 0.537 | 0.504 | 0.581 |
SVM | 0.580 | 0.580 | 0.580 | 0.579 | 0.580 | |
ANN | 0.570 | 0.570 | 0.570 | 0.570 | 0.603 | |
PART | 0.742 | 0.742 | 0.742 | 0.742 | 0.842 | |
Proposed method | 0.902 | 0.905 | 0.902 | 0.902 | 0.954 | |
2 | Naïve Bayes | 0.547 | 0.567 | 0.547 | 0.512 | 0.585 |
SVM | 0.562 | 0.564 | 0.562 | 0.559 | 0.562 | |
ANN | 0.567 | 0.567 | 0.567 | 0.567 | 0.597 | |
PART | 0.713 | 0.723 | 0.713 | 0.710 | 0.812 | |
Proposed method | 0.898 | 0.899 | 0.898 | 0.898 | 0.953 | |
3 | Naïve Bayes | 0.549 | 0.567 | 0.549 | 0.518 | 0.597 |
SVM | 0.563 | 0.571 | 0.563 | 0.549 | 0.563 | |
ANN | 0.570 | 0.570 | 0.570 | 0.570 | 0.601 | |
PART | 0.744 | 0.746 | 0.744 | 0.743 | 0.850 | |
Proposed method | 0.916 | 0.916 | 0.916 | 0.916 | 0.965 | |
4 | Naïve Bayes | 0.529 | 0.533 | 0.529 | 0.515 | 0.555 |
SVM | 0.552 | 0.552 | 0.552 | 0.551 | 0.552 | |
ANN | 0.535 | 0.537 | 0.535 | 0.528 | 0.565 | |
PART | 0.628 | 0.628 | 0.628 | 0.628 | 0.704 | |
Proposed method | 0.783 | 0.783 | 0.783 | 0.782 | 0.861 | |
5 | Naïve Bayes | 0.540 | 0.560 | 0.540 | 0.499 | 0.577 |
SVM | 0.556 | 0.580 | 0.556 | 0.522 | 0.556 | |
ANN | 0.559 | 0.559 | 0.559 | 0.559 | 0.587 | |
PART | 0.642 | 0.644 | 0.642 | 0.640 | 0.718 | |
Proposed method | 0.772 | 0.773 | 0.772 | 0.772 | 0.851 | |
6 | Naïve Bayes | 0.535 | 0.552 | 0.535 | 0.494 | 0.571 |
SVM | 0.555 | 0.583 | 0.555 | 0.515 | 0.555 | |
ANN | 0.565 | 0.566 | 0.565 | 0.565 | 0.591 | |
PART | 0.662 | 0.662 | 0.662 | 0.662 | 0.752 | |
Proposed method | 0.786 | 0.786 | 0.786 | 0.786 | 0.865 |