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Air quality monitoring using mobile microscopy and
machine learning

Yi-Chen Wu1,2,3, Ashutosh Shiledar1, Yi-Cheng Li1, Jeffrey Wong4, Steve Feng1,2,3, Xuan Chen1,
Christine Chen1, Kevin Jin1, Saba Janamian1, Zhe Yang1, Zachary Scott Ballard1,2,3, Zoltán Göröcs1,2,3,
Alborz Feizi1,2,3 and Aydogan Ozcan1,2,3,5

Rapid, accurate and high-throughput sizing and quantification of particulate matter (PM) in air is crucial for monitoring and

improving air quality. In fact, particles in air with a diameter of ≤2.5 μm have been classified as carcinogenic by the World

Health Organization. Here we present a field-portable cost-effective platform for high-throughput quantification of particulate

matter using computational lens-free microscopy and machine-learning. This platform, termed c-Air, is also integrated with a

smartphone application for device control and display of results. This mobile device rapidly screens 6.5 L of air in 30 s and gen-

erates microscopic images of the aerosols in air. It provides statistics of the particle size and density distribution with a sizing

accuracy of ~ 93%. We tested this mobile platform by measuring the air quality at different indoor and outdoor environments

and measurement times, and compared our results to those of an Environmental Protection Agency–approved device based on

beta-attenuation monitoring, which showed strong correlation to c-Air measurements. Furthermore, we used c-Air to map the air

quality around Los Angeles International Airport (LAX) over 24 h to confirm that the impact of LAX on increased PM concentra-

tion was present even at 47 km away from the airport, especially along the direction of landing flights. With its machine-

learning-based computational microscopy interface, c-Air can be adaptively tailored to detect specific particles in air, for exam-

ple, various types of pollen and mold and provide a cost-effective mobile solution for highly accurate and distributed sensing of

air quality.
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INTRODUCTION

Air quality is an increasing concern in the industrialized world.
According to the World Health Organization (WHO), air pollution
causes two million deaths annually in China, India and Pakistan.
Moreover, ‘premature death’ of seven million people worldwide each
year is due to the health hazards of air pollution1. Recently, several
severe incidents of pollution haze afflicted Beijing, China and attracted
worldwide attention2–4.
Particulate matter (PM) is a mixture of solid and liquid particles in

air and forms a significant form of air pollution. PM sources include,
for example, direct emission from a source, such as a construction site,
smokestack, or fire, or a result of complex chemical reactions emitted
from power plants, industrial production and automobiles5. PM with
a general diameter of 10 μm and smaller, which is termed PM10,
can cause serious health problems because it can become lodged deep
in the lungs and even enter the bloodstream. A smaller PM size
category, PM2.5, which represents particles with a diameter of 2.5 μm
or smaller, has been declared a cause of cancer by the WHO6.
Furthermore, PM is a major environmental issue on account of

reduced visibility (haze). Monitoring PM air quality as a function of
space and time is critical for understanding the effects of industrial
activities, studying atmospheric models and providing regulatory and
advisory guidelines for transportation, residents and industries.
Currently, PM monitoring is performed at designated air sampling

stations, which are regulated by the US Environmental Protection
Agency (EPA) and similar agencies in different countries. Many
of these advanced automatic platforms use either beta-attenuation
monitoring (BAM)7 or a tapered element oscillating microbalance
(TEOM)7 instrument. BAM instruments sample aerosols on a rotating
filter. Using a beta-particle source, they measure the beta-particle
attenuation induced by the accumulated aerosols on the filter. TEOM-
based instruments, on the other hand, capture aerosols in a filter
cartridge, which contains a glass tube tip that vibrates at varying
frequencies according to the mass of the captured aerosols. These
devices provide accurate PM measurements at high throughputs.
However, they are cumbersome and heavy (~30 kg), relatively
expensive (approximately $50 000–100 000) and require specialized
personnel or technicians for regular system maintenance, for example,
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every few weeks. Owing to these limitations, only ~ 10 000 of these air
sampling stations exist worldwide.
In addition to these high-end PM measurement instruments, several

commercially available portable particle counters are available at a
lower cost of approximately $2000 (Refs. 8,9) and in some cases much
higher, approximately $7000–8000 (Ref. 10). These commercially
available optical particle counters resemble a flow-cytometer. They
drive the sampled air through a small channel. A laser beam focused
on the nozzle of this channel is scattered by each particle that passes
through the channel. The scattering intensity is then used to infer
the particle size. Because of its serial read-out nature, the sampling
rate of this approach is limited to o2–3 L �min�1 and in some sub-
micron particle detection schemes o0.8 L �min�1 10. Furthermore,
accurate measurement of either very-high or very-low concentrations
of particles is challenging for these devices, which limits the dynamic
range of the PM measurement. In addition to these limitations, the
scattering cross-section, which comprises the quantity actually

measured by this device type, heavily depends on the three-
dimensional (3D) morphology and refractive properties of the
particles. This can cause severe errors in the conversion of the
measured scattered light intensities into actual particle sizes. Finally,
none of these designs offers a direct measure, that is, a microscopic
image of the captured particles, which is another limitation because
further analysis of a target particle of interest after its detection cannot
be performed.
On account of these limitations, many air sampling activities

continue to use microscopic inspection and counting. Basically, air
samples are manually obtained in the field using a portable sampler
that employs various processes, such as cyclonic collection, impinge-
ment, impaction, thermophoresis or filtering11–14. The sample is then
sent to a central laboratory, where it is post-processed and manually
inspected under a microscope by an expert. This type of microscopic
analysis provides the major advantage of more accurate particle sizing,
while enabling the expert reader to recognize the particle shape and
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Figure 1 c-Air platform. (a and b) Photos of the device from different perspectives. A quarter is placed beside the device in b for scale. (c) 3D computer-
aided-design (CAD)-drawing overview of the device, including (A) rechargeable battery, (B) vacuum pump (13 L �min�1), (C) illumination module with fiber-
coupled light-emitting diodes of red (624 nm), green (527 nm) and blue (470 nm) and (D) impaction-based air sampler with (E) a sticky coverslip on top of
(F) the image sensor. (d) Schematic drawing of impaction-based air sampler on a chip. (e) Whole field-of-view differential hologram image of an aerosol
sample during sampling, and zoomed-in regions of its reconstruction. The device is powered by a rechargeable battery (A), and controlled by a microcontroller
(Raspberry Pi A+). The assembly and packaging are 3D-printed.
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type. These capabilities yield additional benefits in more complicated
analyses of air pollution, such as identification of a specific aerosol
type. In this method, however, the sampling and inspection processes
are separated; that is, the sampling is performed in the field, whereas
the sample analysis is conducted in a remote professional lab. This
significantly delays the reporting of the results. Furthermore, the
inspection is manually performed by a trained expert, which con-
siderably increases the overall cost of each air-quality measurement.
Furthermore, this conventional microscope-based screening of aero-
sols cannot be conducted in the field, because these benchtop
microscopes are cumbersome, heavy, expensive and require specialized
skills to operate.
In this paper, as a transformative solution to the above outlined

limitations of existing air quality measurement techniques, we present
a hand-held and cost-effective platform for automated sizing and
high-throughput quantification of PM using computational lens-free
microscopy and machine learning. As an alternative to conventional

lens-based microscopy techniques, in a computational lens-free
microscopy approach, the sample is directly positioned on top of an
image sensor chip with no optical components between them15,16.
Such an on-chip microscope can rapidly reconstruct images of
transmissive samples over a very large field of view of 420 mm2.
On the basis of this computational on-chip imaging concept and a
unique machine learning enabled particle analysis method, we
demonstrate in this paper the design of a lightweight (~590 g),
hand-held and cost-effective air-quality monitoring system, termed
c-Air. This mobile system utilizes a micro-pump, an impaction-based
air-sampler and a lens-free holographic on-chip microscope that is
integrated with a custom-written machine learning algorithm for
remote data processing and particle analysis. The c-Air platform
(Figures 1 and 2) operates with a smartphone application (app) for
device control and data display. It can rapidly screen 6.5 L of air
volume in 30 s, generating microscopic phase and amplitude images of
the captured particles, while also automatically providing the PM
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Figure 2 c-Air work flow and iOS-based app interface. (a) iOS-based c-Air app interface: (i) ‘Welcome’ screen of the app with different options. (ii) ‘Take
Measurement’ screen with a device-logo-shaped sampling button. (iii) Changing the device connection. The user can change the device to be connected by
typing the IP address of the device. (iv) ‘Map View’ of history samples. The air samples can be viewed by touching the pinpoint. (v) ‘List View’ of history
samples. Each entry is a sample that shows the device name and capture time. (vi) View of one sample result. The ‘graph’ option shows a histogram of the
particle sizing. (b) Work flow on the c-Air device. (c) Workflow on the server to support the processing of air samples. After the sample image and GPS
location are sent to the server, the server processes the images through all five stages and saves the processed result. A copy of the result is sent to the
smartphone app, where it is rendered and displayed. GPS, global position system; ML, machine learning.
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sizing distribution with a sizing accuracy of ~ 93%. This large
throughput and accuracy are especially important for providing highly
sensitive and rapid measurements of particle counts at low concentra-
tions in air.
By measuring the air quality using c-Air over several hours at an

EPA-approved air-quality monitoring station, we confirmed that the
c-Air PM measurements closely matched those of an EPA-approved
BAM device. We further tested c-Air prototypes in various indoor and
outdoor locations in California. In some of these experiments, a
significant increase in ambient PM caused by the so-called Sand Fire
near Santa Clarita, California on July 23, 2016 was detected. Finally,
we conducted a 24-h spatiotemporal mapping of air pollution near
Los Angeles International Airport (LAX) using the c-Air prototypes.
The results revealed the occurrence of a temporal modulation of PM
that correlates with the total number of flights at LAX. This modu-
lation was present even at a distance of 47 km from LAX along the
direction of landing flights. Because c-Air is based on computational
microscopic imaging and machine learning, it can adaptively learn and
potentially be tailored to sensitively recognize specific sub-groups of
particles, including various types of pollen and mold, based on their
phase and amplitude images, created by lens-free holographic imaging.
We thus believe that the c-Air platform and its unique capabilities are
broadly applicable to numerous air-quality-related applications, and it
can provide cost-effective, compact and mobile solutions for spatio-
temporal mapping of both indoor and outdoor air quality.

MATERIALS AND METHODS

Impaction-based air-sampler
To capture aerosols, we employ an impaction-based air sampler (that
is, an impactor) on account of its high-throughput, simple hardware
and compatibility with microscopic inspection15. As shown in
Figure 1d, the impactor consists of an impaction nozzle and a sticky
sampling coverslip (Air-O-Cell Sampling Cassette, Zefon Interna-
tional, Inc.). A pump drives the laminar airstream through the nozzle
at high speed. The sticky coverslip is placed to directly face the
airstream. The airstream can be easily redirected while the aerosol
inside the stream impacts with and is collected by the sticky coverslip.
This collection is subsequently used for computational imaging.
The aerosol capture by the impactor is actually a random process.

The probability that an individual aerosol particle passing through the
impactor will be captured depends on the particle size, laminar airflow
rate and nozzle width. This probability is related to the Stokes number
(Stk):11

Stk ¼ rPd
2
PUCc

9ZDj
ð1Þ

where ρP is the particle mass density, dP denotes the particle diameter,
U represents the flow velocity, η is the air viscosity, Dj denotes the
nozzle diameter and Cc is the slip correction coefficient. The impaction
efficiency increases as Stk increases. On the basis of the same
terminology, the cutoff size, d50, is defined as the diameter of the
particle at which the impaction efficiency decreases to 50%. In our
experimental design, the air sampler (with a nozzle of 1.1 mm by
14.5 mm) was connected to and driven by a miniaturized pump with a
throughput of 13 L �min�1. On the basis of the above relationship and
assuming ρP= 1 000 kg �m�3, our 50% cutoff sampling diameter can
be estimated as d50= 1.4 μm (Ref. 16).

c-Air lens-free on-chip microscope and air sampling design
For rapid imaging and inspection of the collected aerosols, we
combined the impactor with a lens-free microscope, as shown in
Figure 1. Similar to a typical lens-free imaging setup, the sticky
coverslip, which was the sample to be imaged, together with the
impactor nozzle cartridge, was directly placed on a color complemen-
tary metal-oxide semiconductor (CMOS) image sensor at a distance of
approximately 400 μm from the image sensor to the sticky coverslip.
Three fiber-coupled light-emitting diodes (LEDs; red: 624 nm; green:
527 nm; blue: 470 nm) were fixed on top of the device sampler tube at
~ 8 cm from the image sensor chip. Using LED illumination, the
aerosol samples, which were captured by the sticky coverslip, cast in-
line holograms. These holograms were recorded by the CMOS
image sensor for holographic reconstruction and further processing
to determine the PM statistics. Owing to the close proximity of the
particles to the sensor surface, both the spatial and temporal coherence
of the source could be partial, thereby eliminating the need for laser-
based illumination17.
The image capturing and air sampling processes are illustrated in

Figure 2b. When the user makes the request to ‘capture a sample’ from
the app interface, the three LEDs are sequentially turned on/off and
three background images are thereby obtained. These background
images depict the state of the air-sampler surface prior to the intake of
the air to be sampled. On the basis of the coverage of the particles in a
given background image, the device alerts the user for replacement of
the air sampler surface. Depending on the level of air contamination,
the same air sampler can be used several times before requiring
replacement based on the contamination of its surface area.
Next, the pump was powered on to push the air through the

sampler for 30 s, thereby screening 6.5 L of air. The three LEDs were
then sequentially turned on/off, and three sample images were thereby
obtained with the newly captured aerosol particles. These background
images and sample images were both synced to the server for further
processing. In this approach, we obtained two sets of images (that is,
before and after sampling) to employ a differential imaging strategy.
Specifically, after subtraction of the sample image from its corre-
sponding background image, a differential hologram was formed,
which contained the information of only the newly captured particles.
For particle sizing, we used only the images captured under the green
LED illumination. By merging all the differential holographic images
captured using the three LEDs, red–green–blue color images of the
captured particles could also be obtained, revealing the color
information of the specimen, if desired. To avoid awaiting completion
of the steps before a new sample could be obtained, we programmed
the sampling process in a parallel approach. Accordingly, when a new
sampling request arrived before the previous result was synced, the
un-synced sample was cached first. It was later synced when the device
became idle. The entire device sampling process was controlled by a
custom-developed program on a microcomputer (Raspberry Pi A+),
along with a custom-designed circuit (Supplementary Fig. S1).
If stand-alone operation of the device (without any data connectivity)
is preferred in some applications, the same Raspberry Pi microcom-
puter that we are currently using as the controlling board in our
design can provide sufficient computational power for image recon-
struction and particle analysis, once the image processing algorithms
are transferred from Matlab into C++-based codes.

Particle detection using digital ‘peeling’
Direct back-propagation of the acquired hologram (Supplementary
Equation (S1)) to the auto-focused sample plane generates a spatial
artifact, called the twin-image noise, on top of the object. This twin-
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image artifact affects the detection of aerosol particles. If left
unprocessed, it can lead to false-positives and false-negatives. To
address this problem, we employ an iterative particle peeling
algorithm18 in our holographic reconstruction process. It is addition-
ally combined with a support vector machine (SVM)-based learning
model to further reject these spatial artifacts. The algorithm is
summarized as a flowchart in Supplementary Fig. S2.
This peeling algorithm contains four cycles of detection and erasing

(‘peeling out’) of the particles at progressively increasing thresholds,
that is, 0.75, 0.85, 0.92 and 0.97, where the background is centered
at 1.0 during the differential imaging process (Supplementary
Information). The highest threshold (0.97) is selected as 3σ from
the background mean, where σ≈ 0.01 is the s.d. of the background.
We use a morphological reconstruction process19 to generate the
image mask instead of using a simple threshold. Because most particles
have a darker center and a somewhat weaker boundary, using a single
threshold may mask parts of the particle, potentially causing the
particle to be missed or re-detected multiple times in subsequent
peeling cycles. This is avoided by using a morphological reconstruction
process.
In each cycle of this digital particle peeling process, we first adjust

the image focus using the auto-focusing algorithm (Supplementary
Information). Then, a morphological reconstruction is employed to
generate a binary mask, where each masked area contains a particle.
For each mask, we crop a small image (100× 100 pixels) and perform
fine auto-focusing on this small image to find the correct focus plane
of the corresponding particle. At this focus plane, we extract various
spatial features of the particle, for example, minimum intensity Im,
average intensity Ia, area A and maximum phase θM. We then
propagate (using Supplementary Equation (S1)) the image to five
different planes uniformly spaced between 20 μm above and 20 μm
below this focus plane. The Tamura coefficient (see Supplementary
Equation (S3)) of this focus plane is calculated and compared to the
coefficients of these five other planes. The ratio of the Tamura
coefficient at this focus plane against the highest Tamura coefficient of
all six planes is defined as another feature, RTam. These four features,
Im, θM, A and RTam, are then fed into an SVM-based learning model to
digitally separate spatial artifacts from true particles and reject such
artifacts. This learning algorithm is detailed in the following sub-
section. After all the detected particles in this peeling cycle are
processed, we digitally peel out these ‘counted’ particles, that is,
replace the thresholded area corresponding to each detected particle
with the background mean, on both the image and twin image planes.
We then move to the next peeling cycle with a higher threshold and
repeat the same steps.
After completing all four peeling cycles, the extracted features, Im,

θM and A, are further utilized for particle sizing using a machine-
learning algorithm, as detailed further below. This sizing process is
only performed on true particles, which generates a histogram of
particle sizes and density distributions, as well as various other
parameters, including, for example, total suspended particulate
(TSP), PM10 and PM2.5, reported as part of c-Air result summary.

Elimination of false-positives using a trained support vector
machine
To further avoid false-positives in our detection system, we used a
trained linear SVM that is based on four features, Im, θM, A and RTam,
as described in the previous sub-section, to distinguish spatial artifacts
from true particles and increase c-Air detection accuracy. These spatial
features were selected to provide the best separation between the true-
and false-particles. To train this model, we obtained two air sample

images using a c-Air prototype, one indoor and one outdoor. Then, in
addition to our c-Air-based analysis, we physically extracted the
sampling coverslip and inspected the captured particles under a
benchtop bright-field microscope using a 40× objective lens. We
compared the thresholded areas in our peeling cycle and lens-free
reconstruction process with the images of the benchtop microscope to
mark each one of these detected areas as a true particle or a false one.
Using this comparison, we labeled a total of 42000 thresholded areas
and fed half of this training data into our SVM model20 (implemented
in Matlab using the function ‘svmtrain’). The other half was used for
blind testing of the model, which showed a precision of 0.95 and a
recall of 0.98.

Machine-learning-based particle detection and sizing
We used a custom-designed machine-learning algorithm trained on
size-calibrated particles to obtain a mapping from the detected spatial
characteristics of the particles to their diameter, also helping us avoid
false positives, false negatives as well as over-counting of moved
particles in our detection process. For this purpose, we used some
spatial features extracted from the holographic particle images,
including for example, minimum intensity Im, average intensity Ia
and area A, and developed a second-order regression model that maps
these features to the sizes of the detected particles in microns. The
model is deterministically learned from size-labeled particle images,
which are manually sized using a standard benchtop microscope.
Specifically, after we extract features Im, Ia and A of the masked region
in a particle peeling cycle, we strive to find a model, f, that maps these
features to the particle diameter D in microns, that is,

D ¼ f Im; Ia;
ffiffiffi
A

p� �
ð2Þ

Where f can potentially have infinite dimensions. However, we employ
a simplified second-order polynomial model of f and extend the
features to the second-order by defining:

X ¼ 1; Im; Ia;
ffiffiffi
A

p
; I2m; I

2
a ;A; ImIa; Im

ffiffiffi
A

p
; Ia

ffiffiffi
A

ph i
ð3Þ

We then define a linear mapping, θ, that relates the second-order
features to the diameter of the particle:

D ¼ f Im; Ia;
ffiffiffi
A

p� �
¼ yTX̂ ¼ yT

X � m
s

� �
ð4Þ

where T refers to the transpose operation, and μ and σ represent the
mean and s.d. of X, respectively.
Based on the above mapping, we used 395 size-labeled microbeads

for training and blind testing. These polystyrene microbeads ranged in
diameter from ~1 to ~ 40 μm, as shown in Figure 3. The ground truth
sizes of these particles were manually measured under a benchtop
microscope with a 100 ´ 0.95 numerical aperture (NA) objective lens.
The same samples were additionally imaged using the c-Air platform
to obtain the corresponding lens-free images and extract spatial
features, Im, θM and A. For training the machine-learning model, we
first randomly and evenly separated the microbead samples into
respective training and testing sets. After extending the features to the
second-order (Equation (3)) and performing normalization (Equation
(4)), we fitted the parameter vector θ by minimizing the difference
between the training feature mapping yTX̂ tr

� �
and the calibrated

diameter Dmic
tr

� �
that is,

miny8y
T X̂ tr � Dmic

tr 81 ð5Þ
This minimization was performed by CVX, a software package
designed for solving convex optimization problems21. The same
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trained parameter was then applied for the cross-validation set, which
was comprised of another 197 microbeads. Particle sizing training
errors (Etr) and testing errors (Ecv) were validated by evaluating the
norm of difference:

Etr ¼ 8yT X̂ tr � Dmic
tr 8p ð6Þ

Ecv ¼ 8yT X̂ cv � Dmic
cv 8p ð7Þ

where yTX̂ cv is the testing feature mapping, and Dmic
cv is the calibrated

diameter for the testing set. In addition, p= 1 is used for calculating
the ‘mean error,’ and p=∞ is used for calculating the ‘maximum
error.’ Note that this training process only needs to be done once, and
the trained parameter vector, θ and the normalization parameters,
μ and σ, are then saved and subsequently used for blind particle sizing
of all the captured aerosol samples using c-Air devices.

RESULTS AND DISCUSSION

C-Air platform spatial resolution, detection limit and field of view
The USAF-1951 resolution test target was used to quantify the spatial
resolution of the c-Air platform. The reconstructed image of this test
target is shown in Supplementary Fig. S3, where the smallest resolvable
line is group eight, element two (line width 1.74 μm), which is
currently pixel-size limited due to our unit magnification imaging
geometry17,22. If required in future applications, a better resolution
(for example,r 0.5 μm) can be achieved in our c-Air platform using a
CMOS sensor with a small pixel size and/or by applying pixel super-
resolution techniques to digitally synthesize smaller pixel sizes22–25.
In our reconstructed lens-free differential images, we defined the

detection noise floor as 3σ (σ≈ 0.01 is the s.d. of the background)
from the background mean, which is always 1 in a given normalized
differential image, as detailed in our Supplementary Information. For
a particle to be viewed as detected, its lens-free signal should be above
this 3σ noise floor. As shown in Supplementary Fig. S4, 1 μm particles
can be clearly detected, which is also cross-validated by a benchtop

microscope comparison. We should note that, as desired, this
detection limit is well below the 50% cut-off sampling diameter of
our impactor (d50= 1.4 μm, see the Materials and Methods section for
details).
In terms of the imaging field of view, the active area of the CMOS

sensor in our c-Air design is 3.67× 2.74= 10.06 mm2. However, in the
impactor air sampler geometry (Figure 1d), the particles are deposited
immediately below the impaction nozzle. Thus, the active area that
will be populated by aerosols and imaged by the lens-free microscope
will be the intersection of the active area of the CMOS sensor and
the impaction nozzle opening. Because the slit has a width of only
1.1 mm, the resulting effective imaging field of view of c-Air is
3.67× 1.1= 4.04 mm2. With either the selection of a different CMOS
image sensor chip or a custom-developed impaction nozzle, the nozzle
slit area and the image sensor area can have larger spatial overlaps to
further increase this effective field of view in future c-Air designs.

Particle-sizing accuracy using machine learning
As detailed in the Materials and Methods section, we used a machine-
learning algorithm trained on size-calibrated particles to obtain a
mapping from the detected spatial characteristics of the particles to
their diameter. Figure 3 depicts how well the predicted particle
diameter, Dpred, based on our machine-learning algorithm described
in the Materials and Methods section, agrees with the ground-truth
measured diameter, Dref. The sizing errors for training and testing sets
are defined in Equations (6) and (7), respectively. The dotted black
line in Figure 3 represents the reference for Dref=Dpred. As shown in
Figure 3, using machine learning, c-Air achieved an average sizing
error of ~ 7% for both the training and blind testing sets. For non-
standard particles, for example, rod-shaped or arbitrarily shaped
fibers, our microscopic imaging system will be able to determine that
the above described size mapping will not be applicable. For these
non-standard particles that are detected on our sampling surface, we
can characterize them using new parameters based on their
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Figure 3 Machine-learning-based particle detection and sizing with high accuracy using c-Air. The designated bead sizes are shown in the uppermost table.
The microscope-calibrated size distribution is plotted as the histogram within the large figure. The large figure in the background shows the machine-learning
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reconstructed images, such as eccentricity, length, width and area. In
fact, this forms another advantage of our approach since it can also
report the concentrations of such non-standard particles, along with
their phase and amplitude images at different wavelengths, which
other existing techniques cannot.

Particle size distribution measurements and repeatability of the
c-Air platform
We employed two c-Air devices, which were designed to be identical,
and we conducted repeated measurements at four locations: (1) the
class-100 clean room of California NanoSystems Institute (CNSI) on
21 June 2016; (2) the class-1000 clean room at CNSI on 23 May 2016;
(3) the indoor environment in the Engineering IV building at the
University of California, Los Angeles (UCLA) campus on 25 May

2016; and (4) the outdoor environment at the second floor patio of
the Engineering IV building on 23 May 2016. At each location, we
obtained seven samples for each c-Air device with a sampling period
of 30 s between the two successive measurements. These sample c-Air
images were processed as described in the Materials and Methods
section, and the particle size distributions for each location were
analyzed and compared.
Figure 4a–4c shows a box-whisker plot of the data distribution for

TSP, PM10 and PM2.5 at these four locations. The points, marked by
an ‘x’ symbol, were excluded as outliers from the box plot with a
whisker length of 1.5 (99.3% confidence). The mean and s.d. of the
seven measurements in each of the four locations are summarized in
Supplementary Table S1. It is interesting to note that c-Air measured
the TSP density at ~ 7 counts per liter for the class-100 clean room
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Figure 4 c-Air repeatability tests at different locations. (a–c) Box-plot of the repeatability test results using two c-Air devices (A and B) at the (1) class-100
clean room of CNSI on 21 June 2016; (2) class-1000 clean room at CNSI on 23 May 2016; (3) indoor environment of the UCLA Engineering IV building on
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and 25 counts per liter for the class-1000 clean room at CNSI, which
are both comparable to the ISO 14644-1 clean room standards26, that
is, 3.5 counts per liter for the class-100 clean room and 36 counts per
liter for the class-1000 clean room for particles ≥ 0.5 μm.
The measurements of TSP, PM10 and PM2.5 densities from the

same data set was additionally used to elucidate two aspects of the
repeatability of the c-Air platform, that is, the intradevice and
interdevice repeatability. The intradevice repeatability is defined as
the extent to which the measurement result varies from sample to
sample using the same c-Air device to measure the air quality in the
same location (assuming that the air quality does not change from
measurement to measurement with a small time lag in between). The
strong intradevice repeatability of c-Air is evident in the ‘max–min’
perspective in the box plot of Figure 4a–4c, or as the s.d. (std, σ) in
Supplementary Table S1.
The interdevice repeatability is defined as the extent to which the

results vary from each other using two c-Air devices that are designed
as identical to measure the air quality in the same location. This can
be qualitatively viewed by comparing the measurement result of
device A and device B in Figure 4. To further quantify the interdevice
repeatability, we performed a μ-test (that is, Mann–Whitney μ-test or
Wilcoxon rank sum test) on the 2× 4 sets of measurement data from
devices A and B at four different locations. In the μ-test, we aimed
to verify the null hypothesis (H= 0) for two sets of samples,
X and Y:

H ¼ 0 : P X > Yð Þ ¼ P Y > Xð Þ ¼ 1

2
ð8Þ

That is, we strived to test if the medians of the two samples are
statistically the same. Compared to other tests for repeatability, for
example, the student t-test, the μ-test requires fewer assumptions and
is more robust27. We thus used a Matlab built-in function, ranksum, to
perform the μ-test and the hypothesis results and prominent P-values
are summarized in Supplementary Table S2. As shown in this table,
the null hypothesis H= 0 is valid for all the 2× 4 sets of measurement
data (from devices A and B at four different locations), showing the
strong inter-device repeatability of our c-Air platform.

c-Air measurements showing Sand Fire incident influence
at 440-km distance
On 22 July 2016, the so-called Sand Fire struck near the Santa Clarita
region in California and remained uncontained for several days28,29.
Figure 5a marks both the locations of this wild fire and the UCLA
campus. Although UCLA was more than 40 km from the location of
the fire, on 23 July around noon, smoke and ashes filled the sky near
UCLA, as shown in the photo of Figure 5b. We obtained six air
samples using the c-Air device at an outdoor environment at UCLA, as
described in the above sub-section. We compared the results with a
previous sample obtained on a typical day, 7 July 2016, using the same
device and at the same location. The data of both days contained six
30-s air samples measured with c-Air, with a ~ 2-min interval between
the successive samples. For each day, the particle size distributions of
the six samples were averaged and the s.d. were plotted as the
histogram in Figure 5c. The results showed that the outdoor PM
density significantly increased on the day of the wild fire, especially for
particles smaller than 4 μm, which showed an approximately 80%
increase. This increase in the density of smaller particles is natural
because comparatively smaller particles can travel this long distance
(440 km) and still have significant concentrations in air.

Comparison of c-Air with a standard BAM PM2.5 instrument
On 16 August 2016, we employed a c-Air device at the Reseda Air
Quality Monitoring Station (18330 Gault St, Reseda, CA, USA) and
obtained a series of measurements during a 15-h period starting from
6:00 am. We compared the performance of the c-Air device with that
of the conventional EPA-approved BAM PM2.5 measurement instru-
ment (BAM-1020, Met One Instruments, Inc.).
The EPA-approved BAM-1020 pumps air at ~ 16.7 L �min�1 and

has a rotating filter amid airflow that accumulates PM2.5 to be
measured every hour. A beta-particle source and detector pair inside
measures the attenuation induced by the accumulated PM2.5 on the
filter and converts it to total mass using the Beer–Lambert law. The
quantity reported from BAM-1020 is hourly averaged PM2.5 mass
density in μg �m�3. In comparison, the c-Air device is programmed to
obtain a 30-s average particle count per 6.5 L of air volume. It
performs sizing and concentration measurements using optical
microscopic imaging, as detailed in the Materials and Methods section.
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Figure 5 Particle size and density of the UCLA outdoor environment affected by the Sand Fire on 22 July 2016. (a) Map showing the area struck by the
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To enable a fair comparison, we obtained four 30-s measurements
every hour, with 10- to 15-min intervals between consecutive c-Air
measurements. We measured the PM2.5 densities corresponding to
these samples and obtained their average as our final measured PM2.5
density for a given hour. This c-Air average was compared to the
hourly average PM2.5 mass density measured by BAM-1020. The
measurements of the c-Air device were obtained on the roof
of the Reseda Air Sampling Station close to the inlet nozzle of
BAM-1020; however, it was situated ~ 2 m from it to avoid inter-
ference between the two systems.
Figure 6 plots the comparison of the measurement results from this

c-Air device and BAM-1020. As shown in Figure 6a, c-Air’s hourly
average PM2.5 count density result (blue curve) closely follows the
same trend as the EPA-approved BAM PM2.5 mass density result
(cyan curve). We also plotted hourly averaged TSP (red curve) and
PM10 (green curve) in the same Figure 6a, which follows a similar
trend as PM2.5. Last, we found a linear correlation between the BAM
PM2.5 measurements and c-Air PM2.5 count density measurements,
as shown in Figure 6b, where the x axis is the PM2.5 mass density in
μg �m�3 measured by the BAM-1020, and the y axis is the PM2.5
count density in counts per liter measured by the c-Air device. Some
of the variations between the two techniques may be due to several
reasons: (1) Each PM2.5 particle may have a different weight;
therefore, the PM2.5 count density may not directly convert to mass
density of the particles; (2) There may be some air-quality variations
within every hour; thus, our four 30-s measurements may not
accurately represent the whole hourly average reported by BAM-1020;
(3) The cutoff size of our impactor is ~ 1.4 μm, which means particles
smaller than this size may not be efficiently counted by our device,
whereas they are counted by BAM-1020.
Note also that, in Figure 6a at 7:00 to 9:00 am, the original

measurements by BAM-1020 are missing on account of the replace-
ment of the rotating filter, which is required for the instrument’s
maintenance. Instead, these data points are replaced by the average
of the 7:00 to 9:00 am time windows on Fridays, which were
measured within the same month (Supplementary Fig. S5 and
Ref. 30).

Spatial-temporal mapping of air-quality near LAX
On 6 September 2016, we employed two c-Air devices, device A and
device B, to measure the spatio-temporal air quality changes around
LAX. To this end, we obtained two 24-h measurements spanning two

different routes that represent the longitudinal and latitudinal direc-
tions, which were centered at LAX (Figures 7 and 8). We selected six
locations in each route and performed measurements with a period of
2 h in each route over 24 h. These raw c-Air measurements were sent
to our server for automatic processing to generate the particle size
statistics at each time and location.
Route 1 extended from LAX to the east in a longitudinal direction,

as shown in Figure 7a. Along this route, we selected six sites that were
located at 3.37, 4.34, 5.91, 7.61, 9.95 and 13.1 km east of LAX,
respectively. LAX shows a pattern of a large number of flights
throughout the day (7:00 am to 11:00 pm); however, it shows a
prominent valley at late night (around 2:00 am), where the number of
flights is minimal, as shown by the cyan curves in Figure 7a. As
depicted in bubble boxes (1) to (6) in Figure 7a, the c-Air
measurement results of both PM2.5 and PM10 also show such a
valley during late night, which illustrates the relationship between the
total number of flights at LAX and the nearby PM pollutants. As the
distance increases from LAX, this modulation weakens. To quantify
this correlation, we defined two measures: (1) the correlation slope,
which is the slope of the linear mapping from the total number of
flights to the PM10 or PM2.5 count density (plotted as a function of
the longitudinal distance from LAX in Figure 7b), and (2) the daily
average PM measured by c-Air, which is the 24-h average PM10 or
PM2.5 count density for each location (also plotted as a function of
the longitudinal distance from LAX in Figure 7c). These figures show
an exponential trend for both the correlation slope and the daily
average PM as a function of the distance from LAX. Moreover, they
indicate that the impact of the airport in increasing air pollution is
significant, even 47 km from its location. This has also been
independently confirmed in earlier studies31, using a commercially
available optical scattering based PM detection technology10 that has a
limited dynamic range of particle size and density, and more than an
order of magnitude lower throughput compared to ours due to its
serial read-out scheme as discussed in our Introduction section. Note
also that there is an unexpected point at the third location (5.91 km
from LAX), which seems to have a higher pollution level above
the exponential trend that is observed. We believe this is due
to the existence of a parking lot of ~ 3400 car spaces and a
related construction site in o65 m to this measurement location
(Supplementary Fig. S6).
Unlike Route 1, Route 2 extended from the south to the north of

LAX, spanning a latitudinal direction. The six locations chosen in this
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route were 3.58, 1.90, 0.50, 0.01, �1.46 and �2.19 km north of LAX,
respectively. Similar to Route 1, bubble boxes (1) to (6) of Figure 8a
plot the time variations of the PM concentration during the sampling
points corresponding to Route 2. These results once again show a
similar trend of PM variation in accordance with the total number of
flights at LAX. Similar to Route 1, as the measurement location
distance from LAX increases, the modulation strength diminishes. The
above finding is supported by the correlation slope shown in Figure 8b
and the daily average PM shown in Figure 8c, both of which are a
function of the latitudinal distance north of LAX. We note that the
decrease is more rapid in this latitudinal direction (south-to-north,
Route 2) than the longitudinal direction (west-to-east, Route 1),
which may be on account of the typical west winds near LAX during
the summer, which cause the particles to travel longer distances
in air32.

CONCLUSIONS

In this paper, we demonstrated a portable and cost-effective PM
imaging, sizing and quantification platform, called c-Air, which uses
lens-free computational microscopy and machine learning. The plat-
form consists of a field-portable device weighing ~ 590 g, a smart-
phone app for device control and display of results and a remote
server for automated processing of digital holographic microscope
images for PM measurements based on a custom-developed machine
learning algorithm. The performance of the device was validated by
measuring air quality at various indoor and outdoor locations,
including an EPA-regulated air sampling station, where we compared
c-Air results with those of an EPA-approved BAM device, and a close
correlation was shown. We further used c-Air platform for spatio-
temporal mapping of air-quality near LAX, which showed the PM
concentration varying throughout the day in accordance with the total
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Figure 7 LAX measurements in the longitudinal direction using c-Air. (a) Noise map near LAX. The east side of LAX is where airplanes arrive; it is marked by
tiny airplane icons. We obtained a 24-h PM measurement on 06 Spetember 2016 to 07 September 2016 at the following locations: (1) 5223 W. Century
Blvd., (2) 10098 S. Inglewood Ave., (3) 4011 W. Century Blvd., (4) 3000 W. Century Blvd., (5) 1407 W. 101st St and (6) 9919 S. Avalon Blvd., as marked
on a. The fourth time point at location (a-6) was excluded from the curve because there was a large water sprinkler turned on during the measurement,
which affected the c-Air performance. (b) Correlation slope plotted for locations (1–6) as a function of their longitudinal distances from LAX. (c) Daily average
PM plotted for locations (1–6) as a function of their longitudinal distances from LAX. The third point in b and c, as marked by a black arrow, is inconsistent
with the trend, which we believe is on account of the presence of an immense (~3400 spaces) parking lot nearby that specific measurement location
(Supplementary Fig. S6). a depicts the noise maps of the second quarter of 2016 near LAX cropped from Ref. 34. The total number of flights, represented
by the cyan curve of (a-1) to (a-6), is plotted from the data given by Ref. 35.
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number of flights at LAX. The strength of this correlation, as well as
the daily average PM, exponentially decreased as a function of the
increasing distance from LAX. We believe that the c-Air platform, with
its microscopic imaging and machine learning interface, has a wide
range of applications in air quality regulation and improvement.
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Figure 8 LAX measurements in the latitudinal direction using c-Air. (a) Noise map near LAX. We obtained a 24-h PM measurement on 09/06/2016–09/07/
2016 at locations (1) 6076 W. 76th St, (2) 8701 Airlane Ave., (3) 5625 W. Century Blvd., (4) 10400 Aviation Blvd., (5) 5457 W. 117th St and (6) 5502
W. 122nd St, as marked on a. (b) Correlation slope plotted for locations (1–6) as a function of their latitudinal distances from LAX. (c) Daily average PM
plotted for locations (1–6) as a function of their latitudinal distances from LAX. a is the noise map of the second quarter of 2016 near LAX cropped from
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