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Currently, drug-induced nephrotoxicity is widespread and seriously affects human health. However, the

conventional indexes of renal function lack sensitivity, leading to a delay in the detection of nephrotoxi-

city. Therefore, we need to identify more sensitive indexes for evaluating nephrotoxicity. In this study, we

used gentamicin (100 mg kg−1), etimicin (100 mg kg−1) and amphotericin B (4 mg kg−1) to establish renal

injury models in rats, and we collected information using ultra-performance liquid chromatography quad-

rupole time-of-flight mass spectrometry in the screening stage. Thirteen nephrotoxicity metabolites were

selected after multivariate statistical and integration analyses. Then, we conducted trend analysis to select

5 nephrotoxicity biomarkers [thymidine, LysoPC(16:1), LysoPC(18:4), LysoPC(20:5), and LysoPC(22:5)]

whose content changed consistently at different timepoints after drug administration. To verify the sensi-

tivity and specificity of these biomarkers for nephrotoxicity, receiver operating characteristic (ROC) and

support vector machine (SVM) analyses were applied. The area under the curve of the 5 biomarkers were

0.806–0.901 at the 95% confidence interval according to the ROC analysis. We used the SVM classified

model to verify these biomarkers, and the prediction rate was 95.83%. Therefore, the 5 biomarkers have

strong sensitivity and high accuracy; these biomarkers are more sensitive indexes for evaluating renal

function to identify nephrotoxicity and initiate prompt treatment.

1. Introduction

Currently, safety problems associated with clinical drugs are
hindering their promotion.1 The kidney is easily damaged by
drug-induced toxicity because it is the main excretory organ of
the body. Thus, drug-induced nephrotoxicity is widespread.2,3

In recent years, serum creatinine (Scr) and blood urea nitrogen
(BUN) have been commonly used as indexes for evaluating
renal function. However, they are limited in their ability to

detect nephrotoxicity because of their lack of sufficient sensi-
tivity.4,5 Therefore, it is necessary to develop a sensitive and
efficient method for evaluating nephrotoxicity.

Metabolomics, which is an important part of systems
biology, is used to investigate changes in endogenous sub-
stances when the biological system is affected by external
disturbances.6–8 With research developments, metabolomics
technology has been used extensively to evaluate drug toxicity.
Particularly, it has promoted the study of drug-induced
nephrotoxicity to gain new insights into the associated patho-
physiological mechanisms.9–11 Plasma metabolomics is
broadly used in human health care and drug safety evaluations
because it provides a large amount of information on
endogenous substances.12,13 Given its high sensitivity, exten-
sive dynamic range and good separation ability, ultra-perform-
ance liquid chromatography-mass spectrometry (UPLC-MS)
has become one of the most versatile techniques, and is being
gradually applied to various fields such as metabolomics,
proteomics and traditional Chinese medicine. UPLC-MS-based
metabolomics has great potential for identifying useful
biomarkers for disease diagnosis (such as hepatocarcinoma
and liver cirrhosis, lung cancer and pneumonia, and Alzhei-
mer’s disease and schizophrenia, etc.) and drug-induced
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toxicity assessment (such as cardiotoxicity, hepatotoxicity,
nephrotoxicity, etc.).14–17 Metabolomics biomarkers can
reveal the metabolic differences in the physiological and
pathological states of organisms in a dynamic and sensitive
manner.18–20

The support vector machine (SVM) is an intelligent pattern
recognition technology that has been extensively used in
different fields.21–23 It effectively solves the binary classifi-
cation problem because it generates the optimal linear inter-
face of two categories of substances.24 SVM provides a new
direction in metabolomics and genomics data processing
because of its robustness, and deals well with high-dimen-
sional data and small sample sizes.25,26 Therefore, we utilized
SVM to predict and classify the related biomarkers by feature
selection and classification prediction.

In this study, we used receiver operating characteristic
(ROC) and SVM to analyse plasma metabolomics data to ident-
ify biomarkers for evaluating nephrotoxicity. We used gentami-
cin, etimicin and amphotericin B to establish rat models of
renal injury. Information on the plasma samples was collected
using an UPLC quadrupole time-of-flight MS (UPLC-Q-TOF/
MS) platform. After the multivariate statistical analysis, inte-
gration analysis and content analysis, we obtained nephrotoxi-
city biomarkers whose content changed consistently at
different timepoints after drug administration. Next, we used
ROC to evaluate the sensitivity and specificity of the nephro-
toxicity biomarkers. Then, we predicted nephrotoxicity using
these biomarkers after combining with cardiotoxicity and
hepatotoxicity data by SVM. The method can provide a
systematic tool for screening and validating other toxic bio-
markers using metabolomics and can promote the develop-
ment of metabolomics.

2. Materials and methods
2.1 Chemicals and reagents

Acetonitrile [high-pressure liquid chromatography (HPLC)
grade] was purchased from Oceanpak (Gothenburg, Sweden).
Formic acid (HPLC grade) was purchased from ROE (USA).
Purified water was purchased from Wahaha Company
(Hangzhou, China). Normal saline (NS), five nephrotoxic drugs
[gentamicin (GM), etimicin (ETI), amphotericin B (AMB),
thioacetamide (TAA) and cisplatin (DDP)], two cardiotoxic
drugs [cyclophosphamide (CP) and 5-fluorouracil (5FU)], one
hepatotoxic chemical [carbon tetrachloride (CCl4)] and one
hepatotoxic drug [tetracycline (TC)] were purchased from
Queensland Technology Co., Ltd (Tianjin, China) and dis-
solved in saline.27–36

2.2 Animal experiment

We purchased male Wistar rats (6 weeks old, weighing 200 ±
20 g) from Sibei Fu (Beijing) Experimental Animals Technology
Co., Ltd, under license number “SCXK (Jing) 2011-0004”. The
experiment was conducted at the Institute of Radiation Medi-
cine Chinese Academy of Medical Sciences (Tianjin, China).

The rats were housed in an SPF-level laboratory, and the temp-
erature was 25 ± 1 °C. Before the experiment, the rats had free
access to chow and water during the one week acclimatization
period (the rats were 7 weeks old at the beginning of the
experiment). This study was approved by the Animal Ethics
Committee of Tianjin University of Traditional Chinese Medi-
cine under permit number TCM-2012-078-F01. All of the
experimental procedures were conducted in accordance with
Chinese national legislation and local guidelines.

105 rats were divided into ten groups to identify nephrotoxi-
city biomarkers: the NS, GM-1d, GM-3d, GM-7d, ETI-1d,
ETI-2d, ETI-3d, AMB-1d, AMB-3d and AMB-7d groups. 70 rats
were divided into seven groups to verify the nephrotoxicity
biomarkers: the NS group, two nephrotoxicity groups (TAA and
DDP), two cardiotoxicity groups (CP and 5FU), and two hepato-
toxicity groups (CCl4 and TC). The groups, doses, adminis-
tration routes and sampling times are shown in Table 1.36,45

2.3 Sample collection

Before sample collection, all rats were fasted for twelve hours
with access to water to prevent the effect of food on our final
results. Blood was collected from the aorta abdominalis of
each rat. Plasma was placed in a tube that had been washed
with heparin sodium solution, and serum was placed in a
normal tube. Then, all the rats were sacrificed, and their
organs were immediately removed and stored in 10% formalin
solution for pathological analysis by haematoxylin and eosin
(H&E) staining. Serum and plasma were separated by centrifu-
gation at 3500 rpm for 15 min at 4 °C. Plasma was stored at
−80 °C until the metabolomics analysis. Serum was used to
detect the biochemical markers.

For H&E staining, the fixed tissues were embedded in
paraffin wax. Then, 5 µm thick slices were cut and fixed on
glass slides. The slices were deparaffinized with xylene,
hydrated, stained with haematoxylin, differentiated with
hydrochloric alcohol, stained with eosin and dehydrated in a
graded alcohol series. Then, the slides were cleaned with
xylene, and the histopathological changes were observed by
light microscopy at 100× magnification.36,37

2.4 Sample pretreatment

The plasma was thawed at room temperature before proces-
sing. Then, 300 µL of acetonitrile was added to 100 µL of
plasma. The mixture was vortexed for 1 min, ultrasonicated in
cold water for 10 min and centrifuged at 4 °C at 13 000 rpm for
15 min. Then, the supernatant was collected for UPLC-Q-TOF/
MS analysis.

2.5 Data acquisition

We used an UPLC-Q-TOF/MS system (Waters, USA) to acquire
the metabolomics data. A 5 µL aliquot of the supernatant was
injected into the ACQUITY UPLC HSS C18 column (2.1 ×
100 mm, 1.7 µm; Waters, USA). The column temperature was
set at 40 °C, and the flow rate was 0.3 mL min−1. The UPLC
separation system included a binary solvent system with
mobile phase A (0.1% formic acid in water) and mobile phase
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B (0.1% formic acid in acetonitrile). The gradient started with
99% A followed by 0 to 0.5 min, A: 99% to 99%; 0.5 to 2 min,
A: 99% to 50%; 2 to 9 min, A: 50% to 1%; 9 to 10 min, A: 1%
to 1%; 10 to 10.5 min, A: 1% to 99%; and 10.5 to 12 min, A:
99% to 99%. Q-TOF/MS was performed using electrospray ion-
isation in positive mode. The MS parameters were as follows:
drying gas flow, 10 mL min−1; auxiliary ionisation and desolva-
tion gas, high-purity N2; desolvation temperature, 325 °C; des-
olvation gas flow, 600 L h−1; atomisation air pressure, 350 psi;
ionisation capillary voltage, 3.5 kV; range of data acquisition,
50–1000 Da. A reference ion ([M + H]+ = 556.2771) was used to
ensure accuracy during the spectral acquisition. We used
quality control (QC) samples to evaluate the reliability of the
data in the analysis process; the QC samples were mixed with
the same amount of plasma from each sample.38 Each QC
sample was detected six times to evaluate the instrument pre-
cision. Next, 6 QC samples were used to determine the
method repeatability. QC samples were detected every 5 hours
to test sample stability over 24 hours. Before injecting the
samples, the entire system was determined to be under stable
conditions.

2.6 Data analysis

Information on all the plasma samples was from the UPLC-Q-
TOF/MS platform. The raw data was exported using Marker-
Lynx V4.1 (Waters Corporation, Manchester, USA) with peak
discovery, peak alignment, and filtering to determine potential
discriminating variables.

In the screening stage, the data was processed by multi-
variate statistical analysis using SIMCA-P+11.5 software
(Umetrics, Sweden). In our study, principal component analy-
sis (PCA) was used to identify the outliers in the samples, and
partial least squares-discriminate analysis (PLS-DA) was used
to distinguish the variables with a high contribution between

the NS group and the drug treatment group at different times.
The model was visualized with a score plot. The variables with
a variable-importance plot (VIP) greater than 1 (VIP > 1) at
different administration times were analysed using Student’s
t-test in SPSS 17.0 (SPSS, USA), and the variables with p < 0.05
represented potential nephrotoxicity metabolites. The poten-
tial nephrotoxicity metabolites from the three drugs at
different times were processed by integration analysis to identify
nephrotoxicity metabolites using Venn diagrams (http://
bioinfogp.cnb.csic.es/tools/venny/index.html). The heat map
was generated using Cluster software based on the relative
content of each nephrotoxicity metabolite in each treatment
group. Next, the change in content of nephrotoxicity meta-
bolites at different timepoints was analysed to identify those
metabolites whose content changed consistently. These meta-
bolites were identified by MS/MS information and confirmed
with HMDB (http://www.hmdb.ca/) and KEGG (http://www.
genome.jp/kegg/) as nephrotoxicity biomarkers. The ROC
curves of nephrotoxicity biomarkers based on the nephrotoxic
drug groups were determined using the binary logistic
regression model in SPSS 17.0 (SPSS, USA).

Then, we combined the data of nephrotoxic drug groups
with non-nephrotoxicity (cardiotoxicity and hepatotoxicity)
data to validate the nephrotoxicity biomarkers using an SVM
model in MATLAB R2010a (MathWorks, USA). The peak areas
of the nephrotoxicity biomarkers were the input variables, and
the training set was used to build an SVM classification model
with the optimal penalty parameter (c) and kernel function (g).
The factor c is used to determine the characteristics of sub-
space-regulated learning, and g is a function for mapping from
low-dimensional space to high-dimensional space.36,39 We
obtained the accuracy rate of the model using the test set.
Cross-validation was used to determine the confidence and
experience risk ratio ranges of the model.36,40

Table 1 The groups, doses, administration routes and sampling times in the animal experiments

Drug Grouping Number Dose Mode of administration Sampling time

Stage Ia NS NS 15 5 ml kg−1 i.p.c, single-dose 1 day
GM GM-1d 10 100 mg kg−1 i.p.c, single-dose 1 day

GM-3d 10 100 mg kg−1 i.p.c, successive administration 3 days
GM-7d 10 100 mg kg−1 i.p.c, successive administration 7 days

ETI ETI-1d 10 100 mg kg−1 i.p.c, single-dose 1 day
ETI-2d 10 100 mg kg−1 i.p.c, successive administration 2 days
ETI-3d 10 100 mg kg−1 i.p.c, successive administration 3 days

AMB AMB-1d 10 4 mg kg−1 i.p.c, single-dose 1 day
AMB-3d 10 4 mg kg−1 i.p.c, successive administration 3 days
AMB-7d 10 4 mg kg−1 i.p.c, successive administration 7 days

Stage IIb NS NS 10 5 ml kg−1 i.p.c, single-dose 1 day
TAA TAA 10 200 mg kg−1 i.p.c, successive administration 6 days
DDP DDP 10 6 mg kg−1 i.p.c, successive administration 3 days
CP CP 10 200 mg kg−1 i.p.c,successive administration 5 days
5FU 5FU 10 125 mg kg−1 i.g.d, single-dose 1 day
CCl4 CCl4 10 5 mL kg−1 i.s.e, successive administration 2 days
TC TC 10 1500 mg kg−1 i.g.d, successive administration 5 days

a The screening stage for nephrotoxicity biomarkers. b The validation stage for nephrotoxicity biomarkers. c Intraperitoneal injection.
d Intragastric administration. e Subcutaneous injection.
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3. Results
3.1 Histopathological examination and serum biochemical
detection

We used histopathological examination to evaluate the extent
of drug-induced kidney damage.41,42 The histopathological
examination of the kidney in the screening stage is shown in
Fig. 1. The kidneys from animals in the drug-treated groups
(GM-1d, GM-3d, GM-7d, ETI-1d, ETI-2d, ETI-3d, AMB-1d,
AMB-3d, and AMB-7d) were injured compared with those from
animals in the NS group. The kidneys had infiltrating inflam-
matory cells with varying degrees of interstitial fibrosis.
Additionally, the renal tubule, collecting tubule and renal
pelvis showed atrophy or dilation; in some cases, the collecting
tubule generated microcysts. The histopathological examin-
ation of the validation stage is shown in Fig. S1;† the organs
were injured in response to drug toxicity.

Kidney damage is indicated by increased Scr and BUN con-
tents. In our study, the levels of Scr and BUN in the drug-
treated groups were compared with those in the NS group by
Student’s t-test (Fig. 2). The Scr and BUN levels were signifi-
cantly increased (p < 0.05) only in the GM-7d, ETI-3d, and
AMB-7d groups compared with the NS group. In the other
groups, the two indexes were not increased significantly at the
same timepoints. However, the content of the two indexes
showed a temporal correlation.

3.2 Nephrotoxicity biomarker screening

The BPI chromatograms of the QC samples in positive ion
mode UPLC-Q-TOF/MS are shown in Fig. S2.† The experi-
mental results (instrument precision, method repeatability
and sample stability) showed that the relative standard devi-
ations of the peak areas and retention times of the twenty
selected peaks were less than 15% (Table S1†), which indicated
that the instruments and samples were stable and that the
methods were reliable.

We obtained the PCA and PLS-DA score plots using multi-
variate statistical analysis (Fig. S3 and Table S2†). Some stray
samples were removed according to the PCA. We selected vari-
ables with VIP > 1 based on the PLS-DA for analysis by
Student’s t-test. The variables with p < 0.05 represented poten-
tial metabolites associated with each drug at different times.
Then, they were processed by integration analysis to identify
potential nephrotoxicity-associated metabolites of each drug
(Fig. S4†). Finally, we obtained 13 nephrotoxicity metabolites,
and the Venn diagram is shown in Fig. 3. The heat map of the
relative content of each nephrotoxicity-associated metabolite is
shown in Fig. 4. We retained 5 biomarkers whose content
changed consistently in the GM, ETI and AMB groups at
different times (Fig. 5). These biomarkers were identified by
mass spectrometry (Fig. S5†). Detailed information regarding
the 5 nephrotoxicity biomarkers is provided in Table 2.

Fig. 1 Histopathological examination of the kidney by H&E staining
(100× magnification).

Fig. 2 BUN and Scr levels in serum samples. (A) Changes in BUN levels.
(B) Changes in Scr levels. Data are presented as the mean ± SD
(*p < 0.05, **p < 0.01, compared with the NS group).
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We used ROC to evaluate the diagnostic potential of the 5
biomarkers for nephrotoxicity in the screening stage. The ROC
analysis showed that the 5 nephrotoxicity biomarkers had a
high accuracy for evaluating nephrotoxicity based on the area
under the curve, and the sensitivity and specificity at the best
cutoff points (Table 3 and Fig. 6).

3.3 Nephrotoxicity biomarker validation

Currently, drug-induced toxicity (nephrotoxicity, cardiotoxicity
and hepatotoxicity) is widespread. When a biological system is
damaged by different toxins, similar metabolic pathways, such
as inflammation, may be affected.43 Thus, we verified the
specificity of the 5 biomarkers by combining the data with car-
diotoxicity and hepatotoxicity samples using an SVM classified
model. Two-thirds of the samples in the validation stage were
assigned as the training set to build the model, and the other
one-third of the samples formed the test set to determine the
accuracy rate of the model in the SVM classification process.36

The accuracy rate was 95.83%. The SVM model parameters in
the cross-validation method are shown in Fig. 7. The data
showed that the model based on the 5 nephrotoxicity bio-
markers has a good predictive ability in other relevant
samples.

4. Discussion

The reported studies about nephrotoxicity metabolomics bio-
markers involve a variety of endogenous small molecules, com-
pared with the combination of nephrotoxicity biomarkers
[thymidine, LysoPC(16:1), LysoPC(18:4), LysoPC(20:5), and
LysoPC(22:5)] that we obtained, which relate to more intricate
metabolic processes in vivo and could not explain the relation-
ship between biomarkers and nephrotoxicity on the metabolic
level.44–46 However, the nephrotoxicity biomarkers we obtained
can explain the mechanism of nephrotoxicity to some degree.
It has been reported that the change in plasma LysoPC levels
is related to drug-induced nephrotoxicity.44,45 LysoPCs belong
to the class of phosphatidylcholines (PCs). PCs and LysoPCs
participate in the glycerophospholipid metabolism pathway
based on the KEGG database. On the one hand, PCs can
produce LysoPCs by lecithin-cholesterol acyltransferase and
secretory phospholipase A2.47 On the other hand, LysoPCs can
produce PCs through lysophosphatidylcholine acyltransferase.
In recent years, it has been reported that the mechanism of
drug-induced nephrotoxicity is related to oxidative stress.48 At
this time, the yield of reactive oxygen species (ROS) and reac-
tive nitrogen species (RNS) were all excessive, and the oxi-
dation and antioxidant systems were imbalanced, resulting in
kidney tissue damage. PCs can remove peroxide in vivo. There-
fore, when the kidney is damaged, PCs are required to elimin-
ate ROS and RNS. Thus, the glycerophospholipid metabolism
pathway is affected, resulting in decreased LysoPCs pro-
duction, which corresponds to our experimental results.
Another nephrotoxicity biomarker that we obtained is thymi-
dine, which participates in the pyrimidine metabolism
pathway. When the kidney is damaged, the content of thymi-
dine undergoes significant changes, affecting the protein
kinase C signaling pathway, thereby affecting the expression of
phospholipase A2. PCs can produce LysoPCs by phospholipase
A2 in the glycerophospholipid metabolism pathway, which can
explain the relationship between LysoPCs and nephrotoxicity.

To a certain extent, biochemical indicators reflect organ
damage. However, their sensitivity and specificity are poor
because they are often affected by other factors. However,
histopathological analysis can reveal organ damage directly.
When Scr and BUN levels are significantly increased, it is likely

Fig. 3 Venn diagram of the potential metabolites associated with each
nephrotoxic drug (GM: 117; ETI: 255; AMB: 88) by integration analysis.
Thirteen nephrotoxicity metabolites were initially obtained.

Fig. 4 Heat map of the relative content of each nephrotoxicity-associated metabolite in all the drug-treated groups.
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that the kidney has been injured by the pathological condition.
Hence, we used histopathological examinations to evaluate the
extent of kidney damage. From the serum biochemistry
results, we ascertained that the kidneys were injured only in
the GM-7d, ETI-3d, and AMB-7d groups. However, the histo-
pathological examination revealed that the kidneys were

injured in all the drug-treated groups. This finding indicates
that the existing methods do not detect nephrotoxicity with
adequate accuracy or sensitivity. Compared with serum bio-
chemistry, nephrotoxicity biomarkers underwent significant
changes at different timepoints after drug administration,
which reveals sensitive metabolic differences in organisms.

Table 2 Detailed information on the 5 nephrotoxicity biomarkers in plasma from male Wistar rats based on UPLC-Q-TOF/MS

No. tR (min) Metabolites Obsd [M + H]+ Calcd [M + H]+ Error (ppm) Formula MS/MS

1 2.51 Thymidine 243.0987 243.0975 4.80 C10H14N2O5 243.1 [M + H]+

127.1 [M + H − C5H8O3]
+

2 5.16 LysoPC(16:1) 494.3244 494.3241 0.61 C24H48NO7P 494.3 [M + H]+

476.3 [M + H − H2O]
+

184.0 [M + H − C19H34O3]
+

125.0 [M + H − C22H43NO3]
+

104.1 [M + H − C19H35O6P]
+

3 5.15 LysoPC(18:4) 516.3062 516.3085 −4.45 C26H46NO7P 516.3 [M + H]+

498.3 [M + H − H2O]
+

184.0 [M + H − C21H32O3]
+

104.1 [M + H − C21H33O6P]
+

4 5.55 LysoPC(20:5) 542.3219 542.3241 −4.06 C28H48NO7P 542.3 [M + H]+

524.3 [M + H − H2O]
+

259.1 [M + H − C17H33NO2]
+

184.0 [M + H − C23H34O3]
+

125.0 [M + H − C26H43NO3]
+

104.1 [M + H − C23H35O6P]
+

5 6.13 LysoPC(22:5) 570.3549 570.3554 −0.88 C30H52NO7P 570.4 [M + H]+

552.3 [M + H − H2O]
+

184.0 [M + H − C25H38O3]
+

125.0 [M + H–C28H47NO3]
+

104.1 [M + H–C25H38O6P]
+

Fig. 5 Content change of the 5 nephrotoxicity biomarkers whose content changed consistently at different timepoints after drug administration
and at different administration times in the GM, ETI and AMB groups (*p < 0.05, **p < 0.01, compared with the NS group).
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Additionally, these biomarkers can help explain the biological
mechanism of drug-induced nephrotoxicity.

Currently, some studies have used single nephrotoxic drug
to identify nephrotoxicity biomarkers by metabolomics.
Similar metabolic processes in the body may be affected by

different toxic drugs.43 Therefore, the biomarkers in the
reported studies were not exclusive to nephrotoxicity. Addition-
ally, the application of these biomarkers has not been pro-
moted.44,45 In our study, we established nephrotoxicity models
based on three nephrotoxic drugs at three different adminis-
tration times to identify nephrotoxicity biomarkers. To exclude
the impact of other forms of toxicity, we combined the nephro-
toxicity with other toxic drugs (cardiotoxicity and hepato-
toxicity) to validate our biomarkers using an SVM model. The
SVM model was used to verify the accuracy of the biomarkers
in predicting nephrotoxicity. The results of the SVM model
showed that the best combination of biomarkers [thymidine,
LysoPC(16:1), LysoPC(18:4), LysoPC(20:5), and LysoPC(22:5)]
had higher sensitivity and accuracy compared with the
reported studies.44,45 Therefore, this combination has poten-
tial for broad application in drug safety evaluations and drug
development as well as in the clinical evaluation and predic-
tion of drug-induced nephrotoxicity.

In our study, we established a comprehensive and systema-
tic method for identifying nephrotoxicity biomarkers. This rep-
resents a new tool for discovering and verifying biomarkers in
other areas related to metabolomics, such as drug-induced
toxicity, clinical diagnostics and plant metabolomics. Further-
more, it is conducive to the development of metabolomics. To
obtain specific and exclusive nephrotoxicity biomarkers, we
controlled the experimental animals (male Wistar rats, 6 weeks
old, weighing 200 ± 20 g) to investigate the differences in
metabolism in response to different toxic drugs in this study.
Considering the universal applicability of our nephrotoxicity
biomarkers, we should combine them with the factors such as
gender and age for verification purposes in future studies.

5. Conclusions

In this study, we performed a metabolomics study on drug-
induced nephrotoxicity to identify biomarkers based on
UPLC-Q-TOF/MS analysis. We initially identified 5 nephrotoxi-
city biomarkers whose content changed consistently at
different timepoints after drug administration. Then, we used
ROC and SVM to evaluate and verify the diagnostic potential of
the 5 biomarkers for nephrotoxicity in different contexts. The
ROC results showed that these biomarkers have a high

Table 3 ROC analysis of the 5 nephrotoxicity biomarkers at the screening stage

Biomarkers AUCa Sensitivity (%) Specificity (%) Standard errorb

95% CI

Lower Upper

Thymidine 0.901 0.956 0.714 0.044 0.815 0.988
LysoPC(16:1) 0.817 0.813 0.786 0.069 0.682 0.952
LysoPC(18:4) 0.806 0.846 0.714 0.064 0.680 0.933
LysoPC(20:5) 0.886 0.791 0.857 0.033 0.821 0.951
LysoPC(22:5) 0.830 0.758 0.786 0.062 0.710 0.951

a The area under the curve. bUnder the nonparametric assumption.

Fig. 6 ROC curves of the 5 nephrotoxicity biomarkers [thymidine,
LysoPC(16:1), LysoPC(18:4), LysoPC(20:5) and LysoPC(22:5)] at the
screening stage.

Fig. 7 3D view of the SVM classified model of the 5 nephrotoxicity bio-
markers (parameters: best c = 0.76, best g = 6.96, CV accuracy = 100%).
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sensitivity for nephrotoxicity. In the SVM model, the accuracy
rate of these biomarkers was 95.83%, and they were specific
for nephrotoxicity. Nephrotoxicity biomarkers can effectively
compensate for insufficient biochemical indexes. Our study
could promote the establishment of a systematic drug-induced
toxicity evaluation based on metabolomics.
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